Genetic factors affecting EBV Load in Transformed LCLs from the 1000 Genome Project : a GWAS on Transformation

Rajendra Mandage¹*, Gabriel Santpere Baro¹ and Arcadi Navarro^{1,2,3,4}

1 Institute of Evolutionary Biology (Universitat Pompeu Fabra-CSIC), PRBB, Barcelona, Spain; 3 Institució Catalana de Recerca i Estudis Avançats (ICREA), Catalonia, Spain;

- Background of study -

- > Epstein-Barr virus (EBV) infects 95-98% of adults world-wide, and causes infectious mononucleosis. EBV is also linked with severe conditions such as Burkitt's lymphoma, nasopharyngeal carcinoma and post-transplant lympho-proliferative disorder.
- \succ It is unknown to what extent host genetic variants influence EBV load within LCL.
- > We hypothesized that differences among individual LCLs in the EBV load resulting from EBV transformation may reflect different genetic susceptibility to EBV infection.

- Objective of study -

- \succ To assess whether there are SNPs in the genome of worldwide populations from the 1000 Genomes Project that could be associated with the viral load measured in LCLs used in that project.
- > To help understanding the biology of cell immortalization and of EBV-related diseases.

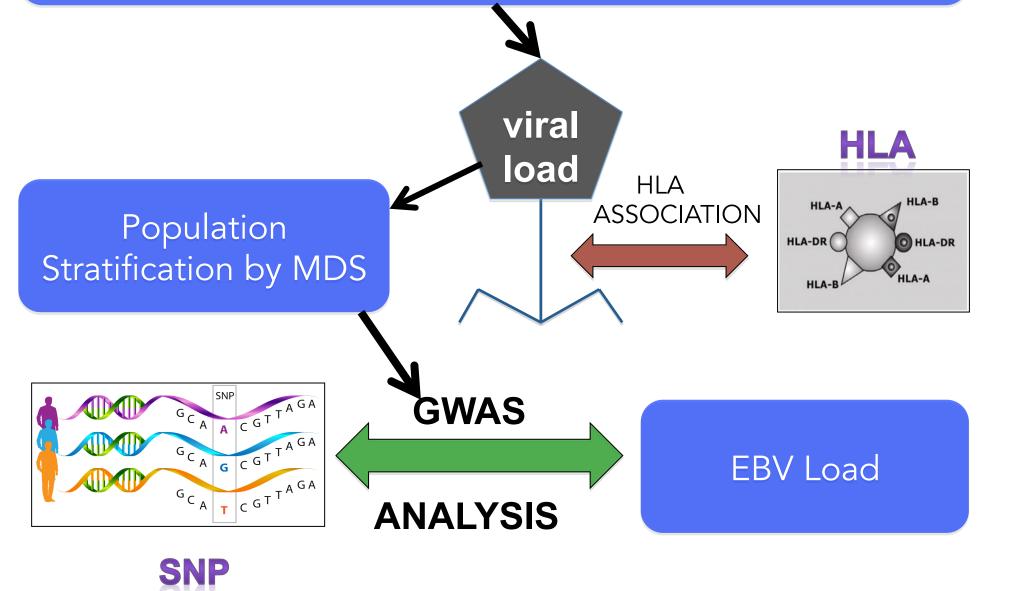
2 Centre de Regulació Genòmica (CRG), Barcelona, Spain;

4 National Institute for Bioinformatics (INB), Barcelona, Spain.

contact : rajendra.mandage@upf.edu

- Methodology -

1000 Genomes Project


In silico Method

Retrieved genomes from 1000 Genome project for 26 populations (2504 samples)

Experimental Method RT PCR

to validate viral load count (13 samples)

All reads from 26 populations not mapping to human genome were mapped against EBV ref genome (NC_007605)

- EBV load estimation results -

- ➢Viral load ranges from 1-600 viral RNA copies/LCL across all populations are observed.
- ➤Viral load shows significant differences between continents.
- ➤Within continent, populations also show clear differences. In Europeans, for instance, IBS and CEU appeared to have higher viral loads than Finish or Tuscans (Figure

➢No difference is observed between males and females.

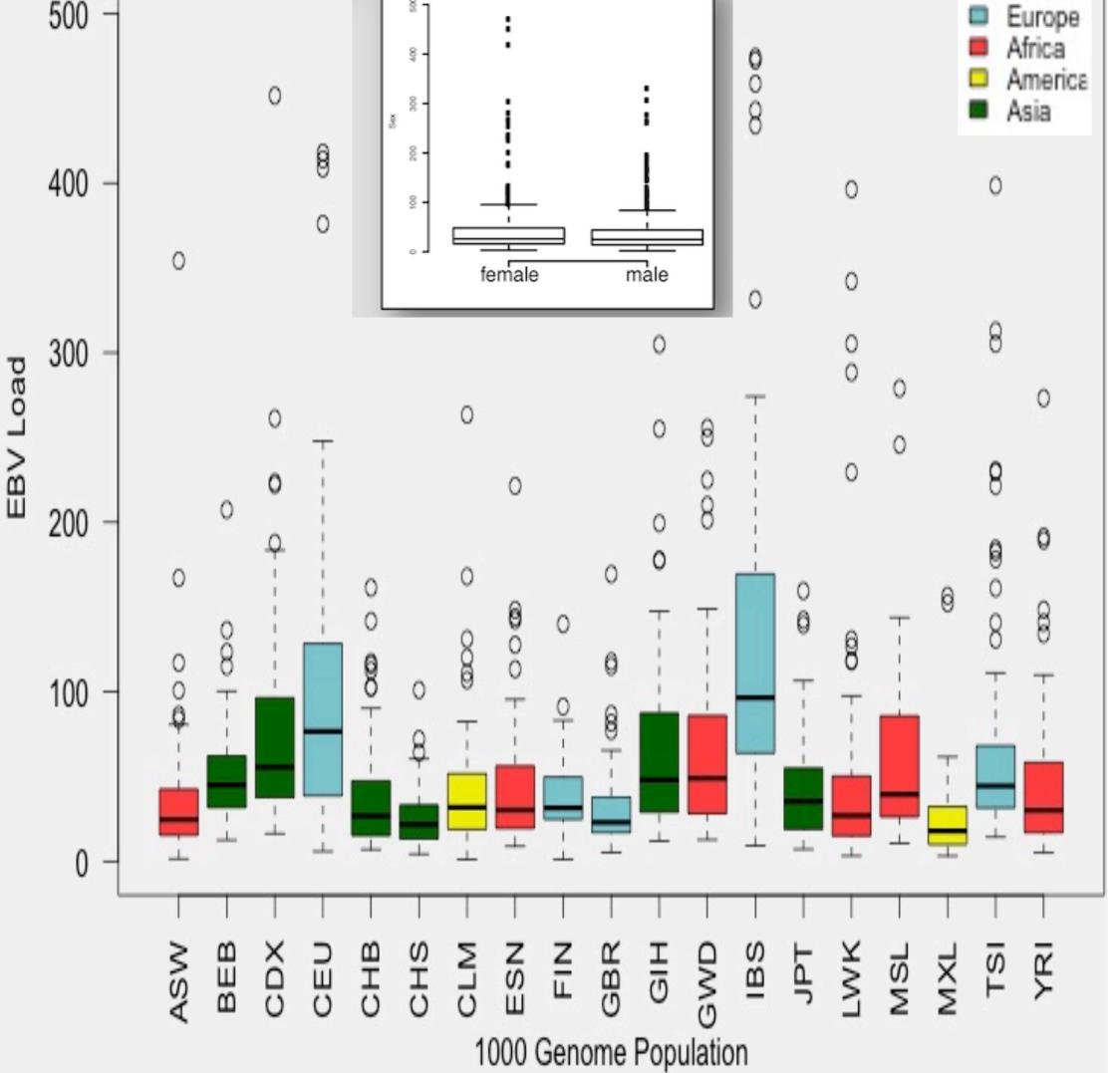


Fig:1 EBV load distribution among 1000 genome populations

- GWAS results -

SNP	Chr	BP	Beta	SE	Gene symbol	Gene feature	GWAS P-value
		Top GWA	S hits from	n all popula	ations sample	25	
rs200699422	4	174352039	-0,161	0,02717	SCRG1	intergenic	3.79E-09
rs28758290	4	106030663	0,1127	0,0193	TET2	intergenic	6.35E-09
rs4976776	5	177855823	0,07717	0,01429	COL23A1	intronic	7.58E-08
rs112772351	6	36498148	-0,1074	0,02007	STK38	intronic	9,89E-08
rs17809115	17	32629296	0,1042	0,01936	CCL11	intergenic	8.31E-08
rs384592	19	23458920	0,1379	0,02474	IPO5P1	intronic	7.58E-08
		Top GWAS	hits from	Asian popu	lations samp	oles	
rs80274284	1	116579977	-0,2156	0,03757	SLC22A15	exonic	1.55E-08
rs199893425	2	231404151	-0,2298	0,03928	SP100	intronic	8,37E-09
rs200655768	2	179575949	-0,2411	0,04178	TTN	exonic	1.30E-08
rs200699422	4	174352039	-0,2254	0,04107	SCRG1	intergenic	6.19E-08
rs199422217	5	156895736	-0,2264	0,04149	NIPAL4	exonic	7.29E-08
rs184202621	9	115166387	-0,2448	0,04015	HSDL2	exonic	2,02E-09
rs201672061	9	134357909	-0,2229	0,04093	PRRC2B	exonic	7.68E-08
rs112607901	16	31003411	0,1165	0,02039	STX1B	UTR3	1.82E-08

Table:1 Top GWAS hits with gene name and annotation

- > 14 strong association signals (Table 1) from all populations and Asian populations are observed.
 - \succ Genes associated with neurological disorder, prostate cancer and Hodgkin lymphoma are frequent.
 - Regions containing genes TRAK1, DKK2, PAPD7, MLN, ARHGEF10, SYT9 and LINC01255 are shared between Asian and African populations.
 - > The proportion of variance in EBV load explained by SNPs is 0.63 (n=1730, SE ± 0.17, P= 5.77e-15), and 0.86 $(n=573, SE \pm 0.02, P= 4.08e-08)$ for all populations and Asian populations (1.06 and 2.2 million SNPs considered in each case)

- Conclusions -

- > We identified some genetic variants associated with viral load. These might point to pathways involved in natural EBV transformation and associated infections.
- \succ Individual and population level variation in viral load may affect individual and population risk for certain EBV-

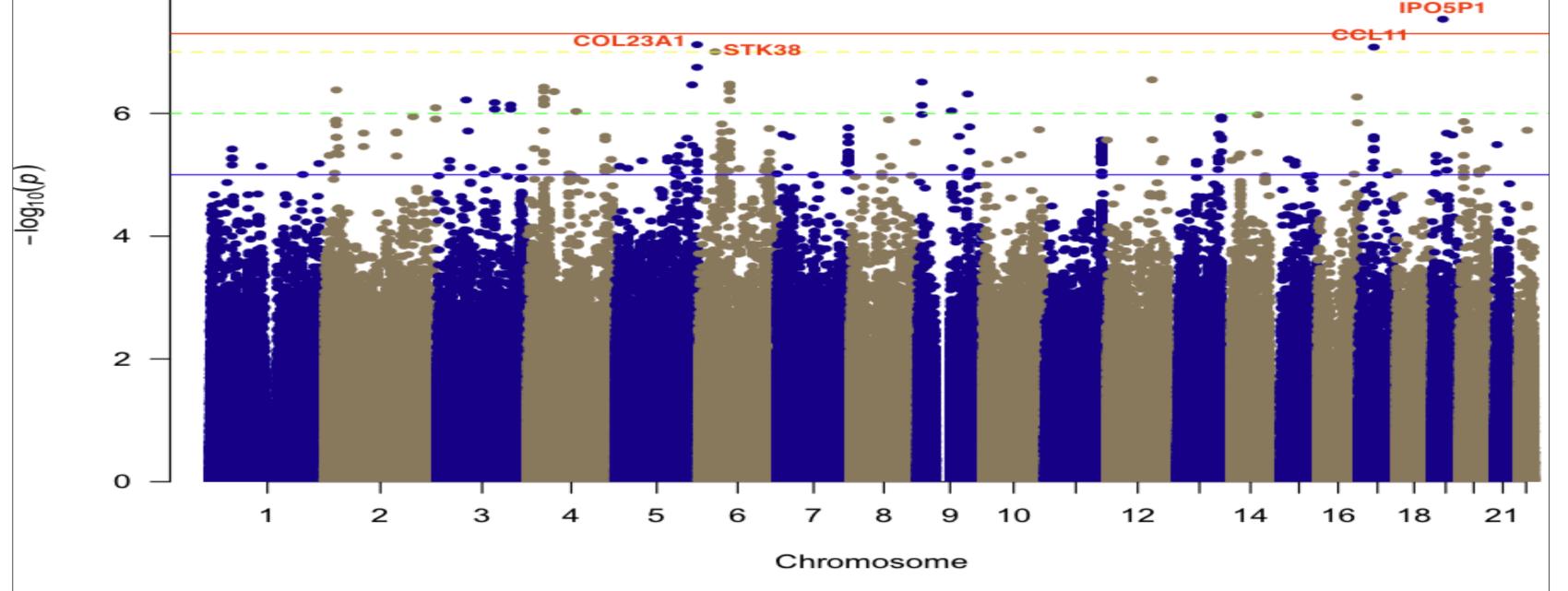


Fig:2 Manhattan plot depicting EBV load associated variants in all populations

related disease.

 \succ LCL-based models would be a good indicator of EBV load at the population-level, which would be useful in linking EBV load variation in transformed LCLs to specific genetic loci.

- References -

- Chang CM, Yu KJ, Mbulaiteye SM, Hildesheim A, Bhatia K. 2009. The extent of genetic diversity of Epstein-Barr virus and its geographic and disease patterns: a need for reappraisal. Virus Res.
- Houldcroft CJ, Kellam P. 2014. Host genetics of Epstein-Barr virus infection, latency and disease. Rev. Med. Virol.

