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Abstract:
We numerically optimise the span length that gives the lowest signal power
asymmetry between transmitted and conjugated channels in a DWDM
transmission with fibre based mid-link optical phase conjugation.
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1. Introduction

The nonlinear-Shannon limit sets a cap to maximum capacity in single mode optical fibres [1,2].
Several techniques have been proposed over the years to compensate or partially mitigate fibre
nonlinear effects, pre-shaping and in-line nonlinearity management [3–6] to digital compensa-
tion through techniques such as back-propagation [6–8]. Amongst these options, mid-link [9]
or transmitter-based [10] optical phase conjugation (OPC) has proven to be one of the most
promising, enabling real time compensation of all deterministic (signal×signal) nonlinear im-
pairments. However, the degree of nonlinear compensation using mid-link OPC is related to the
symmetry match of the conjugated and transmitted signal power evolution in the fibre. Mean-
ingful performance improvement has only been demonstrated in Raman-based amplification
optical links [11], thanks to the better control over signal symmetry provided by distributed
amplification, as well as its improved noise performance. The key to maximise performance
in OPC-assisted systems lies in reducing signal power asymmetry within the periodic spans
while ensuring a low impact of noise and non-deterministic nonlinear impairments in the over-
all transmission link.

It has been demonstrated that half- open-cavity random distributed feedback (DFB) Raman
laser amplifier with bidirectional 2nd order pumping [12–14] can reduce signal power evolution
asymmetry inside the span with respect to its middle point and shows the highest level of
symmetry achieved up to date [15, 16].

In order to investigate the best practical Raman-based link design and the potential impact of
the reduced asymmetry between transmitted and conjugated channels, we consider two DWDM
grids (original and conjugated) of 20 channels with a 25 GHz spacing (original and conju-
gated) that are simulated independently across the C-band with frequency range from 192 -
195,775 THz. We also show the optimised single channel in-span signal power asymmetry
variation due to wavelength dependent Raman gain and attenuation at different frequencies and
span lengths.



2. Amplification setup

In our search for an optimal setup for WDM transmission with an OPC we consider random
DFB Raman fibre laser amplifier [12, 13] that shows the best in-span asymmetry performance
comparing with other Raman amplification schemes [15,16]. The schematic design is shown in
Fig. 1.
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Fig. 1. Schematic design of random DFB Raman laser amplifier.

To form a distributed 2nd order random DFB Raman laser amplifier amplifier, fully depo-
larised Raman fibre laser pumps are downshifted in wavelength by two Stokes with respect to
the frequency of the signal. High reflectivity (99%) FBG centred at 1455 nm with a 200 GHz
bandwidth was deployed at the end of the transmission line to reflect Stokes-shifted light from
the backward pump at 1366 nm and form a random DFB lasing [17] at the frequency specified
by the wavelength of the FBG acting as a first order pump that amplified the signal in the C-
band. The advantage of this model is that the gain bandwidth and profile can be modified by
selecting appropriate FBG [18] rather than deploying a seed at different wavelength. The lack
of an FBG on the side of the forward pump reduces the RIN transfer [19] from the forward
pump to the Stokes-shifted light at 1455 nm at the cost of a reduction in the power efficiency
conversion in comparison to the 1st order Raman and URFL amplification schemes. This is par-
ticularly important, as forward-pumping RIN transfer from inherently noisy high-power pumps
can seriously hinder data transmission [20–22].

3. Wavelength dependent asymmetry

To show wavelength dependent in-span asymmetry we simulated single channel across the
30 nm C-band (1531 - 1561 nm) with a 25 GHz step. Our broadband amplification model
includes not only cascaded amplification, but takes also into account residual Raman gain from
the primary pump at 1366 nm to the signal in the C-band, pump depletion from both pumps
to the lower order pumps and signal components, double Rayleigh scattering and amplified
spontaneous emission noise for each of the signals as well as parameters (attenuation curve at
different frequencies, Rayleigh backscattering and Raman gain coefficients) for standard SMF-
28 fibre used in the simulations. The full description can be found in [13]. The span length
ranged from 50 - 70 km and the pump powers were optimised to give 0 dBm net gain and the
lowest in-span asymmetry at each distance.
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Fig. 2. Asymmetry excursion dependence on the forward and backward pump power split
measured at the central wavelength at 1545 nm in a 60 km span.



The forward and backward pump power split for an optimised asymmetry within the span
can vary with distance. In Fig. 2 we show the experimental measurement with simulated fit of
a pump power split measured at the central wavelength at 1545 nm in a 60 km span.
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Fig. 3. Signal power asymmetry at given frequency for different span lengths (a) and the
corresponding OSNR (b).

The lowest asymmetry (calculated as in [23]) and corresponding OSNR at given frequency
for each distance is shown in Fig. 3. With the higher span length the asymmetry variation
across the residual grid is more pronounced, hence the optimisation of the link for the wide-
band DWDM transmission is important as the performance of an OPC is directly related to
the symmetry of the transmitted and conjugated channel. The flattest and the lowest overall
asymmetry excursion across the simulated band was found at 58 km (Fig. 4).
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Fig. 4. Asymmetry excursion of a single channel across C band (1531-1561 nm).

The lowest asymmetry as well as asymmetry excursion across the measured band is found to
be for the span lengths below 62 km (solid curves in Fig. 3[a]), hence further optimisation for
WDM transmission will be performed in that region.

4. DWDM transmission with a mid-link OPC

In DWDM transmission with a mid-link OPC we independently simulate the power evolution
of the original channels and their conjugated copies, that is shifted in frequency. The channel
count was set to 20, with a 25 GHz spacing. We assumed 300 GHz spacing for optical phase
conjugator. The grid was then being downshifted in wavelength by 500 GHz until the 30 nm
band (1531 - 1561 nm) was fully covered. A diagram depicting the simulated frequency sections
is shown in Fig. 5.

The asymmetry between transmitted and conjugated channels (inter-span asymmetry) was
calculated using the formula:

Asymmetry =
∫ L

0 |P1(z)−P2(L− z)|dz∫ L
0 P1(z)

×100 (1)



Fig. 5. Frequency sections of transmitted and conjugated channels.

where L is the span length, P1 and P2 represents average signal power evolution of the transmit-
ted and conjugated channels, respectively.
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Fig. 6. Optimised asymmetry between transmitted and conjugated WDM channels at dif-
ferent frequency sections. The Y axes refers to frequencies of the transmitted WDM grid.

Each section of the band was optimised to the channel that gave the best overall asymmetry
performance: the grid was simulated to give 0 dB net gain for the first channel, then the rest of
the channels were simulated with the same pump power, next we optimised the grid to a second
channel and so on. The same logic was applied to the conjugated copy and finally we compared
the asymmetry between original and conjugated channels with all possible combinations. The
optimised results with the lowest achievable asymmetry in each section for the distances from
50 to 62 km links is shown in Fig. 6. Due to the frequency dependence of the attenuation
and Raman gain coefficient profiles, the asymmetry in the residual windows (I and II) is most



pronounced. This is also valid for single channel in-span asymmetry as shown in Fig. 3(a). As
a result, the symmetry between transmitted and conjugated channels is greatest for the sections
with the best in-span symmetry. Asymmetries below 4% are found to be achievable for all
frequency sections from 193 - 195.775 THz (window III, IV, V and VI) at all span lengths
considered.

Comparing the results from Fig. 6 we can notice the importance of span length optimisation
for wide band WDM transmission with an OPC. A span length difference of only 4 km can lead
to a strong performance decrease in nonlinear compensation using OPC due to the associated
increase in asymmetry.

5. Conclusion

We have evaluated, for the first time, signal power asymmetry between transmitted and con-
jugated channels in a WDM transmission in Raman-amplified systems with mid-link OPC.
We have shown that for the chosen typical fibre-based OPC characteristics and a 20-channel,
25 GHz-spaced grid, a 56 km span length provides most suitable solution that gives the best
asymmetry performance, with values below 3% across most of the C-band. In terms of opti-
mal channel location, the spectral window starting in 193.5 THz (window IV) offers the best
possible performance for all span lengths studied.
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