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Abstract: Adenovirus (AdV) capsid organization is considerably complex, not only 

because of its large size (~950 Å) and triangulation number (pseudo T = 25), but also 

because it contains four types of minor proteins in specialized locations modulating the 

quasi-equivalent icosahedral interactions. Up until 2009, only its major components 

(hexon, penton, and fiber) had separately been described in atomic detail. Their 

relationships within the virion, and the location of minor coat proteins, were inferred from 

combining the known crystal structures with increasingly more detailed cryo-electron 

microscopy (cryoEM) maps. There was no structural information on assembly 

intermediates. Later on that year, two reports described the structural differences between 

the mature and immature adenoviral particle, starting to shed light on the different stages of 

viral assembly, and giving further insights into the roles of core and minor coat proteins 

during morphogenesis [1,2]. Finally, in 2010, two papers describing the atomic resolution 

structure of the complete virion appeared [3,4]. These reports represent a veritable tour de 

force for two structural biology techniques: X-ray crystallography and cryoEM, as this is 

the largest macromolecular complex solved at high resolution by either of them. In particular, 

the cryoEM analysis provided an unprecedented clear picture of the complex protein 

networks shaping the icosahedral shell. Here I review these latest developments in the field 

of AdV structural studies. 
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1. AdV Structure: A Historical Perspective 

Adenoviruses [5] have long been of interest in the basic virology field. They are present in most 

vertebrates [6]. As experimental systems, they have been extremely useful for investigating many 

fundamental processes in the eukaryotic cell life, such as splicing and apoptosis. In humans they cause 

usually mild respiratory, gastrointestinal and eye infections. Although the most common type of AdV 

infection is subclinical, AdV-induced diseases are responsible for significant morbidity in 

immunocompromized patients and other susceptible populations [7]. There are at present no approved 

antiadenoviral drug therapies [8]. Adenoviruses have recently shown promise as vectors for gene 

transfer into mammalian cells, vaccine delivery and oncolysis [9–15], although improvements in 

vector design are still needed [16,17]. Thus, there is currently a three-fold interest on AdV structural 

studies: first, because of their pathogenicity and the lack of anti-adenoviral drugs; second, because of 

their potential therapeutic use and the need to improve their efficiency as vectors; third, because of 

their role as experimental models for complex virus assembly. 

Adenoviruses are icosahedral, non-enveloped viruses with a dsDNA genome. Very soon after  

their discovery [18], it became clear that AdV structural organization was not simple (Figure 1).  

An impressive amount of experimental work has been performed along this time to converge in our 

current, detailed knowledge of the AdV capsid organization. In this section I will briefly highlight the 

main milestones that took us to the situation comprehensively reviewed by W. C. Russell in 2009 [19]. 

Then, in the rest of the sections I will describe the latest advances in the understanding of adenovirus 

structure and assembly. 

Early electron microscopy (EM) images of AdV allowed counting the number of capsomers 

forming the capsid [20]. The idea that viruses should be built from identical subunits distributed in 

highly symmetrical architectures, due to gene economy constraints, had already been proposed [21]. 

Indeed, these first electron microscopy images showed the AdV capsomers distributed according to the 

532 symmetry group, proving that it was an icosahedron. When Caspar and Klug elaborated their 

theoretical framework for the structure of spherical viruses [22], it was clear that the adenovirus capsid 

corresponded to a T = 25 triangulation number icosahedral geometry. This predicted that the capsid 

should have 60 × 25 = 1500 structural subunits: 12 pentamers forming the vertices, plus 240 hexamers. 

It was assumed that all structural subunits would be chemically identical—but it soon became apparent 

that the AdV capsid composition did not conform to this assumption. 

By combining chromatographic purification with EM of the soluble AdV antigens and of complete 

virions, Valentine and Pereira [23] (commented by W.C. Russell as a direct witness in [24])  

showed that the 6-fold and 5-fold coordinated capsomers were two chemically different entities. 

According to their neighborhood in the capsid, these were later denominated “hexons” and “pentons” 

respectively [25]. Valentine and Pereira also produced the first striking images of the extended fibers 

protruding from each vertex. Later on, the complexity was extended when the virion was shown to 

contain at least nine different polypeptides [26]. These were named using roman numbers in order of 

decreasing molecular weight, as revealed by SDS electrophoresis. In this terminology, hexons 

correspond with polypeptide II, and pentons are composed by polypeptide III (penton base) and  

IV (fiber). 
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Figure 1. Overall AdV structure and components. (a) Icosahedral shell organization 

according to current structural knowledge. The left hand side panel is a model built from a 

low resolution cryoEM map, with penton bases highlighted in yellow, and fibers built from 

the crystal structure of the knob and distal shaft [27] in dark blue. The shaded triangle 

indicates one facet. (b) Non-icosahedral components. A segment has been removed from 

the cryoEM map to show the inner capsid contents. The schematics on the right hand side 

indicate tentative positions, as little is known about the structure and organization in the 

virion of the genome and accompanying proteins. Polypeptide IVa2, which binds to the 

specific packaging sequence in the viral genome, has been reported to occupy a singular 

vertex in the capsid [28]. 

 

 

The next puzzle came from the AdV capsid disruption pattern. Upon mild dissociation conditions, 

stable substructures composed by nine hexons would reproducibly be generated. These were termed 

Groups of Nine hexons, or GONs. GONs contain the central hexons in each facet, but not the ones 

surrounding the penton, or peripentonals [29]. Now these nine hexons, which by definition occupy  

6-fold coordinated positions in the T = 25 icosahedron, turned out to be organized in a p3 net, without 

any hint of symmetry higher than 3-fold [30]. Further, exhaustive physico-chemical analyses showed 

that hexons were trimers, and not hexamers, of polypeptide II [31]. Two questions arose from these 
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studies: how could a trimeric protein fulfill the geometrical role of a hexamer? And, what made hexons 

in the GON different from the peripentonals? 

The answer to the first question came from the hexon structure solved by X-ray diffraction. A 6 Å 

resolution crystallographic model showed that the trimeric capsomer had a pseudo 6-fold hexagonal 

base, ideally suited to establish a close-packed protein shell for protecting the viral genome [32]. In the 

opposite side, the trimer had three clearly marked towers that were recognizable in negative staining 

images of GONs and other subviral structures, and were twisted with respect to the hexagonal base. 

This facilitated the determination of hexon orientations in the 240 capsomers of the icosahedral 

facets [33,34]. Chain tracing in the electron density map revealed that the hexagonal shape was 

achieved by repetition of a structural motif in the base of each hexon monomer: an 8-stranded β-barrel 

with a “jellyroll” topology [35]. When the hexon homotrimer, rather than the monomer, was 

considered as the basic building block, it was realized that the icosahedral asymmetric unit (AU) was 

formed by four independent hexons, placed in four different environments. This is in contrast with the 

25 different environments in the AU of a T = 25 icosahedron predicted by Caspar and Klug  

quasi-equivalence theory. Also, because of the trimeric nature of hexons, the AU is composed by  

4 × 3 (hexons) +1 (penton) = 13 independent polypeptides, instead of the predicted 25. It is in this 

sense that the AdV capsid is often described as pseudo T = 25. 

The question of why the nine hexon trimers in the GON behaved differently from the peripentonal 

hexons in disruption studies was solved when it was shown that GONs were formed by two different 

viral components: hexon, and polypeptide IX [36]. The copy number of IX was determined by 35S 

labeling stoichiometric studies [37]. There are 240 copies of polypeptide IX per virion, with 12 copies 

per GON. That is, polypeptide IX is associated most intimately with hexons in the GON. The location 

of polypeptide IX in the GON was directly observed for the first time in difference maps where a GON 

model constructed from the crystal structure of hexon was subtracted from 2D EM average images of 

negatively stained GONs [38]. Four trimers of IX were found reinforcing the interactions between 

hexons at the icosahedral and a set of local 3-fold symmetry axes that are present only within the 

GON. No similar binding environment appears between the GON and the peripentonal hexons. Thus, 

the location of IX explained the defined capsid disruption pattern. 

A more complete model for the distribution of minor components in the AdV capsid was obtained 

when the combination of X-ray and EM data was extended to the third dimension. The first 3D image 

of the whole virion was obtained from alignment and averaging of only 29 individual virion 

projections from frozen-hydrated samples, and reached a resolution of 35 Å [39]. The atomic model of 

hexon, filtered to the same resolution, was fitted to the four independent positions in the AU, to obtain 

a 3D density model for all hexon copies in the particle. This “hexon only” density was subtracted  

from the cryoEM map, to reveal the molecular envelope of other icosahedrally ordered capsid 

components [40]. This was a pioneer study, in which it was shown that it was possible to combine 3D 

data from X-ray diffraction and EM, even if the resolution range of the two techniques was at the time 

one order of magnitude away, and the physics originating the signal were quite different. Even at the 

limited resolution attained, the difference maps showed for the first time the shape of the penton 

complex, and the location of outer and inner densities reinforcing the capsid at specific positions. 

These were interpreted with the help of the known copy numbers and molecular weights, and assigned 

to minor coat proteins IIIa, VI, and IX. 
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At the end of the 20th century and beginning of the 21st, methodological and computing advances 

resulted in a remarkable take off for structural biology techniques. With regard to the AdV structural 

components, protein crystallography yielded the atomic structures of the fiber knob [41] and shaft [27], 

as well as penton base, alone and in complex with the N-terminal fiber peptide [42]. These structures 

were obtained from isolated proteins or domains; to see how they related to each other within the 

virion context, they were fitted into cryoEM maps moving fast beyond subnanometer resolution: first 

at 10, then at 9, then at 6 Å resolution [43–45]. Because of the higher level of detail available in these 

maps, it was possible to start interpreting the difference densities in terms of secondary structure 

elements, particularly at 6 Å resolution, if long helices were predicted. The improved models resulted 

in reassigned locations for polypeptides IIIa, VI, VIII, and the C-terminal domain of IX. 

One of the new assignments for minor coat protein locations concerned a putative 4-helix bundle 

located between hexon towers at the icosahedron edges. This density was originally thought to 

correspond to polypeptide IIIa [40], but in the new studies it was attributed to the C-terminal domain 

of IX [44]. Polypeptide IIIa was now proposed to occupy a position under the vertices inside the 

virion. Because this reassignment implied a radical change in the accessibility of polypeptide IIIa to 

ligands such as antibodies or cellular receptors, and may have created confusion in the field, it is 

worthwhile to summarize here the evidence supporting it. Viruses lacking polypeptide IX also lack all 

capsid external densities not attributable to hexons or pentons [45,46]. However, for a while it was not 

clear if this meant that polypeptide IX was the only externally located minor capsid protein, or if the 

absence of IX produced the loss of polypeptide IIIa. Exogenous peptides or protein domains fused to 

the C-terminus of polypeptide IX confirmed its location at the facet edges, and indicated an antiparallel 

arrangement for its C-terminal 4-helix bundle [47,48]. Finally, a peptide mapping study using viruses 

with N-terminally tagged IIIa confirmed the location of this polypeptide at an internal position below 

the vertex region [49]. 

Most of the structural knowledge on AdV comes from studies on the human types 2 (HAdV-2) and 

5 (HAdV-5). In the last years, the range of available AdV known structures has expanded to include 

the fiber knobs of other AdV species infecting humans or animals; knobs bound to their receptors; 

hexons of simian and avian AdV; and various fiber chimeric constructs (Table 1). These have all been 

obtained from isolated proteins, outside of the virion context. No structural information on any of the 

minor coat proteins has been reported using this strategy. It is likely that the minor coat proteins need 

the virion context to fold properly. 

CryoEM has yielded maps of canine AdV, and the Atadenovirus ovine AdV [50,51]. Although the 

different species and genera differ in some of the minor capsid components, the general virion 

architecture is conserved. This includes particle size, hexon packing, external reinforcement by minor 

proteins at the 3-fold axes in the GONs, and internal densities beneath the vertices. CryoEM has also 

contributed to our current understanding on receptor binding and neutralization for HAdV [52–60]. 
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Table 1. Structures of AdV capsid proteins solved by X-ray crystallography. 

Protein Species 1 Ligands/Modifications Reference 

Hexon 

HAdV-2   [61] 
HAdV-5   [61] 
FAdV-1 (CELO)   [62] 

SAdV-25   [63] 

Penton base 
HAdV-2   [42] 
HAdV-2 N-terminal fiber peptide  [42] 

HAdV-2 Chimera with RGD loop from HAdV-12  [64] 

Fiber shaft 
HAdV-2   [27] 

HAdV-2 
Fused to bacteriophage T4 fibritin 

trimerization motif 
 [65] 

Fiber knob 

HAdV-2   [66] 
HAdV-3   [67] 

HAdV-5   [41] 

HAdV-7   [68] 
HAdV-11   [68] 

HAdV-11 Consensus repeats SCR1-SCR2 of CD46  [69] 

HAdV-11 Consensus repeats SCR1 to 4 of CD46  [70] 
HAdV-12   [71] 
HAdV-12 Domain 1 of CAR  [71] 

HAdV-12 
Knob mutants in complex with  
domain 1 of CAR 

 [72] 

HAdV-14   [68] 

HAdV-16   [73] 
HAdV-19 Sialyl-lactose  [74] 
HAdV-21   [75] 

HAdV-21 Consensus repeats SCR1-SCR2 of CD46  [75] 
HAdV-35   [76,77] 

HAdV-37   [74] 
HAdV-37 Sialyl-lactose  [74] 
HAdV-37 Domain 1 of CAR  [78] 

HAdV-37 Sialic acid derivatives  [79] 
HAdV-37 GD1a glycan  [80] 
HAdV-37 Trivalent sialic acid inhibitor  [81] 

CAdV-2   [78] 
CAdV-2 Domain 1 of CAR  [78] 
CAdV-2 Sialic acid  [82] 

CAdV-2 Domain 1 of CAR and sialic acid  [82] 

Fiber knob (short fiber) HAdV-41   [83] 
Fiber knob (head domain) PAdV-4   [84] 

Fiber knob (galectin domain) PAdV-4   [84] 

Fiber knob (galectin domain) PAdV-4 Carbohydrates  [84] 
Fiber knob (short fiber) FAdV-1 (CELO)   [85] 

Fiber knob (long fiber) FAdV-1 (CELO)   [86] 

                                                 
1 HAdV: human adenovirus. FAdV: fowl adenovirus. CAdV: canine adenovirus. SAdV: simian adenovirus. PAdV: porcine 
adenovirus. 
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A particularly interesting aspect of AdV was revealed by the observation that this virus, which 

infect vertebrates, has a striking structural similarity to PRD1, a bacteriophage with an internal 

membrane [87]. Previously, geometrical considerations based on the low resolution structure of AdV 

hexon had predicted that pseudo-hexagonal trimers could be used to build larger icosahedral 

capsids [33]. This prediction has now been experimentally confirmed. In the last years, more members 

of the PRD1-AdV family have been described or predicted, and the lineage now extends from viruses 

infecting bacteria or archaea, to the large nucleo-cytoplasmic DNA viruses such as Asfarvirus, 

Iridovirus and the giant Mimivirus [88]. All these viruses are built from the same kind of double jelly 

roll, pseudo-hexagonal capsomers arranged in different tiling systems, with triangulation numbers 

ranging between T = 21 and T = 169 (for those actually solved), and reaching up to 972 < T < 1200 for 

the giant Mimivirus [89]. Intriguingly, even a scaffold protein of the non-icosahedral vaccinia virus 

folds as a double jelly–roll pseudohexamer, indicating a possible common ancestor with icosahedral 

dsDNA viruses [90]. Therefore, information obtained on AdV is likely to apply to a large family of 

highly complex viruses. 

2. Reaching Atomic Detail in the Complete AdV Virion 

The story of AdV structural characterization runs parallel to that of two structural biology 

techniques: X-ray crystallography, and electron microscopy. AdV was one of the first viruses to be 

imaged at the electron microscope [20]; hexon was the first animal virus protein to be crystallized [91], 

and the longest polypeptide solved by X-ray diffraction in its time [35]. AdV was one of the first 

experimental systems to benefit from the combination of both imaging techniques, at a time when it 

was not clear how meaningful such a combination would be. From the first interpretations of negative 

staining EM micrographs using a low resolution crystallographic model of hexon [92], to the difference 

imaging between GON EM images and hexon projections [38]; to the sophisticated quasi-atomic 

models and difference maps derived from three-dimensional cryoEM [40,43–45], both techniques were 

successfully put to the test to keep unveiling new details on this complex virus. The story converged 

when, in a parallel tour de force, the complete virion was solved at atomic resolution both by X-ray 

diffraction and by cryoEM [3,4]. 

AdV is the largest complex solved by protein crystallography, and the largest, and one of the few so 

far, solved at atomic resolution by cryoEM [93]. Both techniques achieved similar nominal resolutions 

(3.5 Å for X-ray and 3.6 Å for cryoEM). At this level of detail, it is possible to observe side chains. 

Therefore, the polypeptide chains can be traced in the different regions of the density map with high 

precision. Interestingly, for AdV, tracing in the cryoEM density map proved more informative than in 

the X-ray diffraction density map, even at similar levels of resolution. This section summarizes the 

technical developments that resulted in final success for both techniques. 

2.1. X-Ray Diffraction 

The key requirement to solve a structure by X-ray crystallography is obtaining well-ordered 3D 

crystals of the specimen. Adenovirus, a macromolecular assemblage of 150 MDa, and ~950 Å 

diameter from vertex to vertex, is the largest macromolecule for which 3D crystals diffracting to 
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atomic resolution2 have been obtained [94]. Previously, the largest macromolecular assembly having 

yielded crystals diffracting to atomic resolution was the adenovirus-like bacteriophage PRD1 (70 MDa, 

700 Å) [95–97]. 

Crystallization of biological macromolecules, and of these large viruses in particular, requires 

surmounting two main obstacles: first, production of large amounts of specimen at high concentration; 

second, the specimen needs to be highly homogenous to yield well-ordered crystals. This includes the 

requirement for stability over the crystallization and data collecting procedures (weeks), and the 

removal of flexible regions. The most prominent flexible regions in AdV are the long protruding 

fibers, particularly in human AdV species C (~300 Å), the one most used for vector and structural 

studies. A HAdV-5 fiber-deleted vector was initially used for crystallization trials. High concentrations 

(5–10 mg/mL) and crystals were obtained, but they did not yield useful diffraction data. Lack of order 

in these crystals may have arisen from heterogeneity of the fiberless viruses, as these seem to suffer 

from DNA leakage, presumably by unstable penton base incorporation in the absence of fiber [55]. 

Better results were obtained with a HAdV-5 chimera where the fiber was substituted by that of 

species B HAdV-35, approximately 1/3rd the length of the HAdV-5 fiber (Ad35F) [43]. The combination 

of the shorter fiber, viral production in large-scale cell culture devices, and robotic crystal screening, 

finally produced the long sought diffraction quality crystals [94]. These were grown from a 12 mg/mL 

solution (~5 × 1013 viral particles/ml), and reached sizes in the 0.2 mm range. However, structure 

solution was far from straightforward, as data had to be collected from hundreds of crystals, and only 

about 10% were usable for obtaining a high resolution map [3]. Phasing was facilitated by the 

availability of a cryoEM derived quasi-atomic model [43], from which initial phases could be derived. 

However, electron density corresponding to minor coat proteins was hard to interpret, due to unclear 

connectivity and lack of significant side chain densities that could guide polypeptide chain tracing. 

Nevertheless, it was possible to unequivocally assign the location of polypeptide VIII; to discern the 

disposition of mobile regions that could not be observed in the structure of isolated hexon; and to 

detect an intriguing change in penton conformation. All these points will be discussed in detail in 

Section 3. 

2.2. Cryo-EM 

In the past two decades, cryoEM followed by image analysis techniques has steadily progressed 

from providing low-resolution molecular envelopes to genuine atomic resolution maps [98]. The bases 

of this progress and possible future developments have recently been reviewed [93,99]. High quality 

raw data are now obtained thanks to instrumental advances such as high beam coherence provided by 

field emission electron sources; more stable cryo-sample holders; and better electron lenses and 

microscope alignment. On the other hand, computing advances allow for image processing procedures 

dealing with much larger number of images, sampled at finer pixel sizes, and with more precise 

aberration compensation, alignment and reconstruction algorithms. For AdV, atomic (3.6 Å) resolution 

was achieved using a final dataset of 31,815 HAdV-5 particles, sampled at 1.076 Å/px [4]. As in the 

                                                 
2 Strictly speaking, “atomic resolution” would be ~1 Å. However it is frequent to use this term, like here, meaning “a 
resolution such that the map quality allows tracing of the polypeptide chain, generally thanks to the visibility of bulky side 
chains”. 
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case of the crystallographic analysis, map interpretation was aided by previous knowledge coming 

from hybrid X-ray-cryoEM approaches. However in this case, the map quality was such that 

polypeptide chains could be traced using some distinctive, bulky side chain densities as landmarks. 

The cryoEM analysis revealed in detail the structure of minor coat proteins, and how they contribute, 

together with mobile arms in hexon and penton base, to establish the complex network of interactions 

involved in organization of the icosahedral protein shell. This is described in detail in the next section. 

3. Atomic Structure of the Mature Adenovirus Virion 

To describe the complex AdV structure, it is useful to depict the capsid using a series of geometrical 

landmarks. Each capsid facet is formed by 12 trimers of the major coat protein, hexon. As explained 

above, hexon trimers have a hexagonal shape, and so they can act as hexagonal bricks in the 

icosahedral network. The pentagonal elements at each vertex are formed by a pentamer of penton base, 

in a complex with a trimer of the long projecting fiber. Four hexon trimers, plus one penton base 

monomer, form the icosahedral AU. The general icosahedral architecture can be described as two 

different systems of tiles. Nine hexon trimers form the central plate of each facet or GON. Similarly, 

the five peripentonal hexon trimers, together with the penton base, can be considered as a second tile 

system, which has been designed as GOS (Group of Six) [4] (Figure 2). 

Figure 2. Geometrical landmarks in the AdV icosahedral net. (a) Each hexon trimer is 

depicted as a hexagon with an overlaid triangle indicating the position of the towers. The 

two different kinds of faces in the hexon pseudo-hexagonal base are labeled S (single 

monomer) and T (two monomers). (b) One penton and the five adjacent facets are 

represented, spread out for clarity. The four hexon trimers forming the asymmetric unit 

(AU) are numbered in one facet. Peripentonal hexons, forming the Group of Six (GOS) 

together with the penton, are highlighted in yellow. Hexons in the Groups of Nine (GON) 

are depicted in white for the reference facet, gray in the rest. Red symbols indicate the 

icosahedral symmetry axes. Notice that there is an alternative way to define the AU, in 

which hexons belonging to two facets would be included (c). This alternative AU was used 

in the atomic resolution cryoEM study. 
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3.1. Hexon 

Hexon is the main building block of the AdV capsid (copy number = 720 monomers, 240 trimers). 

The pseudo-hexagonal symmetry of the hexon trimer base provides two kinds of hexon-hexon contact 

faces. One is composed by the two β-barrels belonging to the same monomer, while the other is 

formed by two barrels belonging to two different monomers. Before the atomic structure of hexon was 

solved, these faces were denoted as type B and A, respectively [33]. This nomenclature has also been 

used to describe other members of the structural lineage, such as PRD1 [100]. In the atomic resolution 

cryoEM model, these are called S (for Single monomer), and T (Two monomers). Intrafacet interactions 

are of the ST type, while SS and TT interactions make up the icosahedral edges. Additionally, the 

peripentonal hexon interacts with penton base by an S face (Figure 2). 

The intricate folding and remarkable stability of the hexon trimer has been extensively 

described [35,61,101–104]. The atomic resolution maps of the complete virion show no changes in 

hexon conformation with respect to the crystallographic structures of the isolated protein. However, 

they do show the structure of some regions that due to their flexibility could not previously be traced at 

high resolution. The role of the N- and C- termini of the hexon monomer is now unveiled. Depending 

on their context in the capsid, these regions, located at the innermost part of the hexon base, adopt 

different conformations to establish interactions between hexons, or between hexons and minor coat 

proteins IIIa and VIII. This is a common theme in viral coat proteins: often they display mobile 

terminal regions in solution, which serve as conformational switches modulating the different  

quasi-equivalent interactions within the icosahedral capsid [96,105–108]. 

Mobile regions could also be traced on the outermost part of hexon. In the crystallographic 

study [3], two mobile loops in the hexon towers were observed thanks to their stabilization by crystal 

packing interactions. In the cryoEM structure, four of these hexon loops were traced. Some of these 

correspond to hypervariable regions 4 to 7, involved in defining the specific serological response to the 

virus [4]. Interestingly, in recent years a function for hexon beyond the purely architectural one has 

been unveiled, also involving the hypervariable regions. In two parallel studies, it was shown that 

coagulation factor X, critical for mediating AdV infection of hepatic cells in vivo, strongly bound 

hexon in the central hollow region between the towers, lined by hypervariable regions 3 and 7 [58,59]. 

This unexpected finding confers to hexon a role in tropism determination, receptor binding and entry; 

all these aspects had previously been reserved to the penton proteins. 

3.2. Penton Base and Fiber 

Penton base (polypeptide III) and fiber (polypeptide IV) form the vertex capsomers, key players in 

the initial stages of infection. The distal, C-terminal fiber knob is responsible for initial attachment to 

the host cell by binding to the cell surface protein CAR [109] in most human serotypes. Fiber flexibility 

is important for this interaction to take place [53], presumably to allow the fiber to bend away. Then, 

an RGD loop in penton base binds to αV integrins to trigger internalization by receptor-mediated 

endocytosis [110]. Tracking of fluorescent single viruses or fiber knobs upon attachment has recently 

revealed how CAR-related drifting and integrin-related confinement combine to start viral uncoating, 

and therefore productive infection [111]. 
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The penton base structure in the cryoEM map of the complete virion [4] is almost indistinguishable 

of that reported for the HAdV-2 recombinant protein in the presence of an N-terminal fiber 

peptide [42]. Similarly to hexon, the only differences reside in the visibility of flexible, previously 

untraced areas. For each penton base monomer, an N-terminal arm (residues 37–51) extends away 

from the β-barrels that form the main body of the protein towards the viral core, interacting with the  

N-terminal domains of two IIIa monomers along the way, and therefore contributing to anchor the 

penton within the GOS (Figure 3). The relevance of this interaction is reflected in the observation that 

incorporation of exogenous peptides at the N-terminus of IIIa, even when allowing assembly, resulted 

in virions with a tendency to lose pentons [112]. 

Figure 3. Organization of the AdV vertex region (GOS). (a) View from inside the capsid 

looking at the 5-fold icosahedral symmetry axis. (b) Side view showing a transversal 

section across the penton. The five peripentonal hexons are shown in gray; penton base in 

blue; polypeptide IIIa in yellow; and the GOS copy of polypeptide VIII in tan. Surfaces 

were created from high resolution structures in PDB ID 3IYN [4], using UCSF Chimera 

software [113]. Notice the N-terminal penton base arms (arrows) intercalating between IIIa 

monomers, and the radial position of polypeptide VIII, wedged between IIIa and hexon. 

 

Fiber density is usually absent or blurred in structural studies of the complete virion, due to its 

intrinsic flexibility and the symmetry mismatch between the trimeric fiber and the 5-fold icosahedral 

vertex. In the crystal structure of recombinant penton bound to the N-terminal fiber peptide, residues 

10–20 were observed bound at the cleft formed by two adjacent penton base monomers [42]. In the 

cryoEM atomic structure, fiber residues 7–19 could be traced, and density for the proximal part of the 

fiber shaft was observed, extending the information obtained from the previous studies [114]. The base 

of the fiber interacts with a hydrophobic ring at the rim of a narrow channel in the center of the penton 

base pentamer. Interestingly, the N-terminal fiber peptide reaches from the central shaft to the RGD 

loop in the penton base periphery, consistently with previous studies reporting conformational changes 

in the RGD loop upon fiber binding [115]. 
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Unlike in the cryoEM structure, in the crystal structure of the complete virion an intriguing 

conformational alteration of penton base was found [3]. The pentamer subunits appear arranged around 

a channel with almost double the diameter observed for the isolated protein (50 vs. 28 Å). This implies 

that the fiber shaft could be inserted inside the penton base, instead of being attached to the surface as 

indicated by the recombinant protein study and the cryoEM structure of the complete virion [42,114]. 

There are two possible reasons for this remarkable change in the penton conformation. First, for the 

crystallographic studies a pseudotyped virus was used, with the long and flexible HAdV-5 fiber 

substituted by the short HAdV-35 one. The different penton conformation would then suggest a 

different mode of fiber-penton base binding for serotypes with short, rigid fibers. Another possibility is 

that a transient penton conformation has been selected by the crystallization conditions or the 

constraints imposed by crystal contacts. Indeed, some plasticity in the penton base architecture is likely 

to be involved in its role during infection, from sealing the packed genome to triggering stepwise 

dismantling upon receptor binding. Structural changes in penton base have been reported both upon 

fiber and integrin binding [52,115]. 

3.3. Polypeptide IIIa 

There is one monomer of IIIa per AU of the icosahedral particle, with a total copy number of 60. 

Five IIIa monomers are arranged in a ring underneath each vertex, at the inner capsid surface [4,44,112] 

(Figure 3). Most residues from 7 to 300 (out of 585) could be traced in the cryoEM map, forming three 

domains with predominantly helical fold. The N-terminal domain of polypeptide IIIa keeps each GOS 

together by tethering pairs of peripentonal hexons, and those to penton base. It was therefore termed 

“GOS-glue domain”. This is linked by a long helix to another region (“VIII-binding domain”) 

interacting with one of two independent copies of polypeptide VIII. This interaction tethers the GOS to 

the hexons in the central plate of the facet (GON). The remainder of the polypeptide IIIa chain 

(residues 300 to 585) was not observed, implying that it does not follow icosahedral symmetry. This 

C-terminal region may be interacting with the non-icosahedral core. 

Based on the effect of mutations or extensions of IIIa in capsid assembly [112,116], and by 

comparison with the corresponding minor coat protein in bacteriophage PRD1 [96], two possible roles 

had been proposed for IIIa in the viral cycle: stabilizing the vertex region and the packaged genome 

upon assembly, and signaling for vertex and genome release during uncoating. The cryoEM structure 

of the complete virion supports the role of IIIa in stabilization of the vertices. More recently, it has 

been shown that serotype specific interactions between the N-terminal domain of IIIa and the putative 

scaffold protein L1 52–55K are required to promote correct genome packaging [117]. 

3.4. Polypeptide VI 

Polypeptide VI is a remarkable, multifunctional protein playing multiple roles throughout 

adenovirus infection (Figure 4). During entry, its N-terminal amphipathic helix alters the curvature of 

the endosomal membrane, so that the virus can escape into the cytosol [118–120]. A ubiquitin ligase 

interacting motif (PPxY) has a role in facilitating trafficking to the nucleus along the microtubular 

network [121]. Moreover, the PPxY motif is also required for VI to act as an activator of the 

adenoviral gene expression [122]. Later on, a nuclear localization signal located at the C-terminus of 
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VI interacts with importin α/β, to promote transport of newly synthesized hexon bound to VI to the 

nucleus [123]. Finally, this same C-terminal peptide is substrate and cofactor of the adenoviral 

protease (AVP), facilitating its action on multiple structural proteins to yield the infectious viral 

particle (see Section 4) [124,125]. 

Figure 4. Functional motifs of polypeptide VI. The adenoviral protease (AVP) cleavage 

sites (scissor symbol) and the position of some residues are indicated below the gray bar 

representing the precursor polypeptide VI polypeptide chain. 

 

Polypeptide VI binds to a loop in the inner cavity of the hexon trimer, and to dsDNA [123,126]. 

These interactions place it inside the capsid, bridging the core to the icosahedral shell. Both cryoEM 

and crystallographic studies find weak, fragmented density within, or close to, the hexon cavity, that 

could correspond to part of polypeptide VI [3,4,44]. However the density quality was not enough to 

assign it to any particular sequence. The copy number of VI, estimated around 360, is too low to have 

one molecule of VI per hexon monomer (copy number 720), and too high to have one VI per hexon 

trimer (copy number 240). Density weakness indicates that the arrangement of VI within the hexon 

cavities of the mature virion does not follow icosahedral symmetry, and is therefore blurred in the 

structural studies where icosahedral symmetry is explicit or implicitly enforced. 

3.5. Polypeptide VIII 

Of all the AdV minor coat proteins, polypeptide VIII is probably the least characterized regarding 

its function. A mutation mapped in the VIII gene has been reported to result in a thermolabile 

phenotype, which would be in agreement with its architectural contribution to the capsid [127]. On the 

other hand, porcine adenovirus type 3 (PAdV-3) polypeptide VIII has been shown to interact with the 

putative packaging motor IVa2, hinting at some kind of role in genome packaging [128]. Locating 

polypeptide VIII in the virion structure was also difficult, and it was only when the cryoEM studies 

reached 10 Å resolution that this minor coat protein could be assigned to certain internal capsid 
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densities [45]. These positions are now confirmed by both the cryoEM and the crystallographic atomic 

structures [3,4]. 

There are two independent monomers of polypeptide VIII in the AU. One of them is wedged 

between the polypeptide IIIa VIII-interacting domain and the hexon bases at the periphery of the GOS, 

cooperating with IIIa to bind each GOS to its five surrounding GONs (Figure 3). The second copy is 

located around the icosahedral 3-fold symmetry axis, contributing with polypeptide IX (see next 

section) to the stabilization of each GON (Figure 5). Although early studies suggested that polypeptide 

VIII was part of the GON, later reports consistently found only hexon and polypeptide IX, indicating 

that the interaction of VIII with hexons may be less stable than that of IX [36,37]. Each independent 

copy of VIII interacts with four hexon trimers, regardless of whether they belong to the GOS or the 

GON. Interestingly, the interactions of VIII with both polypeptide IIIa and hexons occur by β-sheet 

augmentation. That is, the interaction is mediated by a β-strand from polypeptide VIII binding to the 

edge of a β-sheet in the other protein [129]. 

Figure 5. Cementing of the GON. Organization of minor coat proteins VIII and IX in the 

GON. The four copies of IX in one GON are shown in blue, and the three copies of VIII in 

yellow. Only the fragments of IX that could be traced in the atomic resolution cryoEM map 

are depicted. Hexon positions are represented as transparent hexagons to allow simultaneous 

view of IX and VIII. Hexons in one AU are labeled 2 to 4 (hexon 1 is not a part of the 

GON). The view is from outside the capsid. 
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The cryoEM study also shed light into the fate of the different proteolytic maturation products of 

polypeptide VIII. Polypeptide VIII is synthesized in precursor form (pVIII, 227 residues), present in 

assembly intermediates [130,131]. It has three potential cleavage sites by AVP at residues 112, 131 

and 157 [132], but it was not clear which ones were actually cleaved, nor which fragments remained in 

the virion (Figure 6a). While some mass spectrometry studies indicated that both an N- and a C- terminal 

fragment were present in mature virions [133–135], others detected only the N-terminal [136] or the  

C-terminal [130] fragments. In the cryoEM map, practically all residues in the pVIII sequence could be 

traced, except those between Gly110 and Arg159 [4]. This confirms that both larger fragments (2–112 

and 157–227) stay in the virion. Further, they stay together and in an ordered form, presumably 

conserving the fold adopted by the precursor pVIII. Lack of density for the 45 central residues 

indicates that they are either removed, or become disordered upon proteolytic processing. At least 

residues 132 to 157 remain in the virion as a unity, since this peptide has been detected by mass 

spectrometry [134]. In PAdV-3, both the precursor form pVIII, as well as the two largest fragments 

pVIIIN and pVIIIC were observed to interact with packaging protein IVa2 [128].  

3.6. Polypeptide IX 

Polypeptide IX is the only minor coat protein located on the outer part of the AdV capsid. The 

cryoEM atomic structure [4] revealed how polypeptide IX forms a sort of hairnet on the outer side of 

the virion, keeping together the hexon trimers in each GON and binding GONs to GONs across the 

icosahedral edges. The 140 residue polypeptide has an extended and remarkably flexible conformation 

that extends as far as 185 Å, reaching all the way from the GON 3-fold axes to the protruding helical 

bundles at the facet edges (Figures 5 and 6a). The N-terminal domains of three IX monomers join via 

hydrophobic interactions at the icosahedral and local 3-fold axes in the GONs forming the triskelion 

structures that had already been observed in the first difference imaging studies of GONs [38], and 

interacting with hexons via yet another β-strand augmentation. Then the so-called “rope domain” of 

each monomer runs in a different direction towards the facet edges, where the C-terminal α-helix joins 

with the C-terminal helices of another three copies of IX, different from those forming the N-terminal 

triskelion, to create a leucine zipper 4-helix bundle. Remarkably, one of the helices in the bundle 

belongs to a monomer of IX from the neighboring facet, and runs antiparallel to the other three. Thus, 

12 monomers of IX form four triskelions, but only three helical bundles per icosahedral facet. 

Consistent with this intricate interlacing, incorporation of polypeptide IX to the capsid seems to be 

highly cooperative, so that virions either have the whole IX complement or no IX at all [46]. Also, the 

4-helix bundle appears to be disorganized by C-terminal fusion of exogenous peptides or by antibody 

binding; however this does not preclude incorporation of IX to the capsid [47,48]. One of the copies of 

IX in the facet follows a path parallel to the GON copy of VIII in the inner capsid surface. The more 

structured body domain of the VIII copy in the GON is directly below a IX helix bundle; then the neck 

domain of VIII runs parallel to the rope domain of IX, to finish close to the triskelion located at the 

local 3-fold axis (Figure 5). Interestingly, this copy of IX that runs parallel to VIII was better ordered 

than the rest and was the only one allowing tracing of the complete polypeptide chain. 

It was long known that IX was dispensable for assembly but had a capsid stabilizing role, as  

IX-deletion mutants assembled viral particles but presented lower thermostability [137]. The trimeric 
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N-terminal domain of IX is enough to confer capsid thermostability [138]. Its stabilizing role and 

organization in the capsid bring to mind other accessory proteins such as Soc in bacteriophage T4, 

which also trimerizes to form a network of clamps between neighboring capsomers [139]. A difference 

between these proteins is that Soc is incorporated into the capsid in the latest maturation stages [140], 

while AdV polypeptide IX is already present in assembly intermediates (empty or immature virions). 

An additional in vivo biological function for polypeptide IX has recently been proposed [141].  

A IX-deleted virus was observed to efficiently transduce CAR-negative cell lines, have enhanced 

monocyte activation capacity, and change the in vivo distribution in mice. Therefore, IX may play a 

role in modulating the viral tropism and/or interfering with the immune response. 

Indeed, some other properties of IX hint towards a possible role in interaction with the host. Of all 

characterized AdV genera, polypeptide IX is present only in Mastadenovirus, comprising only 

mammalian-infecting species. Other genus-specific polypeptides play a similar architectural role in the 

capsid, such as protein LH3 in the broad host range Atadenovirus genus [50]. Even within the 

Mastadenoviruses, polypeptide IX considerably varies from host to host. In particular, the central 

region defined in the cryoEM structure of HAdV-5 as the rope domain (Figure 6a) is conserved only 

among human and simian AdVs (Figure 6b), while for example canine virus CAdV-1 has a shorter IX 

protein lacking this domain. This results in the helical bundle being located directly on top of the 

triskelions, instead of at a distance at the facet edges like in HAdV [51]. In any case, all IX and IX 

equivalent polypeptides observed in structural studies so far have at least one domain clearly exposed 

on the capsid, in an appropriate location to interact with host partners. This exposed position has made 

it a popular platform for adenoviral vector modification for retargeting, imaging or immunization [142]. 

Figure 6. Polypeptide IX structure and conservation. (a) The extended fold of 

polypeptide IX is shown as a ribbon, with the different domains labeled and depicted in 

different colors. (b) Alignment of representative polypeptide IX sequences for the different 

species in the Mastadenovirus genus. In the bottom line the extent of the N-terminal (N), 

rope (r) and helix bundle (H) domains from the HAdV-5 structure are indicated with letters 

in the same color used for each domain in (a). Notice that the rope domain is conserved 

only in human and simian viruses (sequences within a black rectangle). Sequences were 

retrieved from UniProt [143] and aligned with Clustal [144] and JalView [145]. The  

extra-long PAdV-3 IX sequence is shown truncated for figure clarity. 
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Figure 6. Cont. 

 

 

Finally, a role for IX during viral entry has recently been reported [146]. After escaping from the 

endosome, the partially disrupted virion travels along the microtubule network towards the nuclear 

pore [147], where final disassembly takes place to promote transport of the viral genome into the 

nucleus. A complex set of interactions ensues whereby capsids are anchored to the NPC while 

simultaneously being pulled away by microtubule motor kinesin-1, resulting in capsid dismantling and 

fragment release into the cytosol. Immunoprecipitation assays indicated that polypeptide IX was the 

virion component responsible for interaction with kinesin-1 via its light chain Klc1/2. 

4. Structural Changes Involved in Maturation 

As described above, the structure of AdV in its final, infective forms has been extensively studied. 

However, the structural aspects of the pathway leading to this final form are less well understood. Only 
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recently cryoEM has yielded structural information of some assembly intermediates: namely, the 

immature (also called young) virion [148]. Like many other viruses, AdV needs to undergo a number 

of proteolytic cleavages to become infective. The agent responsible for proteolytic maturation is the 

viral L3 23K protein, or AVP [149]. AVP recognizes (M/I/L)XGX-G and (M/I/L)XGG-X sequence 

motifs to cleave minor capsid proteins IIIa, VI and VIII, as well as core proteins VII, μ, and the 

terminal protein (TP) [132] (Figure 7). Without these cleavages, the immature particle lacks infectivity 

because of its inability to uncoat [150,151]. 

Figure 7. Virion components undergoing proteolytic maturation. Each HAdV-5 

precursor protein is represented as a bar with the polypeptide length in amino acids 

indicated in the center. Cleavage sites are denoted by arrows. There are four potential 

cleavage sites in pTP but they have not been experimentally verified. The prefix “p” 

denotes the unprocessed precursors. 

 

One striking particularity of the adenoviral protease, which differentiates it from all other viral 

proteases described so far, is its use of the viral DNA as a cofactor. Indeed, the AVP enzymatic 

activity is increased 100 fold in the presence of DNA. Another cofactor is the C-terminal peptide of 

precursor polypeptide pVI (pVIC), released upon cleavage by AVP. Together, these cofactors increase 

the protease catalytic rate by several orders of magnitude [124,125,152,153]. It has been proposed that 

AVP uses the dsDNA molecule as a 1-dimensional track to diffuse in the crowded capsid environment 

and reach all its target substrates [153]. 

A HAdV-2 thermosensitive mutant (ts1) is a useful experimental system to investigate the structural 

and functional aspects of maturation [154]. When grown at the non-permissive temperature (39 °C), 

ts1 does not package AVP [155], and produces capsids containing the unprocessed protein precursors. 
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Viral genome packaging is unimpaired, but the virus is not infectious. The ts1 mutation consists of a 

single replacement of Proline 137 by Leucine in the AVP sequence [155]. The phenotype of this classic 

mutant has now been reproduced by genetical engineering in both HAdV-5 and HAdV-2 [156,157]. 

Figure 8. The molecular stitch in immature AdV. (a) Schematics showing four adjacent 

icosahedral facets, with the position for the molecular stitch inside the capsid in red. 

(b) The GOS represented as in Figure 5, with the density for the molecular stitch derived 

from the ts1-WT difference map at 8.9 Å in red. The five peripentonal hexons are shown in 

gray; penton base in blue; polypeptide IIIa in yellow; and the GOS copy of polypeptide 

VIII in tan. View from inside the capsid looking at the 5-fold icosahedral symmetry axis. 

(c) Zoom into the region close to one of the molecular stitches with the structures of IIIa 

and VIII from [4] represented in ribbons. (d) Bars representing the precursor polypeptides 

IIIa and VIII with the cleavage sites indicated (arrows). Polypeptide regions not traced in 

the cryoEM atomic structure are in gray. Untraced regions close to the molecular stitch are 

indicated with the same symbol in (c) and (d). 

 

Two cryoEM studies have analyzed the structural differences between AdV mature and immature 

capsids by comparison of wild type (WT) and ts1 structures obtained at 10 and 8.5 Å resolution [1,2]. 

These studies indicated three main differences between the mature and immature virions. First, in the 

inner capsid surface of ts1 there are extra densities located between the ring of peripentonal hexons 

and those making the GON. The authors called these densities a “molecular stitch”, a structure that 
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would contribute to hold the GOS in place during assembly, but needs to be removed afterwards to 

facilitate vertex release for uncoating [2]. With the data available at the time, this feature was assigned 

to the C-terminal peptide of pIIIa. In the light of the atomic structure published later [4], the identity of 

this “stitch” becomes more clear (Figure 8). Indeed, this feature is in close proximity to two regions 

where polypeptide chains no longer could be traced in the atomic resolution map, either because of 

their absence or because of disorder. These regions are: a short stretch of residues in polypeptide IIIa 

VIII-binding domain (residues 216–225); and the 45 residues between the cleavage sites at residues 

110 and 159 in polypeptide VIII (see Section 3.5). The extra density was only observed close to the 

peripentonal copy of VIII, and not in the second independent copy underneath the GON. Therefore, it 

seems likely that the molecular stitch is a structure formed by the contribution of the central peptides 

of uncleaved pVIII and IIIa, adding an additional element to the complex network of interactions 

holding the capsid together. 

The second difference observed was another extra density located inside all hexon cavities in the ts1 

structure [1,2]. Weak density has been observed at this location in all sub-nanometer resolution 

structural studies of the mature particle, and has been attributed to polypeptide VI [3,4,44] (Section 3.5). 

Stronger density in 3DEM maps of ts1 therefore indicates that when the precursor form pVI is present, 

the interaction with hexon is different, resulting in a more uniform occupancy or ordering of the part of 

VI inserted within the internal hexon cavity. This interaction change relates to the different functions 

of VI during the viral cycle: a stronger bond to hexon would be required for the transport function in 

assembly, while a looser interaction would facilitate release of VI from the capsid in the endosome. 

Finally, the third difference observed between mature and immature viruses concerned the core 

organization. This is remarkable in itself, due to the scarce data available on the disposition of DNA 

and accompanying proteins within the virion, and because it confers the core architecture a role in 

infectivity. Although some details differed, both cryoEM studies indicated that the core undergoes a 

transition from a more ordered to a more disorganized structure during maturation [1,2]. Disrupted ts1 

virions released compact, spherical cores, hinting at an extra stabilization of the structure. This 

suggests that precursor proteins pVII and pµ have a much stronger dsDNA condensing activity than 

their mature versions. The immature core exhibits increased thermostability, and unravels forming a  

12 nm thick nucleoprotein filament that exits the capsid trough a single vertex, bringing to mind the 

unidirectional genome packaging and possible existence of a singular vertex [2,28,158]. 

5. Remaining Questions 

AdV has long been a subject of interest for structural biology, both because of its intrinsic 

biological relevance and because of the challenges it poses. Work by many researchers culminated in 

2010 with the resolution of the atomic structure of the virion by cryoEM and crystallography. 

However, plenty of questions are still open to understand the structural determinants of the AdV 

infectious cycle. A large part of the success in structural studies comes from taking advantage of the 

60-fold averaging facilitated by the icosahedral architecture. However, this same advantage may turn 

into a disadvantage, since information on the non-icosahedrally ordered viral components is blurred 

and therefore lost in the averaging process. These components, however, may play critical roles in the 

viral cycle. Such is the case of the viral genome, and in the case of AdV, its large entourage of  
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DNA-bound proteins. There are no structural data for any of the core proteins (polypeptides V, VII, μ), 

as well as for a large part of the polypeptide IIIa chain (residues 301 to 585). It is not known how the 

12 μm long molecule of dsDNA, plus over 25 MDa of protein, fit into the ~0.1 μm diameter capsid. 

Unlike for its structural partner bacteriophage PRD1, AdV 3DEM maps do not show a concentric ring 

pattern inside the capsid [100]. Further, ordering of the nucleoproteic core changes during viral 

maturation [1,2].  

It is still not clear how AdV capsid size is determined. Theoretical studies based on the general 

shape of hexon, and later structural studies, have shown that capsids with different sizes and 

triangulation numbers can be made using the same kind of hexagonal shaped trimeric capsomers [33,88]. 

In bacteriophage PRD1, an extended minor coat protein runs beneath the icosahedral edges and has 

been proposed to act as a tape measure for capsid building [96]. In AdV, both polypeptide VIII and IX 

have been proposed to act as molecular rulers [4,96]. However, VIII does not have the extended 

conformation and edge location expected for such a protein; and capsids with the correct size can be 

assembled in the absence of IX [45,46,137]. Nor are the putative packaging motor IVa2 or the core 

components responsible for size determination, as empty capsids with uniform size are made in the 

absence of IVa2 and/or packaged genome [159]. 

Finally, another area where considerable unknowns remain is the temporal pathway of assembly. Is 

capsid assembly and DNA packaging sequential, or is it a simultaneous process? How would a  

protein-covered dsDNA molecule be translocated through a portal-type packaging complex? How 

about proteolytic maturation? Does it occur after the capsid is full and sealed, or is it concomitant with 

packaging? How could the compact state of the immature core be reconciled with packaging into a 

preformed capsid? It can be expected that the latest advances in structural studies reviewed here form a 

firm basis to build on towards elucidation of these intriguing questions. 
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