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The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated
within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE
in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results
for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional.
The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS
method with Skyrme interactions. We present and discuss the values of the volume and surface contributions
to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains, studying their isotopic sensitivity.
The results are compared with estimations of other approaches which have used available experimental data
on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS), and also with
results of other theoretical methods.

DOI: 10.1103/PhysRevC.94.014319

I. INTRODUCTION

One of the most exciting topics of research in nuclear
physics is currently the nuclear matter symmetry energy that
essentially characterizes the isospin-dependent part of the
equation of state of asymmetric nuclear matter (ANM) [1–4].
A natural and important way to learn more about the NSE
is the transition from ANM to finite nuclei. Experimentally,
the NSE is not a directly measurable quantity and is extracted
indirectly from observables that are related to it (see, e.g.,
the review [5]). A sensitive probe of the NSE is the neutron-
skin thickness of nuclei, although its precise measurement
is difficult to be done. At present, the latter is derived
from pigmy dipole resonance measurements [6], data on
antiprotonic atoms [1], giant resonances, nuclear reactions,
parity-violating asymmetry [7,8], and others. Correlations
of the neutron-skin thickness in finite nuclei with various
symmetry energy parameters are considered in Ref. [9]. A
wide range of works (e.g., [10–14]) are devoted to studies of
the density dependence of the symmetry energy in uniform
matter.

The symmetry energy of finite nuclei at saturation density
has been often extracted by fitting ground state masses with
various versions of the liquid-drop mass formula within the
liquid-drop models [15–17], and also within other approaches,
such as the random phase approximation based on the
Hartree-Fock (HF) approach [18], effective Lagrangians with
density-dependent meson-nucleon vertex functions [19], the
energy density functional (EDF) of the Skyrme force [20–22],
relativistic nucleon-nucleon (NN) interactions [23,24], and
others. In our previous works [25,26] the symmetry energy
has been studied in a wide range of spherical and deformed
nuclei, on the basis of the Brueckner EDF [27,28]. In these
works the transition from the properties of nuclear matter to
those of finite nuclei has been made using the coherent density
fluctuation model [29,30]. The latter is a natural extension

of the Fermi-gas model based on the generator coordinate
method [30,31] and includes long-range NN correlations of
collective type. The numerous applications of the CDFM
to analyses of characteristics of the nuclear structure and
reactions can be seen, e.g., in Refs. [25,30]. In [25] the
study of the correlation between the thickness of the neutron
skin in finite nuclei and the NSE for the isotopic chains
of even-even Ni (A = 74–84), Sn (A = 124–152), and Pb
(A = 206–214) nuclei, as well as the neutron pressure and
the asymmetric compressibility for these nuclei, have been
presented. The calculations have been based on the deformed
self-consistent mean-field HF+BCS method [32,33], using the
CDFM and the Brueckner EDF. The same approaches have
been used in Ref. [26] for the calculations of the mentioned
quantities of deformed neutron-rich even-even nuclei, such as
Kr (A = 82–120) and Sm (A = 140–156) isotopes.

In 1947 Feenberg [34] pointed out that the surface energy
should contain a symmetry energy contribution as a conse-
quence of the failure of nuclear saturation at the edge of
the nucleus and that the volume saturation energy also has
a symmetry energy term. Cameron in 1957 [35] (see also
Bethe [36]) suggested a revised mass formula in which the
volume energy was expressed as a sum of two contributions:
the volume saturation energy proportional to the mass number
A and a volume symmetry energy assumed proportional to
(A − 2Z)2/A. In 1958 Green [37] estimated the values of
the volume and surface components of the corresponding
contributions to the symmetry energy. Myers and Swiatecki
in 1966 [15] admitted that the ratio between the mentioned
coefficients must be equal to the ratio between the surface and
volume coefficients of the corresponding components of the
mass formula. In Ref. [38] Warda et al. studied the bulk and
the surface nature of the formation of the neutron skin in the
isotopic chains of Sn and Pb, a concept that can be applied
when analyzing the experimental data. In Ref. [39] the same
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authors showed the role of the stiffness of the NSE on the
origin of the neutron-skin thickness in 208Pb, the latter being
decomposed into bulk and surface components. In Ref. [40]
it was demonstrated by Danielewicz that the ratio of the
volume to surface symmetry energy is closely related to the
neutron-skin thickness (see also Refs. [41–48]). Discussions
on the correlation between the bulk and surface symmetry
energy are given also, e.g., in Refs. [49–53]. It was shown
in [54] by Lee and Mekjian by calculations of the thermal
nuclear properties that the surface symmetry-energy term is
more sensitive to the temperature than the volume energy term.
In Ref. [55] Agrawal et al. pointed out that, contrary to the
case of the infinite nuclear matter, a substantial change in the
symmetry energy coefficients is observed for finite nuclei with
temperature.

In the present work we investigate the volume and surface
contributions to the NSE within the CDFM. We use our results
for NSE obtained using Brueckner EDF in Refs. [25,26,56],
as well as the considerations of this subject mentioned above
(e.g., [34–53]). The present calculations are performed using
both Brueckner and, in addition, Skyrme energy-density
functionals. The results are compared with those of other
theoretical methods and with corresponding experimental data
obtained from analyses of different nuclear quantities, such as
binding energies, neutron-skin thicknesses, excitation energies
to IAS, and others.

The structure of this paper is the following. In Sec. II we
present the main relationships for the NSE and its volume
and surface components that we use in our study. Section III
contains the CDFM formalism that provides a way to calculate
the mentioned quantities. There we also present the numerical
results and discussions. The main conclusions of the study are
given in Sec. IV.

II. RELATIONSHIPS CONCERNING THE VOLUME AND
SURFACE CONTRIBUTIONS TO NUCLEAR SYMMETRY

ENERGY

The mass formula can be written in the form (e.g., Ref. [36])

E = −c1A + c2A
2/3 + c′

3
(N − Z)2

A

+ Coulomb term + shell corrections (1)

The first three terms in the right-hand side of Eq. (1) correspond
to the volume, surface, and symmetry components of the
energy. As mentioned in the Introduction, the symmetry energy
has volume and surface contributions. Then, the third term in
Eq. (1) has to be replaced by (see, e.g., [36])

(N − Z)2

A
(c3 − c4A

−1/3). (2)

Estimations of the coefficients c3 and c4 have been given in
Ref. [37], but due to the substantial shell corrections there
remained problems obtaining their values. In Ref. [15] it was
admitted that the ratio c4/c3 can be taken to be equal to the ratio
c2/c1 of the coefficients of the surface to volume components

of the energy (see also [36]):

c4

c3
= c2

c1
= χ. (3)

In the work of Myers and Swiatecki [15] the value of χ is
estimated to be 1.1838, while it is given to be 1.14 by Bethe
in Ref. [36].

The expression for the energy per particle has the form

Ē = E

A
= −c1 + c2

1

A1/3
+ c′

3

(
N − Z

A

)2

+ 1

A
[Coulomb term + shell corrections]. (4)

By definition the NSE coefficient is

s = 1

2

∂2Ē

∂α2

∣∣∣∣
α=0

, (5)

where

α ≡ N − Z

A
. (6)

Then it follows from Eqs. (5), (2), and (3) that

s = c′
3 = c3 − c4

A1/3
= c3

(
1 − χ

A1/3

)
(7)

and

c3 = s

1 − χ
A1/3

, c4 = χ

(
s

1 − χ
A1/3

)
. (8)

In modern times Danielewicz et al. (see, e.g., [40,41,48,50]
and references therein) proposed the following expression for
the symmetry energy:

Esym = aa(A)

A
(N − Z)2, (9)

where the A-dependent coefficient aa(A) is expressed by
means of the volume (aV

A ) and surface (aS
A) coefficients in

the form

aa(A) = aV
A[

1 + A−1/3 aV
A

aS
A

] , (10)

that is also rewritten as

1

aa(A)
= 1

aV
A

+ A−1/3

aS
A

. (11)

As expected, the expressions [Eqs. (9)–(11)] are related to
those from the earlier works [Eq. (2) and also see Eq. (21) in
the next subsection, III B].

Here we would like to mention that Eqs. (10) and (2) are
used in Ref. [55] as “definition I” [40,50,57] and “definition
II” [58–60], respectively (see Eqs. (37) and (38) in Ref. [55]).

An important result that expresses the ratio of the volume
to the surface energy coefficients by means of the shape of the
symmetry energy dependence on density s(ρ) is given (in the
local density approximation to the symmetry energy), e.g., in
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Refs. [48,51] (see also Ref. [40]):

aV
A

aS
A

= 3

r0

∫
dr

ρ(r)

ρ0

{
s(ρ0)

s[ρ(r)]
− 1

}
. (12)

In Eq. (12) ρ(r) is the half-infinite nuclear matter density, ρ0

is the nuclear matter equilibrium density, and r0 is the radius
of the nuclear volume per nucleon that can be obtained from

4πr3
0

3
= 1

ρ0
. (13)

For density-independent symmetry energy s(ρ) = s(ρ0) =
aV

A , and then it follows from Eq. (12) that the ratio aV
A/aS

A = 0
[48]. The density ρ(r) in Eq. (12) is uniform in two Cartesian
directions and generally nonuniform in the third, usually
chosen to be z [50]. The integral in Eq. (12) is across the nuclear
surface involving the shape of the density dependence [41].
In Danielewicz’s approximation only the symmetry energy
of a finite nucleus aa(A) has a mass dependence, while aV

A ,
aS

A, and their ratio aV
A/aS

A are A-independent quantities. The
values of aV

A and aS
A differ for various Skyrme interactions in

wide intervals (see Table I of Ref. [50]). At the same time,
as shown in [40], a combination of empirical data on skin
sizes and masses of nuclei constrains the volume symmetry
parameter to 27 � aV

A � 31 MeV and the ratio aV
A/aS

A to
2.0 � aV

A/aS
A � 2.8.

In the next section, III, we use the relationships from this
section in order to consider the volume and surface components
of the NSE and their ratio within the CDFM.

III. THE CDFM. RESULTS OF CALCULATIONS OF NSE
AND ITS VOLUME AND SURFACE

CONTRIBUTIONS

A. The CDFM scheme to calculate the NSE

The CDFM was introduced and developed in Refs. [29,30]
(and references therein). In the model the one-body density
matrix ρ(r,r′) of the nucleus is written as a coherent superpo-
sition of the one-body density matrices ρx(r,r′) for spherical
“pieces” of nuclear matter (so called “fluctons”) with densities
ρx(r) = ρ0(x)�(x − |r|), ρ0(x) = 3A/4πx3:

ρ(r,r′) =
∫ ∞

0
dx|F(x)|2ρx(r,r′) (14)

with

ρx(r,r′) = 3ρ0(x)
j1(kF (x)|r − r′|)
(kF (x)|r − r′|) �

(
x − |r + r′|

2

)
,

(15)

where j1 is the first-order spherical Bessel function and

kF (x) =
(

3π2

2
ρ0(x)

)1/3

≡ β

x
(16)

with

β =
(

9πA

8

)1/3

� 1.52A1/3 (17)

is the Fermi momentum of the nucleons in the flucton with a
radius x. It follows from Eqs. (14) and (15) that the density

distribution in the CDFM has the form

ρ(r) =
∫ ∞

0
dx|F(x)|2ρ0(x)�(x − |r|). (18)

The weight function |F(x)|2 in Eq. (14) can be expressed
using Eq. (18) by the density distribution ρ(r) and in the case
of monotonically decreasing local density (dρ/dr � 0) can be
obtained using a known density (from experiments or from
theoretical models) for a given nucleus:

|F(x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

(19)

with the normalization
∫ ∞

0 dx|F(x)|2 = 1.
The main assumption of the CDFM is that properties of

finite nuclei can be calculated by expressions (obtained by
using some approximations) that contain the corresponding
quantities for nuclear matter folded with the weight function
|F(x)|2. Then in the CDFM the symmetry energy s for
finite nuclei is obtained to be an infinite superposition of the
corresponding ANM symmetry energy weighted by |F(x)|2:

s =
∫ ∞

0
dx|F(x)|2sANM(x). (20)

The ANM quantity sANM(x) has to be determined within a
chosen method for description of these characteristics. In our
previous works [25,26,56] we have used for the matrix element
V (x) of the nuclear Hamiltonian, as an example, the corre-
sponding ANM energy from the energy density functional of
Brueckner et al. [27,28]. The corresponding expression for
sANM(x) within this method can be found in Refs. [25,26,56].
In these works we have calculated s using Eq. (20). In order
to calculate the weight function |F(x)|2 from Eq. (19) we
used the calculated proton and neutron density distributions
obtained from the self-consistent HF+BCS method from
Ref. [33] (see also Ref. [61]) with density-dependent Skyrme
interactions [32] and pairing correlations. In the method the
pairing between like nucleons is included by solving the BCS
equations at each iteration with a fixed pairing strength that
reproduces the odd-even experimental mass differences [62].
The numerical results for s in spherical Ni, Sn, and Pb isotopic
chains are given in Ref. [25], while for deformed exotic
neutron-rich even-even Kr and Sm isotopes are presented in
Ref. [26]. The density dependence of the NSE for neutron-rich
and neutron-deficient Mg isotopes with A = 20–36 is studied
in Ref. [56].

In the end of this subsection we have to note, in order to
avoid any misunderstanding, that the symmetry energy s (as
well as the related quantities aV

A , aS
A, and their ratio that are

calculated in what follows in our work) are obtained within the
CDFM using first the energy-density functional of Brueckner
for the symmetry energy in infinite nuclear matter sANM in
Eq. (20), while the weight function |F(x)|2 is obtained using
Eq. (19) by means of the density distribution calculated within
the Skyrme HF+BCS method. Second, we calculate in the
CDFM s, aV

A , aS
A, and aV

A/aS
A using as an additional example

the Skyrme energy-density functional. In this case there is
a self-consistency between the way to obtain |F(x)|2 in the
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Skyrme HF+BCS method and the use of the Skyrme EDF to
obtain NSE and its components.

B. Calculations of the volume and surface contributions to the
NSE and their ratio within the CDFM

In the beginning of this subsection we show, first, that the
expressions containing the coefficient aa(A) [Eqs. (9) and (10)]
(e.g., from [40,41,48,50,51]), as expected, can be represented
approximately in the form of Eq. (2):

aa(A) = aV
A[

1 + A−1/3 aV
A

aS
A

] � c3 − c4

A1/3
(21)

that corresponds to Eq. (7), if c3 = aV
A and c4 = (aV

A )2/aS
A.

Equation (21) is obtained for large A (e.g., at least for A � 27).
In the present paper we develop, using as a base

Danielewicz’s model [and specifically Eq. (12)], another
approach to calculate the ratio aV

A/aS
A, as well as aV

A and aS
A

within the CDFM. Our motivation is that numerous analyses
of the volume and surface components of the NSE using
a wide range of data on the binding energies, neutron-skin
thicknesses, and excitation energies to IAS give estimations
(presented later in our paper) of these quantities as functions
of the mass number A (e.g., Refs. [16,38,39,49,51,63,64]) that
change in some intervals for different regions of nuclei. For
instance, the reported values of aV

A and aS
A are consistent with

each other in a wide mass region (30 � A � 240). In the
CDFM we take nuclear matter values of the parameters to
deduce their values in finite nuclei (using the self-consistently
calculated nuclear density) which become dependent on the
considered nucleus. For this purpose, we start from Eq. (12)
but in it we replace the density ρ(r) for the half-infinite nuclear
matter in the integrand by the density distribution of finite
nucleus. Later, using Eq. (18) we obtain approximately an
expression that allows us to calculate the ratio aV

A/aS
A. It has

the form

aV
A

aS
A

= 3

r0ρ0

∫ ∞

0
dx|F(x)|2xρ0(x)

{
s(ρ0)

s[ρ0(x)]
− 1

}
. (22)

The approximations made in the CDFM lead to one-
dimensional integral over x, the latter being the radius of the
“flucton” that is perpendicular to the nuclear surface. Here
we would like to emphasize that, in contrast to Eq. (12), in
Eq. (22) we use the finite nuclei densities to calculate the
weight function |F(x)|2. In this way, the integral in Eq. (22)
contains shell effects (different from the Friedel oscillations
[65,66] present in any quantal calculations of semi-infinite
nuclear matter) and curvature contributions. Thus, caution is
necessary when considering the role of these effects on the key
quantity aV

A/aS
A ratio. The procedure to go from infinite A to

finite A that we follow to go from Eq. (12) to Eq. (22) is the
same that we have followed for other nuclear properties within
the CDFM, so there is no conceptual inconsistency.

The purpose of our approach is to use the CDFM not only
to calculate the NSE s, but also the ratio aV

A/aS
A and aV

A and
aS

A separately. Thus, the calculation of these quantities in the
same model leads to a self-consistency. As will be shown later
in the paper, in the CDFM the dependence of aV

A and aS
A on A

turns out to be weak. The differences within a given isotopic
chain are approximately between 0.5 and 1.5 MeV. They are
narrower than the differences in Danielewicz’s approach using
in the calculations different Skyrme forces (e.g., Table I of
Ref. [50]). We note that our method is different from that of
Danielewicz. Starting from Eq. (12), the approximation of the
CDFM enables us to use not the half-infinite nuclear matter
density but densities of finite nuclei. The results turn out to
be consistent with the large amount of empirical data, as will
be shown below. The spirit of our approach is in some sense
opposite to what it was done in the past. For instance, in the
LDM mass formula one takes empirical mass values of finite
nuclei to extract “A-independent” values of the parameters,
some of which are afterwards extrapolated to nuclear matter
energy density functionals, e.g., in the Brueckner EDF. The
Danielewicz’s formalism is on these lines, but parametrizes
surface effects through half-infinite nuclear matter. In Eq. (22)
s(ρ0) = sANM(ρ0) and the quantity s[ρ0(x)] = sANM[ρ0(x)]
is the NSE within the chosen approach for the EDF. From
Eqs. (19) and (20) we obtain the CDFM value for the NSE,

s ≡ aa(A). (23)

Let denote by

κ ≡ aV
A

aS
A

(24)

that can be calculated using Eq. (22). Then it follows from
Eq. (10)

s = aV
A

1 + A−1/3κ
. (25)

Finally, as a next step we obtain from Eqs. (23)–(25) (having
calculated within the CDFM the values of s and κ) the
expressions from which we can estimate the values of aV

A

and aS
A separately:

aV
A = s(1 + A−1/3κ), (26)

aS
A = s

κ
(1 + A−1/3κ). (27)

In our work we use two energy-density functionals. The first
one is the Brueckner EDF [27,28]. It was used in our previous
works [25,26,56] to calculate the NSE s using Eq. (20). In this
approach the value of the equilibrium nuclear matter density
is ρ0 = 0.204 fm−3, r0 = 1.054 fm [obtained from Eq. (13)],
and the symmetry energy at equilibrium nuclear matter density
s(ρ0) in Eq. (22) is equal to 35.07 MeV. In the case of the
Brueckner EDF the results of the calculations using Eq. (22)
of the ratio κ as a function of the mass number A for the
isotopic chains of Ni, Sn, and Pb with different forces (SLy4,
SGII, and Sk3) are given in Figs. 1–3, respectively. By means
of Eqs. (26) and (27) and the values of the NSE obtained in
our works [25,26], we calculated the coefficients aV

A and aS
A.

Their values as functions of A for the same isotopic chains are
presented in Figs. 4–6, respectively.

It can be seen from Figs. 1–3 that our results for the values
of the ratio κ are within the range

2.10 � κ � 2.90. (28)
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FIG. 1. The ratio κ = aV
A /aS

A as a function of A for the isotopic
chain of Ni. The SLy4 (solid line), SGII (dashed line), and Sk3
(dotted line) forces have been used in the HF+BCS calculations of
the densities in the case of Brueckner EDF.

This range of values is similar to the estimations of
Danielewicz et al. obtained from a wide range of available data
on the binding energies and from fits to other nuclear prop-
erties, such as the neutron-skin thickness and the excitation
energies to the IAS [41] (for definitions and examples of IAS,
see, e.g., Ref. [45]). As already mentioned, it has been shown
in Ref. [40] that a combination of masses and neutron-skin
sizes constrains the values of the volume symmetry parameter
between 27 and 31 MeV and the value of the volume to
surface-symmetry parameter ratio between 2.0 and 2.8. The
minimum value of the ratio obtained in Ref. [40] is 1.7. The

FIG. 2. The same as in Fig. 1 but for the isotopic chain of Sn.

FIG. 3. The same as in Fig. 1 but for the isotopic chain of Pb.

ranges of the published values of the ratio κ extracted from
nuclear properties and presented in Ref. [51] are (see Table II
in [51]):

2.6 � κ � 3.0 (29)

from IAS and skins [41],

2.0 � κ � 2.8 (30)

from masses and skins [40], and

1.6 � κ � 2.0 (31)

from the analyses in Ref. [51] of masses and skins. As can be
seen, the ranges (29) and (30) are in a good agreement with
our results [see Eq. (28)].

As can be seen in Fig. 1, there exists a “kink” in the curve
of κ ≡ aV

A/aS
A as a function of A for the double-magic 78Ni

nucleus. Such a kink exists also for the double-magic 132Sn
nucleus that can be seen in Fig. 2. Here we would like to
note that the origin of the kinks is in the different behaviors
of the density distributions ρ(r) for given isotopes. Namely
the derivative of ρ(r) determines the weight function |F(x)|2
[Eq. (19)] that takes part in the integrand of the integral in
Eq. (22) giving the ratio κ ≡ aV

A/aS
A. The peculiarities of ρ(r)

for the closed shells lead to the existence of kinks. As shown in
more details in Ref. [26], this is the reason for the kinks in the
NSE s(A), as can be seen in the expression for it [see Eq. (20)].
The kink of s(A) at 78Ni can be seen in Fig. 2 of Ref. [25], and
the kink of s(A) for 132Sn in Fig. 8 of the same paper. In the
case of Pb isotopic chain (see Fig. 3) such kinks do not exist
and this reflects the smooth behavior without kinks of s(A)
and related quantities for the Pb isotopic chain [25,26].

It is seen from Figs. 4–6 that our CDFM results obtained
with Brueckner EDF for aV

A are between 41.5 and 43 MeV,
while for aS

A they are between 14 and 20 MeV. These values are
somewhat larger than those from other references given above.
As can be seen from Eqs. (26) and (27), these differences are
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FIG. 4. The values of aV
A (a) and aS

A (b) as functions of A for the isotopic chain of Ni. The SLy4 (solid line), SGII (dashed line), and Sk3
(dotted line) forces have been used in the HF+BCS calculations of the densities in the case of Brueckner EDF.

due mainly to the somewhat larger values of the NSE (s) for
finite nuclei obtained within the CDFM using the Brueckner
functional, because our values for the component κ = aV

A/aS
A

(that are between 2.1 and 2.9) are in the range obtained by other
authors. The ranges of changes of our results for aV

A and aS
A in

the case of the Brueckner EDF depend on the Skyrme forces
used in the HF+BCS calculations of the nuclear densities.
They are given in Table I together with their corresponding
average values for each force and isotopic chain. These results
can be compared with the results obtained in

Ref. [40]: 27 � α = aV
A � 31 MeV;

Ref. [41]: 30.0 � aV
A � 32.5 MeV;

Ref. [50]: 31.5 � aV
A � 33.5 MeV, 9 � aS

A � 12 MeV;

Ref. [42]: 30.2 � aV
A � 33.7 MeV.

It is shown in Ref. [42] that at A � 30aV
A ≈ 33.2 MeV and

aS
A ≈ 10.7 MeV.

For completeness and better comparison we list below also
the results presented in Ref. [42], making reference to Ref. [16]
aV

A = 39.73 MeV and aS
A = 8.48 MeV, to Ref. [63] aV

A =
31.74 MeV and aS

A = 11.27 MeV, and to Ref. [64] aV
A =

35.51 MeV and aS
A = 9.89 MeV. These results are consistent

with each other in the region 30 � A � 240. In the latter mass
region the averaged values obtained are (i) aV

A ≈ 35.34 MeV

and aS
A ≈ 9.67 MeV in Ref. [42]; (ii) 30 � aV

A � 32.5 MeV in
Ref. [48]; and (iii) 30 � aV

A � 33 MeV and aS
A ≈ 11.3 MeV

in Ref. [43].
We would like to note that the same peculiarities (as for

the ratio κ ≡ aV
A/aS

A), namely “kinks,” appear in the cases of
aV

A and aS
A as functions of the mass number A. In Figs. 4(a)

FIG. 5. The same as in Fig. 4 but for the isotopic chain of Sn.
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FIG. 6. The same as in Fig. 4 but for the isotopic chain of Pb.

and 4(b) one can see kinks for aV
A and aS

A, respectively, in
the case of the double-magic nucleus 78Ni. In Fig. 5(a) a kink
appears for aV

A (A) not only for the double-magic 132Sn but
also for the semimagic 140Sn nucleus. The latter is related to
the closed 2f7/2 subshell for neutrons. The behavior of aS

A(A)
does not allow a corresponding “kink” for 140Sn to be visible
in the ratio κ ≡ aV

A/aS
A. Reiss et al. discussed in Ref. [67]

that the region around N = 90 for neutron-rich tin isotopes
is an interesting one because the shell structure is somewhat
fluctuating. Although the average gap at N = 90 was found
to be small, there are indications of a weak subshell closure,
the latter being supported also by the small jump in the two-
neutron separation energy in the same region, both calculated
at zero temperature [67]. In addition, in Ref. [68] N = 90

TABLE I. The ranges of changes of aV
A and aS

A and their
average values for SLy4, SGII, and Sk3 forces used in the HF+BCS
calculations of the nuclear densities with Brueckner EDF for the Ni,
Sn, and Pb isotopic chains.

Isotopic NSE SLy4 SGII Sk3
chain component

Ni aV
A 41.7–42.3 41.7–42.4 42.6–43

aS
A 17.1–19 18–20 17.6–19.4

āV
A 42.05 42.1 42.83

āS
A 18.3 19 18.73

Sn aV
A 41.6–42.2 42.4–43 41.6–42.4

aS
A 14.4–17.7 14.8–17.8 14.5–18.6

āV
A 41.9 42.71 42.02

āS
A 16.27 16.5 16.92

Pb aV
A 41.6–42 41.7–42.1 42.3–42.6

aS
A 15.5–16.1 16–16.6 15.2–15.8

āV
A 41.84 41.92 42.43

āS
A 15.82 16.33 15.5

was predicted to be submagic with Gogny D1S and D1M
interactions at 140Sn because the 2f7/2 orbit is fully occupied,
but not with M3Y-P6 and P7 semirealistic NN interactions. As
can be seen from Eqs. (26) and (27), the reason for kinks in
the separate coefficients as functions of A is twofold. One of
them is the already mentioned reason for the kinks in the ratio
κ ≡ aV

A/aS
A, while the same reason causes also kinks in the

NSE (s) at closed-shell nuclei.
The second EDF that we use in the calculations is that

one of Skyrme with different Skyrme forces (e.g., Ref. [69]).
The aim to use this EDF is twofold: (i) we can compare the
values of our A-dependent quantities aV

A , aS
A, and κ ≡ aV

A/aS
A

obtained in the CDFM with the A-independent ones obtained
in Danielewicz’s approximation (e.g., [40,50]), and (ii) the
nuclear densities are obtained using the same Skyrme forces
as in the HF+BCS calculations, so there is a self-consistency

TABLE II. The parameters of SGII, Sk3, and SLy4 Skyrme
forces in the Skyrme EDF, the spin-orbit parameter W0, the ANM
equilibrium density ρ0, r0, and the symmetry energy at equilibrium
density s(ρ0).

SGII Sk3 SLy4

t0 (MeV fm3) −2645.0 −1128.75 −2488.91
t1 (MeV fm5) 340.0 395.0 486.82
t2 (MeV fm5) −41.9 −95.0 −546.39
t3 (MeV fm3+3σ ) 15595.0 14000.0 13777.0
x0 0.09 0.45 0.834
x1 −0.0588 0 −0.344
x2 1.425 0 −1.0
x3 0.06044 1.0 1.354
σ 0.16667 1.0 0.16667
W0 105.0 120.0 123.0
ρ0 (fm−3) 0.1583 0.1453 0.1595
r0 (fm) 1.147 1.18 1.144
s(ρ0) (MeV) 26.84 28.17 32.01
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FIG. 7. The ratio κ = aV
A /aS

A as a function of A for the isotopic
chain of Ni in the case of Skyrme EDF with use of SLy4, SGII, and
Sk3 forces.

of the approach. In the standard Skyrme EDF the symmetry
energy sSk[ρ0(x)] of nuclear matter with density ρ0(x) can be
expressed by (e.g., Ref. [70])

sSk[ρ0(x)] = �
2

6m

(
3π2

2

)2/3

ρ
2/3
0 (x) − 1

8
t0(1 + 2x0)ρ0(x)

− 1

48
t3(1 + 2x3)ρσ+1

0 (x) − 1

24

(
3π2

2

)2/3

× [3t1x1 − t2(4 + 5x2)]ρ5/3
0 (x). (32)

FIG. 8. The same as in Fig. 7 but for the isotopic chain of Sn.

FIG. 9. The same as in Fig. 7 but for the isotopic chain of Pb.

The parameters of SGII, Sk3, and SLy4 Skyrme forces used
to calculate the symmetry energy of ANM, as well as the
values of the nuclear matter equilibrium density ρ0, r0, and
the symmetry energy at equilibrium density s(ρ0), are listed in
Table II. In addition, in the same Table we give the values of
the spin-orbit parameter W0 used in the HF+BCS calculations
of the density distributions for the three Skyrme forces.

The values of κ for the three isotopic chains (of Ni, Sn, and
Pb) obtained using SLy4, SGII, and Sk3 forces are given in
Figs. 7–9 and those of aV

A and aS
A are presented in Figs. 10–12.

The ranges of changes of the latter, as well as their average
values, are given in Table III.

As can be seen from Figs. 7–9 the ranges of changes of κ
are, for the Ni isotopic chain, 1.5 � κ � 1.7 (SLy4 and SGII
forces) and 0.88 � κ � 1.05 (Sk3 force); for the Sn isotopic
chain, 1.52 � κ � 2.1 (SLy4 and SGII forces) and 0.82 �
κ � 1.14 (Sk3 force); and for the Pb isotopic chain, 1.65 �
κ � 1.75 (SLy4 and SGII forces) and 0.84 � κ � 0.88 (Sk3
force). We note that the ranges of κ for the SLy4 and SGII
forces in the three chains are in agreement with those obtained
in Ref. [51] 1.6 � κ � 2.0 from analyses of masses and skins.

What can be seen in Figs. 10–12 is that the values of aV
A are

almost independent of A for a given isotopic chain and Skyrme
force. They are also similar in the different chains for a given
Skyrme force. The comparison of the results of our approach
with those of other authors shows that our values of aV

A for the
isotopic chains of Ni, Sn, and Pb for the SGII and Sk3 forces
are in agreement with those from, e.g., Refs. [40,42,43,48,50]
given above, while the obtained values for the SLy4 force are
comparable with the results in Ref. [16]. One can see also a
kink in the behavior of κ for the Ni chain at A = 78, for the
Sn chain at A = 132, and a lack of kinks for the Pb chain, like
in the case when the Brueckner EDF is used. A kink for the
Ni chain at A = 78 can be seen also in the A dependence of
aS

A; as well, a kink of aS
A is seen at A = 132 in the case of the

Sn chain. In the latter, small kinks can be observed also for aV
A

014319-8



VOLUME AND SURFACE CONTRIBUTIONS TO THE . . . PHYSICAL REVIEW C 94, 014319 (2016)

FIG. 10. The values of aV
A (a) and aS

A (b) as functions of A for the isotopic chain of Ni in the case of Skyrme EDF with use of SLy4, SGII,
and Sk3 forces.

especially at A = 132 for the SLy4 force. There are no kinks
of aV

A and aS
A in the Pb chain.

In the end of this section we would like to note that
the obtained values of κ ≡ aV

A/aS
A in the CDFM [Eq. (28)],

that are in agreement with the recently published values
[Eq. (29)], are quite different from the value of χ ≡ c4/c3

from Eq. (3) estimated to be 1.1838 [15] or 1.14 [36]. [We
mention that according to Eq. (21) (and the text after it), for
large A, c4/c3 � aV

A/aS
A]. This difference will be reflected in

the corresponding values of c3 and c4 that can be obtained using
Eq. (8).

IV. CONCLUSIONS

In the present work we study the volume and surface
components of the NSE as well as their ratio within the
framework of the CDFM. This consideration is based on the
calculations of the total NSE that have been performed in our
previous works [25,26,56], and also uses the results of the
earlier works on the subject (see, e.g., [15,34–37]), as well as
the later theoretical approaches of Warda et al. [38], Centelles
et al. [39], Danielewicz et al. (e.g., [40–48,50], Dieperink and
Van Isacker [51], and others.

FIG. 11. The same as in Fig. 10 but for the isotopic chain of Sn.
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FIG. 12. The same as in Fig. 10 but for the isotopic chain of Pb.

The results can be summarized as follows:

(i) We develop, using as a base Danielewicz’s model
[Eq. (12)], another approach within the CDFM to
calculate the ratio aV

A/aS
A between the volume and

surface components of the symmetry energy s, as well
as aV

A and aS
A separately, for finite nuclei. We obtain

within the CDFM the expression for κ ≡ aV
A/aS

A

[Eq. (22)] that allows us to calculate this ratio using the
ingredients of the model, the weight function |F(x)|2
and the nuclear matter symmetry energy sANM[ρ0(x)]
from two energy- density functionals, the Brueckner
and Skyrme ones. The first one of them was used to
calculate the NSE in our previous works [25,26,56]. In
the CDFM we take nuclear matter values of the com-
ponents of NSE to deduce their values in finite nuclei.

TABLE III. The ranges of changes of aV
A and aS

A and their average
values for SLy4, SGII, and Sk3 forces used in the calculations with
Skyrme EDF for the Ni, Sn, and Pb isotopic chains.

Isotopic chain NSE component SLy4 SGII Sk3

Ni aV
A 40.8–42 33.5–33.7 27.9–28.3

aS
A 24.6–26.7 20–22.5 26.5–32.1

āV
A 41.27 33.61 28.13

āS
A 25.9 21.55 30.01

Sn aV
A 40–41.1 32.8–33.6 28.3–28.6

aS
A 20.3–25.5 16–21.5 25.1–35

āV
A 40.6 33.06 28.51

āS
A 23.36 19.21 30.24

Pb aV
A 39.1–39.6 32.3–32.4 28.8–29.1

aS
A 22.7–23.5 18.8–19.7 32.7–34.6

āV
A 39.35 32.34 28.88

āS
A 23.1 19.34 33.68

Thus, our approach is different from the Danielewicz’s
formalism. Being motivated by the available empirical
data that show A dependence of aV

A , aS
A, and their

ratio, we obtained in our approach a possibility to
find a (weak) A dependence of the theoretical results
for these quantities within the CDFM. The weight
function |F(x)|2 [Eq. (19)] is calculated using the
proton and neutron density distributions obtained
from the self-consistent deformed HF+BCS method
[33,61] with density-dependent Skyrme interactions.

(ii) The values of κ calculated using the Brueckner EDF
for the isotopic chains of Ni, Sn, and Pb are between
2.10 and 2.90. This range of values is similar to the
estimations of Danielewicz et al. obtained from a wide
range of available data on the binding energies [40],
of Steiner et al. [49], and from a fit to other nuclear
properties, such as the excitation energies to IAS [41],
neutron-skin thickness, and others. The values of κ
obtained using the Skyrme EDF for the same isotopic
chains with SLy4, SGII, and Sk3 forces are between
1.5 and 2.1 for the SLy4 and SGII forces and between
0.82 and 1.14 for the Sk3 force. The former result is in
agreement with that obtained in Ref. [51]: 1.6 � κ �
2.0 from the analyses of masses and skins.

(iii) We calculate the values of the volume and surface
contributions to the NSE by means of Eqs. (26) and
(27) within the CDFM. The values of NSE are taken
from our previous works [25,26,56], where we used
first the Brueckner EDF. The range of the values
obtained for the volume symmetry energy coefficient
aV

A (between 41.5 and 43 MeV) is narrower than
the one of the surface symmetry energy coefficient
aS

A (between 14 and 20 MeV). The values of both
coefficients are somewhat larger than the already
mentioned values of other works (see, e.g., [16,40–
43,48,63,64] and others). We relate this difference to
the larger values of the total NSE for finite nuclei
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calculated by the use of the Brueckner approach
[27,28] within the CDFM [25,26,56]. Second, the aV

A

and aS
A are calculated within our approach using the

Skyrme EDF. It can be seen that the values of aV
A

are almost constant as functions of A for a given
isotopic chain and Skyrme force. They are also similar
in the considered chains for a given Skyrme force.
Our values of aV

A for the isotopic chains of Ni, Sn,
and Pb for the SGII and Sk3 forces are in agreement
with those from, e.g., Refs. [40,42,43,48,50], while
those in the case of the SLy4 force are similar to the
results presented in Refs. [16,42]. We note that instead
of the Brueckner and Skyrme EDFs that are used in
the present work as examples, one can apply also
other realistic functionals, like the recently proposed
Kohn-Sham EDF based on microscopic nuclear and
neutron matter equations of state [71].

(iv) Studying first the isotopic sensitivity of aV
A , aS

A, and
their ratio in the case of using the Brueckner EDF we
observe peculiarities (“kinks”) of these quantities as
functions of the mass number A in the cases of the
double-magic 78Ni and 132Sn isotopes for κ ≡ aV

A/aS
A,

aV
A , and aS

A, as well as a “kink” of aV
A for 140Sn.

The latter is related to the closed 2f7/2 subshell for
neutrons. The origin of the kinks is in the different
behaviors of the density distributions ρ(r) for the
isotopes, because the derivative of ρ(r) determines
the weight function |F(x)|2 [Eq. (19)] that takes part
in the expression for the ratio κ ≡ aV

A/aS
A [Eq. (22)].

As shown in Ref. [26], this is the reason for the kinks
in the NSE (s) [see Eq. (20)] observed in our previous
works [25,26]. Similarly to the case when Brueckner
EDF is used, in the case of the Skyrme EDF one can
see also a kink in the behavior of κ for the chain of
Ni at A = 78 (Fig. 7) and for the Sn chain at A = 132
(Fig. 8), as well as a lack of kinks for the Pb case
(Fig. 9). A kink in the Ni chain at A = 78 can be
seen also in the A dependence of aS

A [Fig. 10(b)], as
well as of aS

A at A = 132 in the case of the Sn chain
[Fig. 11(b)]. In Fig. 11(a) small kinks can be observed
also for aV

A especially at A = 132 for the SLy4 and
Sk3 forces. Kinks of the A dependence of aV

A and aS
A

in the Pb isotopic chain are not observed.

(v) We show in Sec. III B that, as expected, the expression
for the coefficient of the symmetry energy aa(A)
[Eq. (10)] used, e.g., in Refs. [40,41,48,50,51], can
be approximately written for large A in the form of
Eqs. (2), (7), and (21) introduced by Cameron [35]
and used by Bethe [36], Myers and Swiatecki [15], and
others. We note that the obtained values of κ ≡ aV

A/aS
A

in the CDFM using Brueckner and Skyrme EDFs that
are in agreement with the recently published values are
quite different from the value χ ≡ c4/c3 [Eq. (3)] that
is estimated to be 1.1838 [15] or 1.14 [36] [having
in mind that, for large A, c4/c3 � aV

A/aS
A ≡ κ; see

Eq. (21)].

The suggested approach using the CDFM and based on
a given EDF and self-consistent mean-field method makes
it possible to start with the global values of parameters for
infinite nuclear matter and to derive their corresponding values
in finite nuclei, which become A dependent. This is the
main difference from other approaches. The method uses the
symmetry energy coefficient s = aa(A) obtained within the
CDFM in finite nuclei [25,26,56] in the case of the Brueckner
EDF, as well as the NSE calculated in the present work in
the case of the Skyrme EDF. The calculation of the latter
avoids the problem related to fitting the Hartree-Fock energies
to LDM parametrization. The method makes it possible to
obtain in the present work additional information not only
about the volume contribution aV

A to the symmetry energy, but
also about the surface symmetry energy term aS

A of the LDM,
as well as to establish their eventual A -dependence. As known,
the aS

A is poorly constrained by empirical data. The obtained
results could provide a possibility to test the properties of
the nuclear energy density functionals and characteristics
related to NSE, e.g., the neutron skin thickness of finite
nuclei.
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