Origin of the multiferroic-like properties of \(\text{Er}_2\text{CoMnO}_6 \)

J. Blasco\(^1\), G. Subías\(^1\), J. García\(^1\), J. Stankiewicz\(^2\), J. A. Rodríguez-Velamazán\(^1,2\), C. Ritter\(^3\) and J. L. García-Muñoz\(^3\)

\(^1\)Instituto de Ciencia de Materiales de Aragón, Departamento de Física de la Materia Condensada, CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
\(^2\)Institut de Ciència de Materials de Barcelona, CSIC, Campus. univ. de Bellaterra, E-08193 Bellaterra, Spain
\(^3\)Instituto Laue-Langevin, BP 156, 38042 Grenoble Cedex 9, France

*e-mail: jbc@unizar.es

Experimental section.
- \(\text{Er}_2\text{CoMnO}_6 \) was prepared by solid state reaction of \(\text{Er}_2\text{O}_3 \), \(\text{Mn}_2\text{O}_3 \) and \(\text{CoO} \) in air at 1250°C followed by a very slow cooling (0.1°C/min) in order to improve the \(\text{CoMnO}_6 \) ordering. \(\text{X}-\text{ray} \) patterns agree with a single phase.
- Neutron powder diffraction measurements were performed at the ILL, using the high intensity D1B (\(\theta=2.52 \AA \)) and high resolution D2B (\(\theta=1.59 \AA \)) diffractometers between 1.75 and 295 K.
- Reversal of the patterns were carried out using the Fullprof program. The refinement at 295 K (paramagnetic phase) agrees with a double perovskite structure with a monoclinic distortion (\(\Pi_2/\text{m} \) space group). The antiferroelectric phases were achieved by applying a sinusoidal field at 1.5K.

Results.
- The dielectric constant \(\varepsilon' \) (a) exhibits a step-like increase from a low-temperature value of \(\sim 10^5 \) to a high value of \(\sim 10^9 \) at 300 K.
- The dielectric loss \(\tan \delta \) (b) shows a peak at 2 K that can be attributed to a ferroelectric-like transition.
- Neutron inelastic scattering data were performed on the sample at \(10 \) and \(10^2 \) Hz. The \(\Delta Q \) plots show peaks for the magnetic structure.
- The dielectric permittivity \(\varepsilon' \) (c) exhibits a step-like increase from a low-temperature value of \(\sim 10^5 \) to a high value of \(\sim 10^9 \) at 300 K. The dielectric loss \(\tan \delta \) (d) shows a peak at 2 K that can be attributed to a ferroelectric-like transition.

Conclusions.
- The magnetic anisotropy comes from the ferromagnetic ordering of \(\text{CoMnO}_6 \) sublattice due to the ferromagnetic Co\(^{2+} \)-Mn\(^{3+} \) superexchange interaction.
- The magnetic anisotropy comes from the ferromagnetic ordering of \(\text{CoMnO}_6 \) sublattice due to the ferromagnetic Co\(^{2+} \)-Mn\(^{3+} \) superexchange interaction.
- The magnetic anisotropy comes from the ferromagnetic ordering of \(\text{CoMnO}_6 \) sublattice due to the ferromagnetic Co\(^{2+} \)-Mn\(^{3+} \) superexchange interaction.

References: