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The magnetic behavior of a cylindrical paramagnet/superconductor heterostructure has been

studied by numerical simulations. Relying on the variational statement of the critical state model,

our results show that magnetic invisibility is compatible with the partial penetration regime in the

superconductor. This result accomplishes previous analytic studies that proved a possible perfect

undetectability for the full penetration of magnetic flux. For a given geometry, invisibility may be

realized only at a certain magnitude of the applied field. Such value decreases with increasing

permeability of the magnetic sheath and eventually collapses to zero. This establishes a condition

for obtaining realizable invisibility that extends previous expectations relying either on the full

penetration ansatz or on perfect diamagnetism. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961672]

Interplay of physical properties of superconductors (SCs)

and ferromagnets (FMs) in smart SC/FM heterostructures

provides a range of unusual properties of these metamateri-

als.1 At the macroscopic level, combining the diamagnetic

properties of SCs and magnetization of paramagnets in

bilayer and multilayer structures allows for such phenomena

as magnetic cloaking of static2,3 and low frequency4,5 mag-

netic fields. Over and above, similar structures provide trans-

portation of magnetic flux with low leakage (magnetic

hose)6,7 and great reduction of ac losses when exposed to an

external ac field.8 While demonstrating a theoretical plausi-

bility of such devices supported by a proof-of-principle

experiments,3–7 the model description of the superconducting

component still remains strongly simplified, using typically

the approximation of the ideal diamagnet with the permeabil-

ity l¼ 0. This prevents completely the penetration of mag-

netic flux into the superconducting constituents and strongly

affects the expected device performance. Account of mag-

netic field penetration within the London theory9 and in the

full critical state10 covers, respectively, the limiting cases of

very weak and very strong magnetic fields leaving open a

wide intermediate range of fields in which the superconductor

is partially penetrated by magnetic flux. This much more

complicate task can only be resolved by a numerical treat-

ment which presents a focus of the current work.

We consider the response of a long superconducting

wire (circular cross section), covered by a concentric layer of

paramagnetic material. The system is exposed to a uniform

external magnetic field H0 perpendicular to its axis (z-axis

in what follows). This structure is simpler than cloaking

arrangements studied in Refs. 2–5; however, it allows a vivid

demonstration of the impact of partial penetration of mag-

netic flux on cloaking conditions.

The behavior of the heterostructure is dealt with as fol-

lows. The superconductor is a hard type-II material, modeled

through the critical state ansatz, i.e., by means of the critical

current density parameter Jc as introduced by Bean.11 Since

in the considered geometry, a simple quasi-one-dimensional

treatment is not possible, a numerical procedure is used to

resolve the quasistationary response to the external excita-

tion. As for the magnetic material, which is assumed to be a

linear medium, continuity of the tangential component of the

magnetic field intensity ~H ¼ ~B=l is invoked at the interfa-

ces. Both material properties are introduced in a self-

consistent algorithm.

Attention has been paid to the so-called full penetration
and cloaking fields of the system. They are defined, respec-

tively, by the values for which the superconducting magnetic

moment either saturates (H0 ¼Hfp ) msc ¼ mmax
sc ) or

exactly cancels the response of the magnet (H0 ¼Hcloak

) msc þ mmag ¼ 0). In the case considered here (applied

uniform field), when the responses of the superconductor and

the magnet are both dipolar, this condition means full mag-

netic invisibility because all higher magnetic moments equal

zero.

The configuration of the composite is described in terms

of current density functions Jscð~r; tÞ and Jmagð~r; tÞ. They cor-

respond, respectively, to the superconductor’s macroscopic

current density and to the conventional effective magnetiza-
tion current density for the case of the magnet. By symmetry,

both vectors are directed along the axis of the wires and con-

stant along such direction, i.e., ~J ¼ ð0; 0; Jzðx; yÞÞ.
From the technical point of view, a finite element formu-

lation has been considered. We start with a suitable discreti-

zation of the circular multiple domain of the problem, i.e.,

f~ri ¼ ðxi; yiÞ i ¼ 1…NGg. This will be the support of the NG-

dimensional vector quantities formed by the current density

values at the grid points. They will be named after Dirac’s

“bra” and “ket” notation, with hjj the transpose of jji. In
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practice, the superconducting and magnetic sub-domains

will be treated separately, i.e., jji � jjsci� jjmagi.
Notice that, whereas the physical counterpart of jjsci is a

set of filaments that discretize the cross section of the super-

conductor, jjmagi will be better implemented as a polygonal

approximation in terms of an array of thin strips along the

magnet’s boundaries. In fact, owing to the linearity of the

magnetic material, effective current densities are described

by surface layers at the interfaces. In brief, ~B ¼ l ~H )
r� ~M ¼ 0 and then Jmagð~r Þ takes the form of surface cur-

rent densities given by ~M � n̂12 at the discontinuities of

magnetization, i.e., at the boundaries of the sheath. More

specifically, for the case of our magnetic layer, a natural

decomposition is jjmagi � jjini� jjouti, standing for the con-

catenation of surface current density elements at the inner
and outer boundaries.

Several strategies for modeling the response of the het-

erostructure were investigated. A numerically stable algo-

rithm that updates the system, subject to some definite

external process (H0ðtnÞ !H0ðtnþ1Þ), was found to be the

double step iterative flow chart in (1)

jjðnÞsc i and jjðnÞmagi are given; then :

jjðnÞsc i
H
ðnþ1Þ
0

�!boundary condition jjðnþ1Þ
mag i

jjðnþ1Þ
mag i

H
ðnþ1Þ
0

�!variational principle jjðnþ1Þ
sc i

and so on… (1)

Here, jjðnÞsc i means the current density vector at the grid

points of the superconductor, and time step n (analogously

for jjðnÞmagi in the magnet). Each step is resolved as follows.

As shown in the previous work,13 the updated configura-

tion of supercurrents jjðnþ1Þ
sc i may be obtained by minimizing

the following expression of the free energy:

F½jj nþ1ð Þ
sc i�¼1

2
hj nþ1ð Þ

sc jMjj nþ1ð Þ
sc i�hj nð Þ

sc jMjj nþ1ð Þ
sc i

þhA nþ1ð Þ
0 �A

nð Þ
0 jj nþ1ð Þ

sc iþhj nþ1ð Þ
mag � j nð Þ

magjPjj nþ1ð Þ
sc i:

(2)

In this equation, M represents the Nsc � Nsc mutual induc-

tance matrix, between the superconducting elements, and

hAðnþ1Þ
0 �A

ðnÞ
0 j is the 1� Nsc row vector, formed by the

increment of applied vector potential (z-component) at the

grid points of the superconductor (r� ~A0 ¼ l0
~H0).

Finally, P is the Nmag � Nsc mutual inductance matrix that

couples the current density elements within the magnet and

the superconductor. We have derived

Mij ¼
l0

2p
ln

a2

x2
ij þ y2

ij

; Mii ¼
l0

8p
; (3)

Pij¼
l0

8p
xij�Lð Þln xij�Lð Þ2þy2

ij

h i
þ xijþLð Þ

n
� ln xijþLð Þ2þy2

ij

h i
�2yij atan

L� xij

yij
þatan

Lþ xij

yij

� ��
:

(4)

Here, the following notation has been used: xij � xi � xj;
yij � yi � yj give the relative position between elements i
and j; a (gauge for our length units) is the radius of a finite

element wire in the superconductor and L the half-width of a

finite-element platelet at the magnet’s surface. Implicit to

our approximation is the fact that the current density is uni-

form within the elements. Also of mention is that a global

constant, related to cross dimension of the infinite wires,

occurs to be irrelevant in the variational statement.

As said above, jjmagi may be obtained by recalling tan-

gential continuity of the magnetic field vector at the interfa-

ces, i.e.

Bþt =l
þ ¼ B�t =l

� ; (5)

with þ;� used to indicate the position of two neighboring

points, one on each side of the given boundary.14

The above expression may be easily transformed into a

linear algebraic system with jjmagi the vector of unknowns.

Taking advantage of linearity and Biot-Savart’s law for the

magnetic sources, one gets

ðGþmag�lrG
�
magÞjj

ðnþ1Þ
mag i¼ðlr�1ÞjHðnþ1Þ

0m iþðlr�1ÞGscjjðnÞsc i:
(6)

Here, G’s stand for the geometry dependent matrices that

provide the tangential magnetic field values created by the

current densities at the grid points of interest (here, the inter-

faces). On the other hand, H0m stands for the tangential

component of applied magnetic field. The actual expressions

used to generate the matrix elements Gmag rely on the follow-

ing formulas for the magnetic field created by a thin strip (of

width L, spanning along the z-axis) that carries a uniform

surface current density jsurf

B0x x0; y0
� �

¼ �l0jsurf

2p
atan

x0 � L=2

y0
� atan

x0 þ L=2

y0

� �

B0y x0; y0
� �

¼ l0jsurf

4p
ln

x0 � L=2ð Þ2 þ y02

x0 þ L=2ð Þ2 þ y02
: (7)

Here, local coordinates ðx0; y0Þ relative to the center of each

elementary strip are used.

As regards the superconducting contribution, the matrix

Gsc is evaluated on the basis of the infinite wire approxima-

tion, i.e., from

~Bsc x0; y0
� �

¼ l0Isc

2p
�y0; x0ð Þ

x02 þ y02
; (8)

with Isc the superconducting current along the elementary

wire centered at the source point (xj, yj), and again ðx0; y0Þ
standing for relative field-source coordinates. Based upon (7)

and (8), Eq. (6) is specified by introducing tangential projec-

tions of the fields at each point of interest Gij ¼ ~Bðxij; yijÞ�
~sðxi; yiÞ. Thus, defined numerical model is ready to investi-

gate the magnetic behavior of the heterostructure. To start

with, we compare our numerical results to the analytical cal-

culations in previous work. As figures of merit, we choose

the values of the full penetration and cloaking fields obtained

from Ref. 10
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Hfp ¼
2JcR1

p
1þ lr � 1ð Þ 2lr � 1ð Þ 1� R2

1=R2
2

� �
6lr

" #
; (9)

Hcloak ¼
8JcR1

3p
lr

l2
r � 1

R2
1

R2
2 � R2

1

; (10)

with lr the relative permeability of the sheath and R1 and R2

the corresponding inner and outer radii.

Fig. 1 shows that the numerical results check very well

against analytics when comparable. Dimensionless units

(h �H=JcR1 and m �M=JcR2
1) have been used. Concerning

the determination of Hfp, we applied a differential criterion

for dictating that the superconductor has reached saturation.

Notice that Eq. (10) gives Hcloak provided that the supercon-

ductor is fully penetrated. For the case depicted, it can be

shown10 that in such regime, cloaking may occur within the

range 1 < lr < 1:61. Recall, however, that the equation may

be safely used for lr�2.

Fig. 2 demonstrates the invisibility property for our sys-

tem under partial and full penetration conditions. As indi-

cated in Fig. 1, the cloaking condition is realized by the full

magnetic moment of the system going to zero. In our long

sample geometry, this is accompanied by the absence of

magnetic moments of order higher than the dipole term.

From the physical point of view, cloaking may be conve-

niently visualized by the magnetic contribution of the hetero-

structure. Fig. 3 reveals the property of the system “closing

on itself” and thus leaving the applied field unperturbed in

the surrounding space. Another aspect that has been consid-

ered here is the behavior of Hcloak as lr increases for a given

geometry. According to Fig. 1, one could expect that Hcloak

goes to zero at some finite value, say, l�r . Such value is the

highest permeability for which magnetic cloaking may

occur. This is clearly observed in Fig. 4 that displays the full

magnetic moment for R2=R1 ¼ 1:5 and a collection of values

FIG. 1. Comparison of the numerical results (symbols) to the analytical

expressions (lines) of the full penetration (upper panel) and cloaking (lower

panel) fields for a paramagnetic sheath with R2 ¼ 1:5R1. Insets illustrate the

procedure used to determine such fields for each value of lr.

FIG. 2. Demonstration of the invisibility condition for different values of

the magnetic permeability and always for R2 ¼ 1:5R1.
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of lr. One can notice that for low fields, m is dominated by

the superconductor’s magnetization, whereas the paramag-

netic behavior prevails for higher fields. As lr increases, the

low field diamagnetic range is progressively reduced.

Eventually, it disappears for a certain value l�r . This thresh-

old is the real limit for the appearance of cloaking and

always occurs with the superconductor within the partial

penetration regime. When the penetration of magnetic flux in

the superconductor is very small (low fields, as compared to

Hfp), like in upper panel of Fig. 2, cloaking is realized

at a permeability value rather close to the estimation

l�r ¼ ðR2
2 þ R2

1Þ=ðR2
2 � R2

1Þ ¼ 2:6 based on the perfect dia-

magnetism approximation.3 In fact, according to the resolu-

tion in Fig. 4, low field cloaking may occur in some point

between l�r ¼ 2:5 and l�r ¼ 2:7.

Concluding, the variational critical state approach

allowed investigation of magnetic invisibility of the cylindri-

cal superconductor/paramagnet heterostructure in a wide

range of magnetic field magnitudes including partially pene-

tration regime. The results go far beyond the previous analy-

sis based either on the perfect diamagnetism or on the full

penetration assumptions and provide realistic magnitudes of

the magnetic field and permeability required for the cloaking

phenomenon.
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