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ABSTRACT 1 

The microbiological and metabolic changes of an overweight-associated colonic 2 

microbiota after reducing in vitro the carbohydrate supply and its supplementation with 3 

oligosaccharides derived from lactulose (OsLu) were evaluated using a dynamic 4 

simulator of the gastrointestinal tract. The differentiation and stability of the microbial 5 

communities within each colon compartment were reached after two weeks of feeding 6 

the system with a high energy (HE) medium based on fructose and readily fermentable 7 

starches. The effect of reducing the energy content (low-energy medium, LE) and the 8 

supplementation with OsLu caused minor variations in bacterial counts, except for 9 

Enterobacteriaceace. The LE medium caused an effect on the microbial metabolic 10 

activity that was characterized by an absence of net butyrate production and an increase 11 

in ammonium content. This shift from fermentative to proteolytic metabolism was not 12 

observed when the LE medium was supplemented with OsLu. This oligosaccharide 13 

mixture was mainly metabolized in the proximal colonic compartment. The results 14 

obtained in this study indicate that the substitution in the diet of easily digestible 15 

carbohydrates by OsLu maintains the fermentative functionality of the intestinal 16 

microbiota, allowing the net production of butyric acid with potential beneficial effects 17 

on health, and avoiding a full transition to proteolytic metabolism profiles. 18 

Keywords: prebiotics; OsLu; obesity; diet; gut microbiota; butyric acid 19 
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1. INTRODUCTION 21 

Dietary habits involving high energy intake are related to the development of 22 

overweight and obesity. Monosaccharides and disaccharides such as fructose and sugar 23 

alcohols (sorbitol, lactitol and other polyols), widely used for the formulation of 24 

processed foods or beverages, can reach the large intestine when overfeeding of these 25 

sugars occurs (Payne, Chassard, & Lacroix, 2012). There is epidemiological evidence 26 

that sugar-sweetened beverages increase the risk of overweight and obesity, at all ages, 27 

and that obese individuals are reported to consume significantly more protein and 28 

sugars and lower fibre than normal-weight subjects (Lafontan, Visscher, Farpour-29 

Lambert, & Yumuk, 2015; Requena et al., 2013). Related to it, there is an increased 30 

interest in understanding the possible effects of high energy diets in the intestinal 31 

microbiota. However, the highly personalized human microbiota shows a smaller 32 

dietary influence as the inter-individual variation decreases systematic effects (Wu et 33 

al., 2011; David et al., 2014). Salonen et al. (2014) described that studies from 14 obese 34 

males consuming fully controlled diets supplemented with resistant starch or non-starch 35 

polysaccharides and a weight-loss diet revealed that the diet explained around 10% of 36 

the total variance in microbiota composition, which was substantially less than the inter-37 

individual variance. All these studies have noted strong individuality of the responses, 38 

the extent of which appears to depend on the initial microbiota composition (Korpela et 39 

al., 2014). The fact that the broad phylum level changes between Bacteroidetes and 40 

Firmicutes have not been found consistently (Ley, 2010; Ravussin et al., 2012) may 41 

indicate that relevant changes associated to diet-induced obesity could involve lower 42 

taxonomic levels within these phyla (Cox & Blaser, 2013).  43 
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In view of the fact that prebiotics are well-recognized to influence the gut 44 

microbiota composition, they could be consumed as part of a weight management diet. 45 

Genetically obese mice and diet-induced obese mice and rats (Alligier et al., 2014; 46 

Everard et al., 2011; Pyra, Saha, & Reimer, 2012), as well as overweight and obese 47 

adults (Parnell & Reimer, 2009) have all been reported to exhibit reduced fat mass 48 

following consumption of prebiotics. Indeed, subjects consuming diets rich in fructo-49 

oligosacharides (FOS) and galacto-oligosacharides (GOS) show lower risk of 50 

overweight (Pérez-Cornago et al., 2015). Sarbini, Kolida, Deaville, Gibson, and Rastall 51 

(2014) described the potential of a novel dextran oligosaccharide for obesity 52 

management through in vitro experimentation. The degree of branching of the 53 

compound identified it as a slower-fermenting nutrient that was considered to be 54 

advantageous for obese individuals, as energy would be made available more gradually. 55 

Recently, the enzymatic synthesis of oligosaccharides derived from lactulose (OsLu) 56 

has been aimed for the production of a group of more slowly fermenting prebiotics 57 

(Cardelle-Cobas, Martínez-Villaluenga, Villamiel, Olano, & Corzo, 2008). In addition, 58 

the compounds have demonstrated to be selectively fermented by bifidobacteria and 59 

lactobacilli and to increase the concentration of short chain fatty acids (Cardelle-Cobas 60 

et al., 2012). 61 

In this study we have used the dynamic simulator of the gastrointestinal tract 62 

described by Barroso, Cueva, Peláez, Martínez-Cuesta, and Requena (2015). The model 63 

simulates the gastric and small intestine digestion and is equipped with three-stage 64 

continuous reactors for reproducing the colon region-specific microbiota and its 65 

metabolism. The stabilization period in this study has been adapted to simulate an 66 

obese-associated microbiota by using a high energy-content medium. Changes in 67 
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microbiological and metabolic characteristics were assessed after lowering the energy 68 

content and the supplementation with OsLu used as a potential prebiotic.  69 

2. MATERIALS AND METHODS 70 

2.1. Dynamic simulator of the gastrointestinal tract  71 

The dynamic gastrointestinal simulator SIMGI was used in the operating mode to work 72 

with the units simulating the small intestine (SI) and the ascending (AC), transverse 73 

(TC) and descending colon (DC) regions (Barroso et al., 2015; Fig. S1). Therefore, the 74 

three colon reactors were filled and pre-conditioned with the nutritive medium that feed 75 

the system during the stabilization period. In this case, the setup was made to recreate 76 

an obese-associated microbiota. For this purpose, a starting high energy (HE) medium 77 

was used as described by Payne, Chassard, Banz, and Lacroix (2012), which was 78 

characterized by a high content of high-glycaemic index carbohydrates (digestible 79 

starch) and simple carbohydrates (fructose). The HE medium contained arabinogalactan 80 

(1 g/L), pectin from apple (2 g/L), xylan (1 g/L), potato starch (6 g/L), maize starch (4 81 

g/L), fructose (6 g/L), glucose (0.4 g/L), yeast extract (3 g/L), peptone (1 g/L), mucin (4 82 

g/L) and L-cysteine (0.5 g/L); that is 45% more fermentable carbohydrates than the 83 

standard nutritive medium (Barroso et al., 2015) to create the HE medium. The AC, TC 84 

and DC units were inoculated with 20 mL of a fresh 20% (w/v) faecal sample from an 85 

overweight volunteer, homogenized in anaerobic conditions with sodium phosphate 86 

buffer (0.1 M, pH 7.0), containing 1 g/L sodium thioglycolate as reducing agent, as 87 

described by De Boever, Deplancke, and Verstraete (2000). The development and 88 

stabilization of the microbial community until steady-state conditions in the three colon 89 

units was approached by feeding the small intestine with nutritive medium (75 mL, pH 90 
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2) mixed with pancreatic juice (40 mL of a solution of 12 g/L NaHCO3, 6 g/L oxgall 91 

dehydrated fresh bile and 0.9 g/L porcine pancreatine) three times a day during 14 days 92 

(Van den Abbeele et al., 2010). The small intestine digestion was performed during 2 h 93 

at 37 °C and the content of the vessel was automatically transferred to the following 94 

colon compartment (AC) at a flow rate of 5 mL/min, which simultaneously activated 95 

the transit of colonic content between the AC, TC and DC compartments at the same 96 

flow rate. The overall residence time of the colon compartments was 76 h. All the 97 

vessels were maintained under anaerobic conditions by continuously flushing N2. The 98 

stabilization of the microbial community until steady-state conditions was evaluated by 99 

sampling and measuring the production of short chain fatty acids (SCFA) and 100 

ammonium over time (see below). Stability was reached when rates of change of the 101 

parameters measured dropped below 10% for each colon compartment (Barroso et al., 102 

2015). 103 

After the two-week stabilization period of the colonic microbiota, the SIMGI 104 

was subjected to a 1-week experiment consisting in removing the maize starch and 105 

fructose content and reducing the potato starch content to 1.5 g/L (low energy medium; 106 

LE) and adding 10 g/L of an oligosaccharide mixture derived from lactulose (OsLu), 107 

obtained such as it will be described below. Finally, a 1-week wash-out period was 108 

included at the end of the experiment by feeding the SIMGI daily with the LE medium. 109 

During the whole study, samples were collected daily at regular time points from the 110 

three colon vessels and stored at −20 °C until further analysis. 111 

2.2. Synthesis of oligosaccharides derived from lactulose (OsLu) 112 

OsLu were synthesized following the method described by Anadón et al. (2013) by 113 

using a commercial preparation Duphalac (Abbott Biologicals B.V., Barcelona, Spain), 114 

containing 670 g/L lactulose and the β-galactosidase from Aspergillus oryzae (16 U/mL; 115 
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Sigma-Aldrich, St. Louis, MO, USA). Enzymatic reactions were performed at 50 °C 116 

and pH 6.5 in an orbital shaker at 300 rpm for 24 h. In order to eliminate 117 

monosaccharides, the mixture of oligosaccharides (20%, w/v) was treated with fresh 118 

Saccharomyces cerevisiae (1.5%, w/v) (Levital, Paniberica de Levadura S.A., 119 

Valladolid, Spain) at 30 °C for 48 h in an orbital shaker (300 rpm). Mono- and 120 

disaccharides as well as OsLu were analysed by GC with a flame ionization detector 121 

(GC-FID) as described by Montilla, Van de Lagemaat, Olano, and Del Castillo (2006).  122 

2.3. Microbiological analyses 123 

2.3.1. DNA extraction and purification 124 

Microbial DNA extraction of the samples taken from the AC, TC and DC compartments 125 

was performed as described by Moles et al. (2013). Briefly, samples (1 mL) were 126 

centrifuged (10000×g, 10 min, 4 °C) and the pellet (suspended in 200 mM Tris–HCl pH 127 

7.5, 0.5% SDS, 25 mM EDTA, 250 mM NaCl and 3 M sodium acetate) was incubated 128 

with 20 mg/mL lysozyme and 5 mg/mL lysostaphin (Sigma-Aldrich). Bacterial lysis 129 

was completed by mixing with glass beads. The DNA was extracted with 130 

phenol/chloroform/isoamyl-alcohol, precipitated by adding 0.6 volumes of isopropanol 131 

and finally resuspended in DNase, RNase free water (Sigma-Aldrich). The DNA yield 132 

was measured using a NanoDropH ND-1000 UV spectrophotometer (Nano-Drop 133 

Technologies). 134 

2.3.2. Quantitative PCR (qPCR) 135 

The quantitative microbiological analysis of samples was carried out by qPCR 136 

experiments that were analysed using SYBR green methodology in a ViiA7 Real-Time 137 

PCR System (Life Technologies, Carlsbad, CA, USA). Primers, amplicon size, 138 
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annealing temperature for total bacteria, Bacteroides, Bifidobacterium, 139 

Enterobacteriaceae, Lactobacillus, Prevotella, the specific phylogenetic groups Blautia 140 

coccoides-Eubacterium rectale Cluster XIVa, Ruminococcus Cluster IV and 141 

Clostridium leptum subgroup specific cluster IV have been described previously 142 

(Barroso et al., 2013). DNA from Escherichia coli DH5α, L. plantarum IFPL935, 143 

Bifidobacterium breve 29M2 and Bacteroides fragilis DSM2151 were used for 144 

quantification of total bacteria, Lactobacillus, Bifidobacterium and Bacteroides, 145 

respectively. For the rest of groups analysed, samples were quantified using standards 146 

derived from targeted cloned genes using the pGEM-T cloning vector system kit 147 

(Promega, Madison, WI, USA), as described previously (Barroso et al., 2013). For the 148 

analysis of Akkermansia (primers AM1: CAGCACGTGAAGGTGGGGAC and AM2: 149 

CCTTGCGGTTGGCTTCAGAT), Faecalibacterium (Fprau 07: 150 

CCATGAATTGCCTTCAAAACTGTT and Fprau 02: 151 

GAGCCTCAGCGTCAGTTGGT) and Roseburia (Ros-F1: 152 

GCGGTRCGGCAAGTCTGA and Ros-R1: CCTCCGACACTCTAGTMCGAC), the 153 

samples were quantified using standards derived from clones obtained from the faecal 154 

inoculum, amplified with the mentioned primers and using the conditions described by 155 

Collado, Derrien, Isolauri, De Vos, and Salminen (2007), Sokol et al. (2008), and 156 

Ramirez-Farias et al. (2009), respectively. The PCR amplicons were cloned using the 157 

pGEM-T cloning vector system kit (Promega) as described previously (Barroso et al., 158 

2013). The correctness of the Akkermansia, Roseburia and Faecalibacterium inserts 159 

was confirmed by sequence analysis.   160 

2.3.3. PCR-DGGE 161 
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For evaluation of the microbial community evolution, DNA was amplified using the 162 

universal bacterial primers 968-F and UNI 1401-R described by Nübel et al. (1996). 163 

The primer 968-F was synthesized with a 40-bp GC clamp attached to the 3’ end. Total 164 

volume for PCR reactions was 12.5 µL, composed by 0.75 µL 50 mM MgCl2; 1.25 µL 165 

Taq Buffer 10X; 0.25 µL for each primer (10 µM) and dNTPs (10 mM); 0.125 µL Taq 166 

Polimerase (5 U/µL), about 100 ng of DNA from each sample and filled up to 12.5 µL 167 

with SIGMA water. Amplification protocol was as follows: 94 ºC for 3 min 45 s, 35 168 

cycles of 30 s at 55 ºC (annealing temperature) and 1 min at 72 ºC; and 10 min at 72 ºC. 169 

The PCR products (5 µL) were added in a 0.8% agarose gel and analysed through 170 

DGGE by a DCode system equipment (Bio-Rad Lab., Hercules, CA, USA) using a 9% 171 

polyacrylamide gel and a denaturalizing gradient from 30 to 60% of 7 M urea and 40% 172 

formamide. For electrophoresis assay, it was used TAE buffer 0.5× (20 mM Tris, 10 173 

mM acetic acid and 0.5 mM EDTA), at 70 V and 60 ºC for 16 hours. The DGGE 174 

profiles were digitally normalized by comparison with a home-made standard using 175 

InfoQuest FP software (Bio-Rad). Clustering was performed with Pearson correlation 176 

and the Unweighted Pair Group Method with Arithmetic Mean (UPGMA). 177 

2.4. Microbial metabolism analyses  178 

2.4.1. Short Chain Fatty-Acids (SCFA) determination 179 

Samples from the AC, TC and DC compartments were centrifuged at 13000 ×g for 5 180 

min, the supernatant was filtered and 0.2 µL were injected on a HPLC system (Jasco, 181 

Tokyo, Japan) equipped with a UV-975 detector and automatic injector. SCFA were 182 

separated using a Rezex ROA Organic Acids column (300 × 7.8 mm) (Phenomenex, 183 

Macclesfield, UK) thermostated at 50 °C following the method described by Sanz et al. 184 

(2005). The mobile phase was a linear gradient of 0.005 mM sulphuric acid in HPLC 185 
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grade water, and flow rate was 0.6 mL/min. The elution profile was monitored at 210 186 

nm and peak identification was carried out by comparison between retention times and 187 

standards. For data acquisition and processing it was used a ChromNAV Data System 188 

software (Jasco). Calibration curves of acetic, propionic, butyric, formic and lactic acid 189 

were built up in the range concentration of 1 to 100 mM. 190 

2.4.2. Ammonium determination 191 

Ammonium was determined directly from the supernatant fraction of samples (13000 192 

×g, 15 min, 4 ºC) using an ammonium ion selective electrode (NH500/2; WTW) and 193 

following the manufacturer’s instructions. 194 

2.5. Analysis of carbohydrates 195 

The carbohydrates not metabolized by the microbiota and therefore present in samples 196 

from the AC, TC and DC vessels were determined by GC-FID. Before chromatographic 197 

analysis, samples were centrifuged at 13000×g for 5 min and submitted to a clarification 198 

procedure using Carrez reagents in order to remove interfering compounds (Moreno, 199 

Olano, Santa-María, & Corzo, 1999). The analyses of carbohydrates were performed by 200 

GC-FID (Montilla et al., 2006) as trimethyl silylated oximes (TMSO). Analysis were 201 

carried out in a fused-silica capillary column SGE HT5 (5% phenyl polycarborane-202 

siloxane, 12 m × 0.32 mm × 0.10 µm thickness; SGE Analytical Science, Bellefonte, 203 

USA). The oven temperature was programmed from 150 to 380 °C at a heating rate of 3 204 

°C/min. Injections were made in the split mode (1:10). Data acquisition and integration 205 

were done using the Agilent ChemStations Reb. 4B. 03.01 software (Wilmington, DE, 206 

USA). Quantification of each sugar was performed by internal standard calibration 207 

using phenyl-β-glucoside. Response factors were calculated after the analysis of 208 

standard solutions of fructose, galactose, glucose, lactulose, kestose (trisaccharides) and 209 
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nystose (tetrasaccharides) over the expected concentration range in samples (1-0.01 210 

mg/mL).  211 

3. RESULTS AND DISCUSSION 212 

In addition to non-digestible polysaccharides and resistant starches, which reach the 213 

large intestine undigested due to resistance to human amylase activity (Shimaya et al., 214 

2009), simple sugars and digestible starches, when are consumed abundantly in the diet, 215 

are capable of exceeding intestinal absorption capacity, resulting in high carbohydrate 216 

passage into the large intestine, where they are readily available for gut microbial 217 

fermentation (Payne et al., 2012). Thus, the design of a high energy mediumto simulate 218 

in the SIMGI an obesity-associated microbiota was based on a significant increase in 219 

the content of fructose and readily fermentable starches to the standard nutritious 220 

medium employed to feed the SIMGI colonic reactors (Barroso et al., 2015). This HE 221 

diet design represents the increased prevalence of high consumption of refined 222 

carbohydrates and fructose-saturated sweeteners that is correlating with the global 223 

incidence of obesity (Payne et al., 2012; Charrez, Qiao, & Hebbard. 2015).  224 

3.1. Modulation of bacterial composition 225 

The composition of the microbial community and the bacterial counts reached during 226 

the last three days of each fermentation period (HE, LE-OsLu and LE diets) in the AC, 227 

TC and DC compartments were evaluated by qPCR (Table 1). The end of the 228 

stabilization period with the HE medium was characterized in average by higher counts 229 

in the distal colon regions of Bifidobacterium, Bacteroides, B. coccoides-E. rectale 230 

group, C. leptum, Ruminococcus, Akkermansia, Faecalibacterium, Roseburia and 231 

Enterobacteriacceae. The most noticeable differences in bacterial counts observed in 232 
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the SIMGI when comparing the end of the stabilization period with the HE medium and 233 

the standard medium, which did not contain maize starch and fructose and includes half 234 

content of potato starch (Barroso et al., 2015) were the counts of Bacteroides and, 235 

particularly, Enterobacteriaceae in the three colon compartments that were higher and 236 

lower, respectively, with the HE medium. The increase of Proteobacteria is a common 237 

feature observed in colonic models (Van den Abbeele et al., 2010; Rajilić-Stojanović et 238 

al., 2010). This increase, however, did not take place during the stabilization of the 239 

SIMGI with the HE medium (Table 1). The bacterial genera Akkermansia, 240 

Faecalibacterium and Roseburia were not previously assayed in the SIMGI. The results 241 

indicated a predominance of the three genera in the TC and DC compartments when 242 

compared with the AC. Akkermansia was also found by Van den Abbeele et al. (2010) 243 

in the distal regions of the SHIME. It is important to remark the fact that mucin added 244 

to the nutritive media could be relevant for development of Akkermansia, as these 245 

bacteria depend on mucin as a carbon and nitrogen source (Collado et al., 2007). 246 

Furthermore, A. muciniphila inversely correlates with inflammation and metabolic 247 

disorders associated to obesity (Schneeberger et al., 2015). Faecalibacterium and 248 

Roseburia are butyrate-producing bacteria that have also been described to mitigate 249 

intestinal inflammation (Machiels et al., 2014). B. coccoides-E. rectale were, therefore, 250 

the most representative butyrate producers in the AC compartment (Table 1). The 251 

abundance of this bacterial group in the three colon compartments has also been 252 

described at the end of the stabilization period in the SHIME feed with standard 253 

nutritive medium (Barroso et al., 2014; Van den Abbeele et al., 2010). 254 

After the 15-days stabilization period of the colonic microbiota in the SIMGI 255 

with the HE nutritive medium, a shift in diet was carried out by the suppression in the 256 

medium of simple carbohydrates and the sharp reduction of the content of readily 257 
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fermentable starches (LE medium). The carbohydrate content was replaced with the 258 

oligosaccharide mixture OsLu. Composition of the purified oligosaccharide mixture 259 

contained 76% of sugars, which corresponded to 11% of monosaccharides, 21% 260 

lactulose and 43% of OsLu, and 18% moisture, 5% salts and 1% nitrogen. The feeding 261 

of the SIMGI with OsLu showed no bifidogenic effect when compared with the HE and 262 

LE media. On the other hand, it was observed lower counts of Enterobacteriaceae when 263 

comparing with the feeding with the LE medium (Table 1). Overall, during the feeding 264 

of the SIMGI with the LE-OsLu medium, the highest bacterial counts were recorded for 265 

the TC compartment, including Bifidobacterium, Bacteroides, B. coccoides-E. rectale 266 

group, C. leptum, Faecalibacterium and Roseburia. Lactobacillus was also highly 267 

represented in the AC compartment at the end of the LE-OsLu diet. Most of the 268 

microbial changes observed between the HE and LE-OsLu mediapersisted during the 269 

feeding with the LE medium, except for the increase of Bacteroides and B. coccoides-E. 270 

rectale group (in the AC compartment), and Enterobacteriaceace (in all compartments) 271 

observed at the end of the experimental study with the LE diet (Table 1). However, 272 

except for Enterobacteriaceace, differences in bacterial counts between diets involved 273 

variations generally below 1 log units, indicating that the differences in the amount of 274 

nutrients, including the supply with 10 g/L of the OsLu mixture, were not able to cause 275 

a substantial effect in the bacterial counts such as a relevant shifting between 276 

saccharolytic and proteolytic populations. The prebiotic potential of OsLu, however, 277 

was previously demonstrated through in vitro batch assays using faecal slurries 278 

(Cardelle-Cobas et al., 2012) and in vivo assays using growing rats fed with these 279 

oligosaccharides (Algieri et al., 2014; Hernández-Hernández et al., 2012; Marin-280 

Manzano et al., 2013). The absence of bifidogenic effect during the shift between the 281 

HE and LE-OsLu mediacould be attributed to the high fermentable carbohydrate 282 
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content present in the HE medium which also favoured the growth of these bacteria. As 283 

mentioned above, the microbial effect persisted during feeding with the LE diet. 284 

The qPCR counts were in agreement with the qualitative assessment of bacterial 285 

diversity analysed by PCR-DGGE. The analysis was carried out to compare the 286 

differentiation of microbial communities within each colon compartment and to 287 

qualitatively detect changes to the biodiversity as a function of varied substrate 288 

availability. Fig. 1 shows the microbial community profiles of the AC, TC and DC 289 

compartments at the last day of each intervention period of the SIMGI with the HE 290 

medium followed by the LE medium supplemented with OsLu and finally with only the 291 

LE medium. The results showed that samples from the three colon compartments 292 

clustered together independently of the carbohydrate content of the diets. This feature is 293 

consequence of the characteristics of three-stage fermentation models that allow 294 

reproducing differences from proximal, characterized by acidic pH and carbohydrate-295 

excess conditions, to distal colonic regions showing a carbohydrate-depleted and non-296 

acidic environment (Macfarlane & Macfarlane, 2007).  297 

3.2. Modulation of microbial metabolism  298 

The results of metabolic activity, determined as carbohydrate utilization and production 299 

of SCFA, lactic acid and ammonium, of the microbial community during the last three 300 

days of each fermentation period (HE, LE-OsLu and LE) in the AC, TC and DC 301 

compartments are shown in Fig. 2 and Table 2.  302 

The remaining carbohydrates in effluents from the AC compartment at the end 303 

of the stabilization period with the HE medium and along the feeding period with LE-304 

OsLu and LE media are shown in Fig. 2. Previously, no degradation of oligosaccharides 305 

by pancreatic enzymes in the SI compartment during the daily feeding of the dynamic 306 

simulator with the OsLu mixture was observed (results not shown), supporting the 307 
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indigestible properties of OsLu. Total carbohydrate content was high in the AC 308 

compartment during the feeding with HE and LE-OsLu media and it decreased by 5-6 309 

times with the LE medium (Fig 2). Total carbohydrates content in the TC compartment 310 

was also higher during feeding with HE and LE-OsLu, but values remained around 0.15 311 

mg/mL (results not shown). The level of di- and oligosaccharides increased in the AC 312 

compartment during initial feeding of the simulator with the LE-OsLu mediumand they 313 

decreased thereafter indicating a net degradation of OsLu by the AC microbiota after 314 

two days of diet change adaptation. A great utilization of di- and oligosaccharides by 315 

microorganisms from LE-OsLu diet in the AC compartment was observed and only 316 

small amounts (7-16%) reached the TC. The level of fructose in AC effluents was up to 317 

0.59 mg/mL when HE mediumwas used, indicating its consumption by the intestinal 318 

microbiota as well as the galactose and glucose derived from OsLu hydrolysis during 319 

feeding the LE-OsLu diet (Fig 2). The results of this study were in agreement with those 320 

reported by Macfarlane, Macfarlane and Gibson (1998) during inulin feeding into a 321 

three-stage continuous culture system, since the majority of carbohydrate breakdown 322 

occurred in the vessel simulating the proximal colon. Mäkelainen, Mäkivuokko, 323 

Salminen, Rautonen, and Ouwehand (2007) using a semi-continuous system with four 324 

vessels mimicking the conditions in the human large intestine from proximal to distal 325 

colon, obtained a sustained degradation of polydextrose throughout the gut model and a 326 

rapid xylitol fermentation in the proximal colonic regions.  327 

Regarding formation of microbial metabolites, except for lactic and formic 328 

acids, the SCFA and ammonium concentrations gradually increased from the AC to the 329 

DC compartment because of the accumulation of products in the system, consistent with 330 

operation of three-stage culture reactors without absorption steps (Cinquin, Le Blay, 331 

Fliss, & Lacroix, 2006; Possemiers, Verthe, Uyttendaele, & Verstraete, 2004). Lactic 332 
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and formic acids were only produced in the AC compartment and the latest only with 333 

the HE and LE-OsLu diets. Lactic acid can be further metabolized within the colon and 334 

turned into butyric and propionic acids through cross-feeding by gut bacteria (Duncan, 335 

Louis, & Flint, 2004; Reichardt et al., 2014). Likewise, formic acid is a component in 336 

the mutualistic interaction between fermentative bacteria and syntrophic metabolizers 337 

and has an important role in anaerobic metabolism via interspecies cross-feeding 338 

interactions (Louis, Hold, & Flint, 2014). Bifidobacterium has been described to 339 

produce formic acid from several carbohydrate sources, whereas some Lactobacillus 340 

species undergo a metabolic shift towards acetate and formate production, at the 341 

expense of lactate production, when growing on non-digestible oligosaccharides 342 

(Tabasco, Fontecha, Fernández de Palencia, Peláez, & Requena, 2014). The metabolic 343 

shift has been associated with more ATP production, resulting in a more efficient use of 344 

the available energy source (Van der Meulen, Makras, Verbrugghe, Adriany, & De 345 

Vuyst, 2004). 346 

The effect of reducing the carbohydrate loading on microbial metabolic activity 347 

was characterized by an overall 2-fold decrease in the average content of total SCFA, 348 

mainly associated with acetic acid changes, of the three colon compartments with the 349 

LE diet compared to the HE intake period. Within the SCFA analyzed, propionic acid 350 

production was the least affected by nutrient load, whereas butyric acid production was 351 

practically stopped with the LE diet (Table 2). These results point toward the microbial 352 

utilization of the butyric acid via methanogenesis or sulphate reduction (Worm et al., 353 

2014). The absence of net butyric acid production could be restored by supplementing 354 

the LE medium with OsLu. Additionally, the shift from high to low energy medium 355 

caused a 1.5-fold increase in the ammonium content of the TC compartment and a 356 

remarkable 5.5-fold increase in the proximal colon compartment (AC). This shift from 357 
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fermentative to proteolytic metabolism in the AC was not observed when the LE 358 

medium was supplemented with OsLu (Table 2; Fig. S1). The SFCA and ammonium 359 

results could be compared with in vivo data from obese subjects, where a significant 360 

decrease of SCFA, particularly acetic and butyric acids, and an increase of proteolytic 361 

products were observed when the individuals consumed diets high in protein and 362 

reduced in total carbohydrates (Russell et al., 2011). There is evidence from both 363 

humans and animal models that dietary supplementation with non-digestible 364 

carbohydrates can decrease protein fermentation in the large intestine, which concurs 365 

with a decrease in the genotoxicity of faecal water (Windey, De Preter, & Verbeke, 366 

2012). Likewise, Algieri et al. (2014) observed in colitic rats a significant reduction in 367 

the production of SCFA as a consequence of the colonic inflammatory process that was 368 

restored by feeding the rats with lactulose and OsLu.  369 

4. Conclusions 370 

In conclusion, the results obtained in this study indicate that except for 371 

Enterobacteriaceae, characterized by becoming great competitors in carbohydrate 372 

scarcity, stability of the microbial populations was the dominant pattern. Community 373 

structure clusters were predominately a function of the specific-region colonic 374 

conditions, suggesting that community structures are relatively robust with little 375 

substantial change during shifts in nutrient supply. Furthermore, metagenomic studies 376 

are consistently showing that inter-individual differences in gut microbiota in terms of 377 

microbial composition can be over 90% (Dorrestein, Mazmanian, & Knight R, 2014), 378 

but that there is an assembly of functional communities that share similarities in their 379 

metabolic pathways (Shafquat, Joice, Simmons, & Huttenhower, 2014). It implies that 380 

distinct microbial species may be responsible for specific functions and adapt 381 

themselves to environment and diet affecting human homeostasis and health status. The 382 
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results obtained in this study indicate that substitution of easily digestible carbohydrates 383 

by OsLu allows the development of a fermentative functionality, maintaining the net 384 

production of butyric acid with potential beneficial effects on health, and avoiding a full 385 

transition to proteolytic metabolism profiles. 386 
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 609 

Legend to figures 610 

 611 

Fig. 1. Clustering tree of total bacteria DGGE profiles of samples from the ascending 612 

(CA; green), transverse (CT; orange) and descending (CD; fuchsia) colon compartments 613 

at the last 1-2 days of feeding the dynamic simulator of the gastrointestinal tract 614 

(SIMGI) with the HE (red; days 1-14), LE (violet; days 15-21) and LE with OsLu (blue; 615 

days 22-28)) media. 616 

 617 

Figure 2.- Evolution of carbohydrate content (mg/mL) in the ascending colon (AC) 618 

compartment during feeding of the dynamic simulator of the gastrointestinal tract 619 

(SIMGI) with the high energy (HE; days 1-14) medium and the low energy (LE) 620 

medium with (days 15-21) and without (days 22-28) oligosaccharides derived from 621 

lactulose (OsLu). Oligosaccharides: carbohydrates with degree of polymerization ≥ 3. 622 

623 
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Table 1. Mean ± SD of quantitative PCR counts (log copy number/ml) for the different 624 
microbial groups analysed in the ascending (AC), transverse (TC) and descending colon 625 
(DC) of the SIMGI at the end of the stabilization period with the high energy (HE; days 626 
1-14) medium and at the end of the feeding with the low energy (LE) medium with 627 
(days 15-21) and without (days 22-28) oligosaccharides derived from lactulose (OsLu). 628 

Bacterial group Compartment          Medium 

  HE LE OsLu LE 

Total bacteria AC 8.83 ± 0.29 8.92 ± 0.42 9.11 ± 0.23 
 TC 9.14 ± 0.23 9.19 ± 0.66 9.45 ± 0.17 
 DC 9.42 ± 0.18 8.87 ± 0.12 9.26 ± 0.10 

Lactobacillus AC 7.36 ± 0.32 7.74 ± 0.38 7.74 ± 0.46 
 TC 7.41 ± 0.08 7.45 ± 0.18 7.49 ± 0.23 
 DC 7.20 ± 0.13 6.83 ± 0.11 6.94 ± 0.33 

Bifidobacterium AC 6.45 ± 1.04 5.22 ± 0.04 5.81 ± 1.58 
 TC 7.30 ± 0.52 7.62 ± 0.48 7.87 ± 0.25 
 DC 7.45 ± 0.16 7.46 ± 0.25 7.92 ± 0.14 

Bacteroides AC 8.66 ± 0.38 9.00 ± 0.33 9.52 ± 0.16 
 TC 9.29 ± 0.13 9.51 ± 0.08 9.51 ± 0.10 
 DC 9.32 ± 0.22 8.98 ± 0.27 9.24 ± 0.12 

Blautia coccoides- AC 7.38 ± 1.00 7.19 ± 0.39 8.05 ± 0.41 
Eubacterium rectale TC 8.50 ± 0.14 8.46 ± 0.11 8.56 ± 0.07 
 DC 8.69 ± 0.18 7.97 ± 0.42 8.16 ± 0.18 

Clostridium leptum AC 2.70 ± 0.77 2.11 ± 0.28 2.28 ± 0.10 
 TC 7.24 ± 0.16 6.92 ± 0.10 6.96 ± 0.09 
 DC 7.00 ± 0.20 6.48 ± 0.24 6.69 ± 0.03 

Ruminococcus AC 1.73 ± 1.23 3.43 ± 1.78 1.94 ± 0.94 
 TC 4.67 ± 0.08 4.85 ± 0.06 5.53 ± 0.36 
 DC 5.51 ± 0.01 5.47 ± 0.20 5.89 ± 0.13 

Prevotella AC 4.16 ± 0.61 4.54 ± 1.20 5.18 ± 0.05 
 TC 4.62 ± 0.46 4.96 ± 0.62 5.56 ± 0.28 
 DC 4.72 ± 0.21 4.46 ± 0.09 4.56 ± 0.01 

Akkermansia AC 2.20 ± 0.79 2.80 ± 0.16 3.18 ± 0.26 
 TC 3.57 ± 0.05 3.52 ± 0.55 3.39 ± 0.41 
 DC 3.46 ± 0.04 3.89 ± 0.57 3.91 ± 0.13 

Roseburia AC 2.68 ± 0.17 2.04 ± 0.14 2.63 ± 0.42 
 TC 8.22 ± 0.05 7.89 ± 0.36 7.84 ± 0.21 
 DC 7.32 ± 0.03 7.23 ± 0.77 7.58 ± 0.28 

Faecalibacterium AC n.d. n.d n.d. 
 TC 6.23 ± 0.01 5.48 ± 0.76 6.06 ± 0.33 
 DC 6.14 ± 0.87 5.11 ± 0.28 6.05 ± 0.12 

Enterobacteriaceae AC 2.84 ± 0.17 5.56 ± 0.28 7.43 ± 0.13 
 TC 6.18 ± 0.03 7.56 ± 0.08 7.75 ± 0.16 
 DC 5.95 ± 0.19 6.72 ± 0.23 7.88 ± 0.16 

nd: not detected  629 

630 
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Table 2. Changes in concentration (mM; mean ± SD) of SCFA and ammonium in the 631 
ascending (AC), transverse (TC) and descending colon (DC) of the SIMGI at the end of 632 
the stabilization period with the high energy (HE) medium (days 1-14) and at the end of 633 
the feeding with the low energy (LE) medium with (days 15-21) and without (days 22-634 
28) oligosaccharides derived from lactulose (OsLu). 635 

Compound  HE LE OsLu LE 

Total SCFA AC 88.24 ± 2.53 59.17 ± 12.36 36.54 ± 0.74 
 TC 110.04± 14.50 94.30± 16.12 50.89± 1.36 
 DC 120.35 ± 2.50 86.88 ± 0.21 54.80 ± 0.21 

Acetic acid AC 45.46 ± 3.79 33.91 ± 2.08 22.81 ± 0.86 
 TC 57.63 ± 6.27 46.43 ± 7.55 30.84 ± 0.33 
 DC 62.84 ± 1.61 44.03 ± 0.44 30.70 ± 0.47 

Propionic acid AC 16.36 ± 0.30 17.27 ± 4.84 11.06 ± 0.14 
 TC 28.05 ± 4.64 25.60 ± 4.94 16.69 ± 1.16 
 DC 32.17 ± 1.32 26.48 ± 0.55 20.55 ± 0.34 

Butyric acid AC 21.39 ± 0.43 13.58 ± 4.29 0.05 ± 0.08 
 TC 27.53 ± 4.24 22.28 ± 3.63 3.36 ± 0.13 
 DC 25.34 ± 0.43 16.38 ± 0.77 3.34 ± 0.62 

Lactic acid AC 3.85 ± 0.00 2.53 ± 0.00 2.62 ± 0.05 
 TC nd nd nd 
 DC nd nd nd 

Formic acid AC 3.12 ± 1.32 2.90 ± 0.00 nd 
 TC nd nd nd 
 DC nd nd nd 

Ammonium AC 4.05± 1.19 7.07± 3.09 22.39± 4.97 
 TC 34.80± 15.79 50.61± 6.44 50.44± 6.99 
 DC 55.68± 19.23 67.50± 5.15 63.10± 2.47 
nd: not detected 636 
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SUPPLEMENTARY MATERIAL 652 
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 662 

 663 

Fig. S1. Schematic diagram of the dynamic simulator of the intestinal microbiota, 664 
including the small intestine and the ascending (AC), transverse (TC) and descending 665 
colon (DC) compartments. The setup included the feeding with a starting high energy 666 
(HE) medium for 14 days, a 1-week experiment with a low energy (LE) medium with 667 
the oligosaccharide mixture derived from lactulose (OsLu) and a 1-week wash-out 668 
period with the LE medium. 669 
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 672 
Fig. S2. Changes in concentration (mM) of butyric acid (A) and ammonium (B) in the 673 
ascending colon of the SIMGI at the end of the stabilization period with the high energy 674 
(HE; days 1-14) medium and during the feeding with the low energy (LE) medium with 675 
(days 15-21) and without (days 22-28) oligosaccharides derived from lactulose (OsLu). 676 
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