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Abstract. We propose a method based on Zernike polynomials to characterize

photometric quantities and descriptors of LEDs from measurements of the angular

distribution of the luminous intensity, such as total luminous flux, beam angle,

inhomogeneity, anisotropy, direction of the optical axis and Lambertianity of the

source. The performance of this method was experimentally tested for eighteen

high-power LEDs from different manufacturers and with different photometric

characteristics. A small set of Zernike coefficients can be used to calculate all the

mentioned photometric quantities and descriptors. For applications not requiring

a great accuracy such as those of lighting design, the angular distribution of the

luminous intensity of most of the studied LEDs can be interpolated with only two

Zernike polynomials.
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1. Introduction

Recent advances in Light Emitting Diodes (LEDs) technology have spread their use in a

growing number of applications. This kind of light source presents some important

advantages with respect to conventional ones, as better luminous efficiency, longer

lifetime, lower cost and smaller size, which allows these devices to be easily adapted

in different application areas, as lighting, automotive industry, aeronautics, road safety,

health, fashion, etc. However, the emission of LEDs differs from the other previous

conventional sources, and the implantation on those illumination systems requires

the re-definition of standard photometric procedures to accurately characterize them

[1, 2, 3, 4, 5, 6]. Because of that, the International Commission on Illumination (CIE)

led a process to establish a recommendation on the procedure of measurement of LED’s

emission in 2007 [7], establishing preliminary standard procedures for laboratories and

manufacturers to photometrically characterize them. Later on, CIE has promoted the

publication of a CIE International Standard [8] to provide requirements to perform

reproducible photometric and colorimetric measurements on LED lamps, LED modules,

and LED luminaries, since the availability of reliable and accurate photometric data for

LED devices is a basic requirement for designing good lighting systems and evaluating

performance of products.

Under a photometric point of view the determination of the illuminance produced

by the source at a given position is one of the key points in most of the previous

applications. This can be done if the angular distribution of the luminous intensity is

known. At present this distribution has to be measured by using gonio-photometers

since LED devices are diverse and emission models are not available for every one, so a

dense knowledge of the distribution has to be learnt from measurements.

Transformation of luminous intensity distribution from spherical coordinates into

polar coordinates is proposed here, so that photometric features of LEDs can be easily

perceived as deviations from rather standard patterns. This situation resembles the

problem of studying aberrations in optical systems, where the deviations of a real image

respect to a standard pattern are classified.

Zernike polynomials [9] are a complete set of orthogonal polynomials over the

interior of a unit circle, widely used in the study and specification of aberrations

[10] and other physical problems [11]. The luminous intensity distribution also can

be represented over a circle of unity radius and, in addition, Zernike polynomials

are interesting in principle for specifying photometric features of LEDs due to their

analytical properties (certain simple properties of invariance) derived from the simplicity

of the radial functions and the factorization in radial and azimuthal functions. As we

will show in this article, this allows beam angle, optical axis direction, inhomogeneity,

anisotropy or Lambertianity degree of LEDs to be expressed by using a low number of

polynomials. And more importantly, Zernike polynomials provided a well–established

basis to interpolate luminous intensity LEDs with low number of terms. Other

orthogonal bases such as Bessel functions, for instance, could be checked, but less
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compact expressions for photometric features would be expected because of their

definition.

To test the feasibility of this method, the luminous intensity distribution of eighteen

high-power LEDs from different manufacturers (Cree Xlamp R©, Philips Lumileds

LUXEON Rebel R©, Osram Golden Dragon R©) and with different photometric properties

have been measured with a gonio-photometer developed at our laboratory [12]. Then

Zernike polynomials were fitted to luminous intensity distribution measurements and

photometric features and quantities were calculated. The results so obtained are shown

in section 3 of this work and compared to reference values where possible.

2. Zernike polynomials for describing optical properties of LEDs

Zernike polynomials can be expressed as separable functions of polar coordinates as [13]:

Z l
n(ρ, ϑ) = Rl

n(ρ) exp(ilϑ) (1)

where ρ is the radial coordinate, ϑ is the angular coordinate, n is a positive integer, and

l can be a positive or negative integer whose |l| yields an even value of n− |l|. Rl
n(ρ) is

defined by (m = |l|):

R±m
n (ρ) =

n−m

2
∑

k=0

(−1)k(n− k)!

k!(n+m
2

− k)!(n−m
2

− k)!
ρn−2k (2)

For the interested reader, some properties of the Zernike polynomials are summarized

in [13]. But the most interesting property to our aims is that any sufficiently smooth

real-valued field F (ρ,ϑ) over the unit disk can be represented in terms of its Zernike

coefficients Cn,m as:

F (ρ, ϑ) =
∑

n,m

Cn,mZ
m
n (ρ, ϑ) (3)

The luminous intensity distribution IV (θ,ϕ) is given in spherical coordinates (polar angle

θ and azimuth angle ϕ). However, since there is a single value of IV for every direction,

IV (θ,ϕ) can be expressed in polar coordinates (radius ρ and polar angle ϑ) as:

IV (θ, ϕ) = IV (ρ, ϑ) (4)

by using the transformation:

ρ = sin θ (5)

ϑ = ϕ (6)

Then, the distribution is defined in a circle of unit radius and according to Eq. 3 can

be expressed as:

IV (θ, ϕ) = IV (sin θ, ϕ) =
∑

n,m

Cn,mZ
m
n (sin θ, ϕ) (7)

The advantage of expressing IV (θ,ϕ) in this way is that the complexity of the

angular distribution is characterized by only some scalars, the Zernike coefficients Cn,m,
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whose interpretation regarding their partial contributions to the wavefront is well-

known [9]. Therefore, the key is to have a low number of polynomials involved in

the characterization of the distribution, which in turn will depend on the distribution

itself and on the accuracy required in the application. In this article, we will express

photometric features and quantities as a function of only nine Zernike coefficients,

because increasing the number of polynomials does not yield a better fitting to the

luminous intensity distribution. The polynomials related with those coefficients are

given in Table 1. We must notice that, for most of the 18 studied LEDs, the

angular distribution of the luminous intensity can be interpolated with just two Zernike

polynomials (P2 and P4, in Table 1), as it will be shown in section 3.

From the subset in Table 1, the relevant photometric characteristics and quantities

can be estimated as shown below.

2.1. Beam angle

We will determine the beam angle (BA) as the full angular width between values of

the luminous intensity whose magnitude is half the distribution maximum, which is

usually written as FWHM. This is the definition adopted in CIE standard on LED test

methods [8]. Taking into account that LEDs generally have got rotational symmetry

and divergence is defined just on the polar coordinate, only polynomials (P0, P4 and

P8) are relevant to calculate this characteristics (see Table 1).

P0 + P4(sin θBA) + P8(sin θBA) =
max[IV (θ, ϕ)]

2
(8)

From this equation, the analytical solution:

θBA = arcsin

√

ε

(

1± sgn(ε)

√

1 +
γ

ε2

)

(9)

is obtained, where the variables ε and γ are defined in terms of Zernike coefficients as:

ε =
1

2
− 1

2
√
15

C2,0

C4,0

(10)

γ =
−2C0,0 +

√
12C2,0 −

√
20C4,0 +max[IV (θ, ϕ)]

12
√
5C4,0

(11)

If the luminous intensity distribution is symmetrical and the mechanical axis coincides

with the optical axis, the expression of the beam angle is obtained as:

BA = θBA+ − θBA− (12)

2.2. Direction of the optical axis

The optical axis aims to show the main direction along which the luminous source emits

and it does not always exactly coincide with the mechanical axis referred to the source

socket. Optical axis depends on the angular radiation pattern of LEDs and has got

real sense only for those LEDs emitting in a single lobe. Not always the emission in a
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single lobe is smooth, so in this work the optical axis will be defined as the direction

corresponding to the weighted mean defined by the following equations:

xc =

∫

xIV(x, y)dA
∫

IV(x, y)dA
=

∫ 2π
0

∫ 1

0 ρ cosϑIV (ρ, ϑ)ρdρdϑ
∫ 2π
0

∫ 1

0 IV (ρ, ϑ)ρdρdϑ
=

C1,1

2C0,0

(13)

yc =

∫

yIV(x, y)dA
∫

IV(x, y)dA
=

∫ 2π
0

∫ 1

0 ρ sinϑIV (ρ, ϑ)ρdρdϑ
∫ 2π
0

∫ 1

0 IV (ρ, ϑ)ρdρdϑ
=

C1,−1

2C0,0

(14)

which are the cartesian coordinates of the luminous intensity centroid. The point is

related with the direction of the axis as:

θ0 = arcsin
(

√

x2
c + y2c

)

= arcsin





√

C2
1,1 + C2

1,−1

2C0,0



 (15)

and

ϕ0 = arctan
(

yc

xc

)

= arctan

(

C1,−1

C1,1

)

(16)

We must notice that, for this last equation, the sign of xc and yc has to be taken into

account to assign the value to azimuthal angle (0 ≤ ϕ0 < 2π). Therefore, the optical

axis direction is given just by three Zernike coefficients: C0,0, C1,1, C1,−1.

2.3. Inhomogeneity

In some applications it may be interesting to have an idea about the closeness of LED

sources to an ideal point source whose luminous intensity would be constant at every

direction. To quantify this we will define this inhomogeneity term, U, as the square

root of the summation of all Zernike weighted polynomials except the term C0,0, which

represents the mean value.

U =

√

√

√

√

i=8
∑

i=1

∫ 1

0

∫ 2π
0 P 2

i (ρ, ϑ)ρdρdϑ
∫ 1

0

∫ 2π
0 P 2

0 (ρ, ϑ)ρdρdϑ
(17)

Applying orthogonality property of Zernike polynomials the following expression is

obtained:

U =
√

∑

n 6=0

∑

m

Ĉ2
n,m (18)

where Ĉn,m = Cn,m

C0,0

. This yields a value of U ≈ 0 when the emission comes to a spherical

wavefront.

2.4. Anisotropy

An important characteristic of the luminous intensity distribution is to know whether

there is rotational symmetry. We will define the anisotropy coefficient as the relative

variation of the luminous intensity with respect the azimuthal angle (ϕ), and, since

it may depend on θ, one value should be calculated for every θ. The coefficient will
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be expressed by the contribution of those Zernike polynomials which depend on the

azimuth angle, which are all except for P0, P4 and P8:

A(ρ) =

√

√

√

√

∑

i6=0,4,8

∫ 2π
0 P 2

i (ρ, ϑ)ρdϑ

[P 2
0 (ρ) + P 2

4 (ρ) + P 2
8 (ρ)]

(19)

=

√

√

√

√

2πρ3(8ρ20 + αcĈ2
c + αaĈ2

a)

1 + αdĈ
2
2,0 + αsĈ

2
4,0

where:

ρ0 = sin θ0 (see Eq. 15)

Ĉ2
c = Ĉ2

3,1 + Ĉ2
3,−1

Ĉ2
a = Ĉ2

2,−2 + Ĉ2
2,2

αc = 4(2− 3ρ2)2

αa = 3ρ2

αd = 3(−1 + 2ρ2)2

αs = 5(1− 6ρ2 + 6ρ4)2

2.5. Total luminous flux

The total luminous flux ΦV of the LED can be calculated by integration of Eq. (7) with

respect to the projected solid angle dΩ = sin θdθ dϕ = ρdρ dϑ. The ϕ-dependent terms

are cancelled out in this integration and the total luminous flux is given by the very

simple equation:

ΦV =
∫ 2π

0

dϑ
∫ 1

0

IV (ρ, ϑ)ρdρ = 2π
(

C0,0 +
1√
3
C2,0 +

1√
5
C4,0

)

(20)

2.6. Lambertianity degree

According to the Lambert’s cosine law [14], the luminous intensity of an ideal radiator

is directly proportional to the cosine of θ. A common procedure to quantify the

Lambertianity degree of a source is to calculate the parameter g in the equation:

IV (θ) = IV 0 cos
g θ (21)

The resolution of this equation for the parameter g can be expressed as a function of

beam angle (and, in consequence, of Zernike coefficients, as it was given in subsection

2.1) in the following way:

IV0

2
= IV0 cos

g
(

BA

2

)

(22)
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g =
− ln 2

ln
(

cos BA
2

) (23)

3. Results

To check the validity of the Zernike approach, luminous intensity distribution of a

set of LEDs has been measured in the goniophotometer developed at CSIC [12].

This instrument is composed of a temperature-stabilized photometer and two stepper

motor-based rotation stages, which allow the illuminance at any emission direction to

be measured except for those occluded by the source. The measurement quality of

the goniophotometer was validated by comparing with PTB (Physikalisch-Technische

Bundesanstalt) measurements of luminous intensity distributions of four stable LEDs, as

it was reported in [12]. Illuminance measurements by varying the polar angle between

0◦ and 90◦ with a 5◦ step and the azimuth angle between −180◦ and 180◦ with a

12◦ step were taken at a distance of 1.9 m for 18 LEDs from different manufacturers,

whose instability was characterized as less than 0.1 %. As an example, the luminous

intensity angular distributions (C − γ photometric data) of three LEDs from different

manufacturers are shown in Figures 1.a), 1.c) and 1.e), where, in the representation, the

radial position (ρ) corresponds with sin θ.

Luminous intensity distributions have been transformed according to Eq. 4 and

Zernike polynomials have been fitted to them. The relative differences of this fitting for

the same three LEDs are shown in 2-D plots in Figures 1.b), 1.d) and 1.f), respectively.

Fitting is very good for the Philips Luxeon Rebel LED, which is the one having the

softest variation on luminous intensity distribution. Fitting is also very good for the

Osram Golden Dragon LED till 80◦ polar angle, where a sharp change in luminous

intensity is produced. The same behaviour is found for Cree Xlamp LED: the fitting is

good as far as the luminous intensity varies smoothly.

To give a clearer idea of the differences between experimental values of luminous

intensity and the ones obtained from Zernike fitting, they are plotted versus the polar

angle in Fig. 3. Error bars represent the standard deviations over the azimuthal angle.

As mentioned before, the worst case is observed in the LED from Osram where a sudden

drop of the luminous intensity occurs at θ = 75◦.

The goodness of the fitting obtained by the Zernike approach is shown in Figure

2. The relative sum of squared errors (SSE) (in semi-logarithm scale) is given for the

18 studied LEDs as a function of the number of Zernike terms used in the fitting. The

relative SSE with only one term corresponds to the constant term (C0,0); with two

terms, we added the term corresponding to the coefficient C2,0, and so on until all the

significant Zernike terms are used. The order in which terms are added is specified at

the secondary X-axis on the top of the plot. This order was determined by the average

value of the Zernike coefficients of the 18 studied LEDs, sorted from larger to smaller

values.
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According to Fig. 2, the coefficients C0,0 and C2,0 are the most significant for most

of the LEDs studied, being negligible the improvement of the fitting by increasing the

number of polynomials in the case of Osram LEDs. In addition, for Osram and Luxeon

LEDs, we obtained that the relative SSE lies always below 4 % when we used just the

five first Zernike terms. For all of these LEDs but one (warm white Luxeon), the number

of polynomials to fit the angular distribution of the luminous intensity can be reduced

to just 2 (C2,0 and C4,0) if a relative SSE of 5 % is allowed. For Cree LEDs, however,

the result is different. The relative SSE of the fitting is not significantly improved by

increasing the number of polynomials involved, reaching a value over 7 % in any case.

The fitting is not appreciably improved for any of the studied LEDs when using more

than nine terms.

3.1. Beam angle

Beam angle values obtained from direct measurement and Zernike-based analysis for the

measured LEDs are given in Table 2. These LEDs have got beam angle values ranging

between 70◦ and 150◦ as can be seen for some of them in Figure 3, as well as their

difference. The best agreement is obtained for beam angle of LEDs from Philips, with

an average error of 4◦, which is consistent with the angular resolution of the measurement

(5◦). For most of the Osram LEDs, Eq. 9 is undetermined because the values of the

intensity are always above half maximum for Zernike data and BA can not be calculated.

Average deviation in LEDs from Cree is −9◦, with individual deviations from −2.5◦ to

−13.5◦.

3.2. Optical axis

Optical axis directions of the measured LEDs, calculated by Eqs. 15 and 16, are

randomly distributed around the mechanical axis (origin of coordinates), as shown in

the polar plot of Fig. 4. The higher angular deviation between both axis is around

2.5◦. Most of the LEDs from Philips present an angular deviation between 0◦ and 1◦.

Angular deviations of LEDs from Osram are more or less uniformly distributed between

0◦ and 0.5◦.

3.3. Inhomogeneity

The relation between inhomogeneity data, calculated on one hand by Eq. 18 (UZer) and

on other hand as the relative standard deviation of the measured luminous intensity

(Ustd), is shown in Fig. 5 for one representative LED of each manufacturer. There is a

proportionality between them, but with a constant lower than 1 for all LEDs. This may

be partially explained by the distribution of the measurement directions over which Ustd

is calculated. Notice that, although the spherical coordinates are uniformly distributed,

those directions are not, but have higher density for lower polar angles. As expected,

the smaller the beam angle, the more inhomogeneous is the emission.
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3.4. Anisotropy

Anisotropy data, calculated both by Eq. 19 (AZer, as solid lines) and as the relative

standard deviation of the luminous intensity over different azimuth angles (Astd,

as crosses, triangles and circles), are plotted versus polar angle in Figure 6 for a

representative LED of each manufacturer. For every LED, it lies below 2 % for polar

angles lower than 50◦, and it increases faster towards larger angles. The Zernike-

based calculations are close to the measurement based ones for polar angles up to 75◦

approximately. This is consistent with the results shown in Figure 1 (b, d and e) that

shows a larger deviation of the fitting at higher polar angles.

3.5. Total luminous flux

Total luminous flux values, calculated both by integration of the angular distribution

of the luminous intensity and by the proposed Zernike-based procedure (Eq. 20) are

displayed in Table 3. Zernike coefficients allow the luminous flux of a LED to be

estimated with an error lower than 4 % for Philips’s LEDs. For Cree’s LEDs the

difference is higher and with opposite sign. Important deviations are found for Osram’s

LEDs (average error of 14 %), due to the mentioned sudden drop of the luminous

intensity at high polar angles, that the Zernike procedure is unable to represent.

3.6. Lambertianity

Parameter g for the studied LEDs calculated by both a least squares fitting to the

experimental luminous intensity distribution and by the Zernike-based (gZer) procedure

(Eq. 23) are shown in Table 4. For Philips LEDs, which are almost Lambertian because

their g values are closer to 1, the difference between the parameter g calculated by both

methods is lower than the uncertainty of the parameter calculated by LSF, so they

can be considered equivalent. For Cree LEDs, whose parameter g is higher than 1, the

difference between both g values is higher than the fitting uncertainty for g values higher

than 2. For Osram LEDs, g value cannot be calculated with Eq. 23 because BA could

not be determined.

4. Applications

Calculated Zernike coefficients specify the luminous intensity distribution of a LED.

We think that the composed function of Zernike polynomials may be an alternative to

the commonly used procedure to render illumination at large surfaces. The common

approach is to use a ray file (list of rays characterized by a direction of propagation and

a luminous flux) in a simulation software to calculate by ray-tracing the illuminance

at given positions. However, this technique is very time-consuming and, consequently,

slows for real-time visualization programs. Using the Zernike function of a source,

it is possible to calculate by integration the illuminance anywhere. It would reduce
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considerably the rendering time. A faster rendering provides a great advance in the

lighting design, allowing improvement in the illumination efficiency and in the achieved

illumination uniformity.

5. Conclusions

We have proposed a method based on Zernike polynomials to characterize photometric

quantities and descriptors of LEDs, such as total luminous flux, beam angle, anisotropy,

direction of the optical axis and lambertianity degree of the source.

The performance of this method has been experimentally tested using luminous

intensity measurements of eighteen high-power LEDs from different manufacturers and

with different optical characteristics, carried out in a goniophotometer developed at

IO-CSIC.

We have found that a small set of nine Zernike coefficients can be enough to

calculate all the mentioned photometric quantities and descriptors. In addition, we have

shown that, when the application does not required low uncertainty values, a reasonable

approach to the angular distribution of the luminous intensity can be obtained with just

two Zernike polynomials for most of the eighteen studied LEDs, being necessary between

5 and 9 polynomials to get a fitting error that cannot be decreased by increasing the

number of polynomials used.

We have to notice that some shortcomings are found in the method, for instance,

when the luminous intensity has a ‘hat’ distribution, as we found in the case of the

Osram LEDs. Despite these shortcomings, we think that this Zernike-based approach

may be an alternative to the probably more time-consuming ray-tracing procedures to

render illumination at large surfaces.
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Table 1. Nomenclature for the Zernike polynomials used in this article.

Term of Zernike Contribution to distribution

Z0
0=1 P0 = C0,0Z

0
0

Z−1
1 (sin θ, ϕ)=2 sin θ sinϕ P1(ρ, ϑ) = P1(sin θ, ϕ) = C1,−1Z

−1
1 (sin θ, ϕ)

Z1
1 (sin θ, ϕ)=2 sin θ cosϕ P2(ρ, ϑ) = P2(sin θ, ϕ) = C1,1Z

1
1 (sin θ, ϕ)

Z−2
2 (sin θ, ϕ)=

√
6 sin2 θ sin 2ϕ P3(ρ, ϑ) = P3(sin θ, ϕ) = C2,−2Z

−2
2 (sin θ, ϕ)

Z0
2 (sin θ)=

√
3(2 sin2 θ − 1) P4(ρ) = P4(sin θ) = C2,0Z

0
2 (sin θ)

Z2
2 (sin θ, ϕ)=

√
6 sin2 θ cos 2ϕ P5(ρ, ϑ) = P5(sin θ, ϕ) = C2,2Z

2
2 (sin θ, ϕ)

Z−1
3 (sin θ, ϕ)=

√
8(3 sin3 θ − 2 sin θ) sinϕ P6(ρ, ϑ) = P6(sin θ, ϕ) = C3,−1Z

−1
3 (sin θ, ϕ)

Z1
3 (sin θ, ϕ)=

√
8(3 sin3 θ − 2 sin θ) cosϕ P7(ρ, ϑ) = P7(sin θ, ϕ) = C3,1Z

1
3 (sin θ, ϕ)

Z0
4 (sin θ)=

√
5(6 sin4 θ − 6 sin2 θ + 1) P8(ρ) = P8(sin θ) = C4,0Z

0
4 (sin θ)

Table 2. Comparison between the beam angle obtained by direct measurement and

Zernike-based analysis.

Beam angle / ◦

Direct Zernike Absolute

measurement deviation

Cree Xlamp

Polar White 93.9 80.4 -13.5

White 92.3 81.8 -10.5

Warm White 89.6 76.8 -12.8

Neutral White 85.2 75.6 -9.6

Blue 93.5 83.0 -10.5

Red 75.9 73.4 -2.5

Green 96.1 92.4 -3.7

Philips Luxeon Rebel

Polar White 101.3 105.7 4.4

Warm White 114.0 118.1 4.1

Neutral White 106.6 111.8 5.2

Blue 112.3 116.5 4.2

Red 118.4 121.3 2.9

Green 110.6 113.5 2.9

Osram Golden Dragon

White 150.7 – –

Warm White 145.5 157.3 11.8

Blue 152.2 – –

Red 151.8 – –

Green 147.0 – –



Zernike polynomials for photometric characterization of LEDs 13

Table 3. Total flux comparison between experimental and the Zernike-based values

Total flux / lum Deviation / %

Exp. Zer.

Cree Xlamp

Polar White 90.2 84.6 -6.2

White 76.4 72.5 -5.2

Warm White 45.9 41.6 -9.3

Neutral White 56.2 54.3 -3.4

Blue 20.7 20.1 -2.5

Red 41.1 38.1 -7.3

Green 68.0 64.1 -5.8

Philips Luxeon Rebel

Polar White 73.5 75.8 3.0

Warm White 43.8 45.5 4.0

Neutral White 46.7 48.4 3.5

Blue 29.1 30.0 3.1

Red 55.1 57.4 4.1

Green 84.0 86.0 2.4

Osram Golden Dragon

White 97.4 113.5 16.6

Warm White 78.1 88.9 13.8

Blue 18.3 20.8 13.9

Red 44.1 50.8 15.1

Green 64.7 74.1 14.6
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Table 4. Lambertianity of the luminous intensity distribution of all studied

LEDs,where g is the exponent in the cosine law.

gLSF ± U(k=2) gZer Absolute

deviation

Cree Xlamp

Polar White 2.22 ± 0.30 2.6 0.38

White 2.14 ± 0.29 2.47 0.33

Warm White 2.40 ± 0.24 2.85 0.45

Neutral White 2.49 ± 0.32 2.94 0.45

Blue 2.03 ± 0.29 2.40 0.37

Red 2.63 ± 0.35 3.13 0.50

Green 1.67 ± 0.29 1.88 0.21

Philips Luxeon Rebel

Polar White 1.40 ± 0.03 1.38 -0.02

Warm White 1.08 ± 0.03 1.04 -0.04

Neutral White 1.25 ± 0.04 1.20 -0.05

Blue 1.20 ± 0.09 1.08 -0.12

Red 1.04 ± 0.07 0.97 -0.07

Green 1.28 ± 0.09 1.15 -0.13

Osram Golden Dragon

White 0.60 ± 0.19 – –

Warm White 0.70 ± 0.17 0.93 0.23

Blue 0.63 ± 0.12 – –

Red 0.56 ± 0.12 – –

Green 0.70 ± 0.13 – –
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(a) Cree Xlamp LED
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(e) Osram Golden Dragon LED
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Figure 1. Luminous intensity distribution of three LEDs measured in the laboratory

(a, c, e) and relative deviation between Zernike fitting and experimental data (b, d, f).
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Figure 2. Goodness of the fitting obtained by the Zernike approach. The relative

sum of squared errors (SSE) (in semi-logarithm scale) is given for the 18 studied LEDs

as a function of the number of Zernike terms used in the fitting.
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Figure 3. Relative luminous intensity versus polar angle. Experimental values as well

as fitted values using Zernike polynomials are shown for three LEDs from different

manufacturers
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Figure 4. Direction of optical axis for one representative LED of each manufacturer.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.4

0.5

0.6

0.7

0.8

0.9

1

U
Zer

U
st

d

 

 

Cree LEDs
Luxeon LEDs
Osram LEDs

Figure 5. Relation between the inhomogeneity values calculated for one representative

LED of each manufacturer. Ustd is the value calculated from the luminous intensity

distribution while UZer is the one calculated from the Zernike fit.
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Figure 6. Anisotropy values from experimental luminous intensity values and from

Zernike-based values, for one representative LED of each manufacturer.


