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Abstract: Tauc-Lorentz model is commonly used to describe the dielectric constant of 
amorphous semiconductors as a function of few parameters. However, this model is not fully 
analytic and presents other mathematical shortcomings. A modified self-consistent model 
based on the integration of [E’-(E+ia)]-1 functions using Tauc-Lorentz`s ε2 expression as a 
weight function is presented. This new model is analytic and meets all other mathematical 
requirements of optical constants. The main difference with TL model stands at photon 
energies close to or smaller than the bandgap energy. 

The new model has been satisfactorily tested on SiC optical constants. Additionally, an 
analytic extension of the new model has been also developed to include the Urbach tail. The 
complete model has been tested with Si3N4 optical constants, and it enables to extend the 
optical-constant characterization of materials down to zero energy. 
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1. Introduction 

The optical constants of materials are necessary for different applications, such as the design, 
characterization and/or process control of coatings for optics or for the semiconductor 
industry. The optical properties of materials require the knowledge of two optical constants, 
such as n and k or 1 and 2, per photon energy. Often, such amount of information is not 
available. The optical properties of various groups of materials in nature have common 
features; this allows the use of simple models to describe their optical constants in certain 
spectral ranges, which depend on few parameters to be determined for each material. 
Semiconductors is a group of materials for which various models have been developed to 
parameterize their optical constants, such as the models of Forouhi and Bloomer [1] (FB), 
Campi and Coriasso [2], Tauc-Lorentz [3] (TL), or Cody-Lorentz [4]. If we broaden the scope 
of materials and the spectral range, the model will need more parameters to fit. This is the case 
for a recent model developed by Franta et al.  [5], which is aimed to cover a broad spectral 
range and hence it depends on a large number of parameters. 

Optical constants of materials must satisfy some requirements that arise from 
fundamental properties of the interaction of radiation with matter, such as causality and 
linearity. Hence causality results in that the optical constants of a material as a function of 
photon energy can be extended with an analytic function to complex energies in the upper half 
plane, with a given parity and with a fast enough decay towards large energies. All these 
properties are required to enable the Kramers-Kronig (KK) analysis, which connects the 
imaginary with the real part of the optical constant complex function, and vice-versa. One 
common problem of the aforementioned optical-constant models for semiconductors is that 
they are defined with piecewise functions with a change in the functional behaviour at the 
semiconductor gap and hence they are not analytic; an exception to this is FB, although this 
model does not work below the bandgap energy. Furthermore, among the mentioned models 
there are also cases of divergences, and parity violations. 

In TL model the imaginary part of the dielectric constant 2 turns zero below the material 
bandgap energy, whereas in practice, semiconductors and dielectrics are known to experience 
an exponential decay of the absorption coefficient, α, below the bandgap, which is called the 
Urbach tail. Valuable models were proposed to incorporate the Urbach tail to the TL model by 
Foldyna et al. [6] and a similar extension to the Cody-Lorentz model was performed by 
Ferlauto et al. [7]. However, the corrected models keep the use of piecewise functions, so that 
the lack of analyticity is not solved. 

The present paper focuses in TL, which is a popular model that is widely used in the 
literature. A separate paper [8] proposes a procedure to take optical constant models that are 
not fully analytic and transform them into analytic and self-consistent models. The procedure 
consists of using either the dispersion or the absorption term of the non-analytic model as a 
weight function of [E’-(E+ia)]-1 functions that are integrated over their full spectral domain. 
This can be applied to several of the above models. The present paper is devoted to apply this 
procedure to transform the TL model into analytic; the new model is later modified to include 
the Urbach tail. 

The paper is organized as follows. Section 2 describes the TL model and the 
aforementioned procedure to turn non-analytic models into analytic. In section 3, the standard 
TL model is transformed into analytic and both models are used to fit the optical constants of 
SiC films. Then the Urbach tail is added to the model, which is exemplified by fitting the 
optical constants of Si3N4. 



2 Modification of an optical-constant model to make it analytic 

2.1 The TL model 

In this section we start mentioning the FB model and its shortcomings that TL model 
attempted to solve. We show that, in spite of that attempt, TL model still involves some 
shortcomings and we modify it to remove them. 

Forouhi and Bloomer [1] published a model to describe the extinction coefficient k of 
amorphous semiconductors and insulators, assuming that both valence and conduction bands 
can be described by a parabolic function. The expression obtained for n and k was: 
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where A, B, C, the energy gap Eg, and n∞ are fitting parameters; B0 and C0 are parameters 
depending on the previous ones.  

Jellison and Modine [3] highlighted the inconsistencies of the FB model. First, k in FB 
model does not tend to 0 both below Eg and at large energies. Second, k should be an odd 
function of energy but it is not. A new model was proposed by Jellison and Modine that is 
referred to as the Tauc-Lorentz model [3] since it combines Tauc’s model of the density of 
states with the Lorentz oscillator. It starts with the work of Tauc et al. [9], who interpreted the 
presence of a gap in amorphous semiconductors as the energy of transitions without 
momentum conservation between extended states of the valence and conduction bands, 
assuming a parabolic behaviour of these bands and constant matrix elements of the 
momentum operator. TL model combines Tauc’s density of states [8] along with the Lorentz 
oscillator, and is given by: 
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where E0 is the central energy of the oscillator, C is the oscillator width and A is a fitting 
parameter.  stands for the Heaviside function and it is +1 or 0 for photon energies above or 
below Eg, respectively; hence 2 is zero in TL model for energies below Eg. The following 
notation will be used with the dielectric function: the first term within parenthesis is the 
variable, and the terms separated by semicolon from the variable are fitting parameters of the 
model. This model uses four fitting parameters to model 2, all expressed in energy units. TL 
model obtains ε1with KK analysis: 
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However, the model required the addition of a supplementary fitting parameter, ε1(). 
For shortness, we do not copy the expression obtained upon integration of the right term of 
Eq. (2b); it can be found in [3]. 

TL model is nowadays among the most widely used optical-constant models to 
determine the dielectric constant of amorphous semiconductors above their gap energy and to 
determine the material bandgap energy [10]; the model is a standard element in many software 
packages for analyzing experimental measurements, particularly for ellipsometry 
measurements. 

Even though TL model was an attempt to construct a mathematically correct and 
physically plausible model, a series of shortcomings have been detected. These shortcomings 
arise from not fully complying the conditions required for KK dispersion relations: 



a) The dielectric constant is not analytic. A function that is analytic at a point must be 
infinitely differentiable in the neighbourhood of that point. Hence, 2 is not analytic in E = Eg. 
More generally, any piecewise function, such as Heaviside function, is not analytic at the 
connection point between two different functionalities. Furthermore, in TL model it is 2=0 in 
a finite range between E=0 and E=Eg, and the only analytic function to satisfy this is the null 
function, which obviously would not work here at E>Eg. Actually, experimental data of 
absorption in amorphous materials show that, even though absorption is small below the 
bandgap, it takes nonzero values. Due to the mentioned lack of analyticity, there is no possible 
analytic continuation of 2 in the upper complex half plane.  
b) Parity: ε2 is not odd due to the (E-Eg)

2 term, although this problem was avoided by defining 
ε2 with opposite sign at negative energies. 
c) The term ε1() was added to the model to improve the fitting, but this makes inconsistent 
the expression for ε1, since ε1 and ε2 should be directly related through the KK analysis with no 
extra term.  

Summarizing, though TL model was developed to correct inconsistencies of the FB 
model and it is usually taken as mathematically correct, it still has several shortcomings. TL 
model is currently one of the most popular models to fit the dielectric constant of amorphous 
semiconductor materials. However, it will be demonstrated in the following section that the 
new model fits experimental data more precisely at energies close to or below Eg. 

2.2 Procedure to obtain an analytic model for optical constants out of a non-analytic 
model.  

A mechanism to turn non-analytic optical-constant models into analytic has been recently 
developed [8]. Here we summarize the main equations for this, and in subsection 3.1 the 
procedure will be applied to the TL model. The mechanism operates by using either the real or 
the imaginary part of an optical-constant model, from either the complex refractive index or 
the complex dielectric constant, as a real weight function of [E’-(E+ia)]-1 complex functions, 
which are integrated over the weight function full spectrum domain; E’ stands for the 
integration energy parameter, E is the energy at which the optical constants are calculated, and 
a>0 is an added damping parameter. Hence the original optical-constant function is convolved 
with [E’-(E+ia)]-1 functions, which results in some curve smoothening of the part used as 
weight function due to a0; this smoothening can be made as small as necessary by reducing 
a, so that the resulting analytic function is as close as desired to, but never fully coincident 
with, the original non-analytic function. In the following we reproduce one of the possible 
expressions of Larruquert and Rodríguez de Marcos in [8] to construct the analytic model 
using either the imaginary part [Eq. (3a)] or the real part [Eq. (3b)] of the non-analytic model:  
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Eq. (3a) [(3b)] uses the imaginary part of the dielectric constant 2,mod (the real part 1,mod) 

of the original model to construct an analytic optical-constant function  Ean~ . When a is 

small enough compared to the characteristic parameters of a certain material, the imaginary 
(or real) part of the dielectric constant of the analyticized model is very close to the same part 
of the original non-analytic model. In a specific case, we select either Eq. (3a) or (3b) 
depending on the part of the dielectric constant that we decide to use as a weight function. 
Equations (3) are valid for dielectrics or semiconductors, whereas for metals, Eqs. (3) must be 
slightly modified.  



One benefit of using the mechanism given in in Eqs. (3) is that we can use a piecewise 
weight function for either 2,mod or 1,mod-1, and the present procedure will turn the original 
non-analytic model into analytic. Analyticity in the complex upper half plane is given by the 
[E’-(E+ia)]-1 terms, and the corresponding part of the dielectric constant purely operates as a 
real weight factor. As a result of this, the dielectric constant is somewhat smoothened, which 
results in an optical constant averaged mostly in the E±a range. Since a can be made as small 
as necessary (but not zero) for a specific case, this smoothening may be made almost 
negligible. 

The integrals in Eqs. (3) involve the superposition of [E’-(E+ia)]-1 functions; these 
integrals satisfy the analyticity requirement. All other requirements to meet the criteria for KK 
analysis can be obtained too. The correct parity is provided by the [E’-(E+ia)]-1 functions 
along with the assumed odd (even) functionality for 2,mod (1,mod). A fast enough asymptotic 
decay at E∞ is obtained as long as the weight function also decays fast enough in that limit, 
which is satisfied by 2 for instance in the TL model. 

The present procedure of constructing a dielectric function by convolving a desired 
profile with an analytic function has a precedent in the work of Brendel and Bormann [11]. In 
that research the analytic functions were Lorentz oscillators, and the real weight function was 
a Gaussian function. 

3 Application to Tauc-Lorentz model 

3.1 Analytic modification of Tauc-Lorentz model 

Since TL model is developed over 2, we select the expression given by Eq. (2a) in the 
integration of Eq. (3a): 

   




 




 Ed
iaEE

E
aCEEAE TL

ganTL
,2

0

1
1,,,,;~ 


    (4) 

where the sign of 2,Tl in expression (2a) was reversed for negative energies to turn it into an 
odd function. 

Eq. (4) can be integrated and results in: 
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where asterisk stands for complex conjugate. Equation (5) is the expression for the 
analytically-transformed model, which will be referred to as the analyticized Tauc-Lorentz 
model (TL-an). In the transformed model, TL parameter ε1() is no longer necessary and the 
complex dielectric constant is now self-consistent. Instead, new parameter a is introduced, 
therefore the total number of parameters has not changed with respect to TL. Even though in 
the above integration the weight function is nonzero only above Eg, the new function takes 
nonzero, positive values also below Eg, as required, due to the tail contribution of [E’-(E+ia)]-1 



functions centered at energies higher than Eg. From Eq. (5), the two components 1,TL-an and 
2,TL-an can be obtained by calculating the real and imaginary parts, respectively, although the 
explicit expression specified in its real and imaginary parts turns less compact than Eq. (5). 
Many, if not all, software packages could work directly with this equation in complex 
numbers. 

The new function is analytic on the real axis and in the upper complex half plane. The 
following points result in removable singularities: b(E)=0, b(E)=±d, b(E)=±d*, and b(E)=±Eg, 
with a>0. From these, only b(E)=-d and b(E)=d* are in the upper half plane. These, along with 
all the former ones, are removable singularities and the optical-constant function can be 
defined at each singularity. 

Log(z) is a multivalued function. Here we choose its principal branch; hence, its 
argument is constrained within (-,]. Equation (5) presents branch cuts corresponding to the 
logarithm in the segments defined by two open intervals (--ia,-Eg-ia) and (Eg-ia,-ia), 
symmetric with respect to the imaginary axis and placed in the lower half plane, and these 
intervals would move to the real axis for a=0; in other words, in the limit when a=0 the new 
function exactly reproduces the TL model, but it is precisely in this mathematical limit where 
the function is not analytic in the required domain. Regarding the logarithms where b(E) is not 
present, their arguments are valued zero or a negative real number only if C=0, which would 
turn the TL model into a singularity peaked at E0 (a Dirac delta), and this case can be 
considered outside TL model. Finally, it can be seen that expression (5) has the correct parity

   EE ** ~~   , a property naturally obtained here, whereas parity in TL model was 

forcedly introduced. The new model decays as E-2 (1) and E-3 (2) at large energies, which is 
fast enough to satisfy the requirements for KK analysis. Hence it satisfies all mathematical 
requirements for an analytic function and for KK analysis. 

A further advantage of the new function given by Eq. (5) is that it is a single expression 
for~ , so that all parameters of the model can be fitted with experimental data of either ε1, ε2, 
or both, whereas in TL model, ε1() is obtained only from ε1 data and Eg is obtained basically 

from ε2 data. Furthermore, iknN ~
 can be obtained right away from Eq. (5) and hence all 

parameters of the model can be also fitted with experimental data of either n or k. Anyway, in 
the present model Eg parameter is more strongly dependent on either ε2 or k than on their 
corresponding real parts. 

3.2 Application of TL-an model to experimental data: SiC  

In this sub-section we apply the new model to experimental data. Figure 1 compares 
experimental data of the dielectric constant of SiC films deposited by sputtering with fittings 
with TL and TL-an models. Self-consistent optical constants of SiC are taken from Larruquert 
et al. [12]. The two models were fitted separately in the spectral range 0.4 to 6.5 eV. Fitting 
parameters for both TL and TL-an models are given in table 1. In the linear plot of the 
dielectric constant, the two models seem to provide similar fittings. In the log-axis plot we see 
that TL model falls to zero at Eg=0.70 eV, differently to real data, whereas the TL-an model 
provides a better fit to 2 below Eg. Since the dielectric constant in the TL model was seen not 
to be analytic at Eg and smaller energies, it is not surprising that the main difference between 
TL and TL-an models is found precisely at Eg and at lower energies. TL-an model gives an 
overall good fitting, with a small discrepancy in the neighborhood of Eg. Such discrepancy 
could arise from uncertainty in the experimental data. Anyway, the present model, based on 
the model of Jellison and Modine and on Tauc’s density of states, cannot address all the 
specific complexity that may be involved in a real material. 

If the spectral range is extended to energies far smaller than the SiC bandgap, we get to 
its reststrahlen band. This feature is not included in either TL or TL-an models. Figure 2 
displays the extended range that includes the reststrahlen band of SiC. We incorporated the 



reststrahlen band in both models by adding a single Lorentz oscillator. This can be done by 
virtue of the linearity of the response to stimuli. The two added TL-an and Lorentz oscillator 
models are analytic and self-consistent, and so is the combined model. The fitting with TL 
plus the Lorentz oscillator is poor in the surroundings of the bandgap energy, whereas the fit 
with TL-an plus the Lorentz oscillator is remarkably good in the whole range. Best match was 
obtained by reducing a to 0.06 eV, leaving all other parameters as per Table 1.  

Table 1. Fitting parameters for the TL and the TL-an models applied to SiC 

Model A(eV) E0 (eV) C (eV) Eg (eV) 1(∞) a (eV) 
TL 81.8 6.01 5.38 0.70 1.25 - 

TL-an 87.2 6.07 5.56 0.72 - 0.09 

 
Fig. 1. Linear-axis (a) and log-axis (b) plot of the dielectric constant of thin films of SiC versus the logarithm of 

photon energy. Experimental data from Larruquert et al. [12] are compared with fittings with TL and TL-an models 
with parameters plotted in table 1 

 

Fig. 2. Log-log plot of the dielectric constant of thin films of SiC versus photon energy extended to include 
the reststrahlen band. Experimental data from Larruquert et al. [12] are compared with fittings with TL and TL-an 
model using parameters plotted in table 1, except for the modification of a to 0.06 eV. The models were added a 

Lorentz oscillator to account for the reststrahlen band 



The above extension of TL-an by adding a Lorentz oscillator can be generalized to the 
addition of as many Lorentz oscillators as necessary to model a specific material with many 
added features other than the basic TL shape behavior, which will be analytic due to the 
addition of only analytic terms. 

3.3 Extension to include Urbach tail 

The imaginary part of TL-an model progressively tends to zero below Eg, differently to the 
original TL model, where the function is zero for the whole energy range below the bandgap; 
this makes TL-an model more realistic than TL model, in addition to mathematically correct.  
However, the decay of 2 in TL-an model below Eg does not properly fit the materials with a 
so-called Urbach tail. For many semiconductors, as well as dielectric materials, the absorption 
coefficient =4k/ often decays exponentially below Eg in what is called the Urbach tail: 
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This exponential decay is not properly fitted with TL-an model. 
 Foldyna et al. [6] modified TL model to incorporate Urbach tail. Foldyna’s model, 

which will be referred to as TLU model, is expressed as a piecewise function with two 
functionalities in 2: 
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where Ec is the connection energy between the two functionalities; parameters Eu and Au are 
chosen to assure continuity of both ε2 and its first derivative at Ec, and they are explicitly 
shown by Foldyna et al. in [6]. TLU model is then given by a piecewise function, so that it is 
again non-analytic. 

Though in Urbach tail it was the absorption coefficient  who had an exponential 
behaviour, Foldyna et al. [6] transferred this behaviour to 2, since n was considered by the 
authors as a constant over the Urbach tail fitting range.  

TLU model involves several shortcomings common to TL model, except that 2 does not 
turn zero at energies below Eg:  
a) TLU model is non-analytic at the connection energy between the two functionalities.  
b) ε2 is not an odd function in the exponential functionality, which adds to the parity problem 
in TL model. 
c) In TLU model, 1 is obtained through KK integration of 2 but again needs the addition of a 
fitting parameter ε1().  

Besides, TLU model adds a supplementary shortcoming: the model diverges at zero 
energy due to the term E-1. 

To solve all these problems, we derive a new function by applying the integral 
transformation given by Eq. (3a) to the following weight function: 
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where 2,U stands for the imaginary part of the term with the Urbach tail. This new weight 
function is quite similar to the TLU model, but the present one presents a more realistic 
behaviour towards E=0. Thus, at energies close to Eg, the exponential term is dominant versus 
the energy factor in the denominator (Foldyna model) or numerator (present model); this 
energy factor plays a role at much smaller energies, where the function diverges in Foldyna 
model, and it plausibly tends to zero in the present model. Parameters Eu and Au are selected 
to assure continuity of both the real weight function and its first derivative at Ec: 
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The non-analytic model in Eq. (11) is now transformed to turn it into analytic in the same 
way that it was done with TL model. Hence we will integrate [E’-(E+ia)]-1 functions with the 
Urbach tail term of Eq. (11a) in the range below Ec and with the TL term of Eq. (11b) above 
Ec. The analyticized model will be called TLU-an and it is obtained by the addition of the two 
mentioned terms: 

     cganTLcganUanTLU EaCEEAEEaCEEAEE ,,,,,;~,,,,,;~~
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Parameter Ec has been added to the list in the TL term, which is explained below. Hence 
the new model has six parameters to fit, the same number than Foldyna’s model. The two 
terms of Eq. (14), which are obtained by applying Eq. (3a), are as follows: 
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where the sign of 2,U in the integral of expression (15) was reversed for negative energies to 
turn it into an odd function. 
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with: 
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The only difference between F of Eq. (17) and F of Eq. (6) is that in the former the new 

parameter Ec has been added, which replaces Eg in the argument of logarithms, so that F  
converges to F when Ec=Eg. Both b(E) and d in Eqs. (15) to (17) are again given by Eqs. (7) 
and (8), respectively. 

In the term anU ,
~ , Ei stands for the exponential integral [13,14]: 
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Function Ei(z) is included in mathematical packages for common-used computer 

softwares, such as Mathematica, MATLAB, and Maple. Discontinuities in the term anTL,
~  

were commented in section 3.1; now, as Eg is replaced with Ec within the logarithms in Eq. 
(17), the singularities at b(E)=±Eg shift to b(E)=±Ec and they are again in the lower half plane; 

these singularities turn into removable when the anU ,
~ term is added.  

Eq. (15) is analytic in the upper half plane. anU ,
~ presents branch cuts corresponding to 

the Ei functions in the segments defined by the open intervals(--ia,0-ia) and (0-ia,-ia), 
both in the lower half plane. The function has isolated singularities at b(E)=±Ec which 

counterbalance the singularities at the same energies of the anTL,
~  term, resulting in removable 

singularities. Singularities at b(E)=0 and at b(E)=∞ are removable and are also in the lower 

half plane. At large energies anU ,
~ asymptotically decays with E-2 in its real part and E-3 in its 

imaginary part. 
Summarizing, TLU-an model is analytic: it has no pole either at the real axis or in the 

upper complex half plane. TLU-an is not a piecewise function; instead, it involves two terms, 
both defined in the whole spectrum, each one corresponding to one functionality of the 

original piecewise TLU model. Besides, anTLU ,
~  has the correct parity, and the model does 

not diverge at zero energy as TLU does, due to the new functionality in Eq. (11a). Equation 
(14) provides the complex dielectric constant, which can be used to fit experimental data of 
either ε2, ε1 or both. Contrarily, either TL or TLU models specifically need data of ε1 to fit 
parameter ε1(). Anyway, as mentioned with the TL-an models, Eg parameter is more 
dependent on ε2. 

As for TL-an model, in TLU-an model iknN ~
 can be immediately obtained from 

Eq. (15) and hence all parameters of the model can be also fitted with experimental data of 
either n or k, or both. 

3.4 Application of analyticized TLU model to experimental data: Si3N4 

Si3N4 is a material whose optical constants can be well described with a TL model and an 
Urbach tail. In Fig. 3, ε2 experimental data are presented in the range 1-24 eV; data are taken 
from Philipp [15], and they are available in Palik’s compilation [16]. Parameters of TLU-an 
model are displayed in Table 2 and they were fitted from ε2 data, so that ε1 was directly 
calculated here by taking the real part of the TLU-an model. The match between experimental 
data and the model is excellent. Notably, 2 tends to zero at zero energy, as expected for a 
semiconductor, contrarily to the divergence in Foldyna’s model. 

Table 2. Optimum parameters for TLU-an models applied to Si3N4 

Model A (eV) E0 (eV) C (eV) Eg (eV) Ec (eV) 1(∞) a (eV) 

TLU-an 258.05 8.05 5.83 5.25 5.80 - 0.0002 

 



Fig. 3. Linear-axis (a) and log-axis (b) plot of the dielectric constant of Si3N4 versus energy. Experimental data of 
Philipp [15] are compared with a fitting of ε2 with TLU-an model and with ε1 obtained in the latter fitting using 

parameters plotted in table 2 

4 Conclusions 

It has been shown that TL model does not meet some requirements of optical constant 
functions, such as analyticity, and parity is artificially introduced. We have converted TL 
model into an analytic model TL-an based on the integration of [E’-(E+ia)]-1 functions using 
the ε2 expression of TL model as a weight function. TL-an is analytic and meets all the 
necessary mathematical requirements. The new model basically reproduces the TL model 
above the bandgap energy but it describes in a more realistic manner the behavior of the 
optical constants of amorphous semiconductors below the bandgap energy, where ε2 non-
physically cancels in TL model. Since the model is self-consistent, it allows obtaining both ε2 
and ε1 even if only experimental data of ε2 are available, whereas TL model needs both ε2 and 
ε1 data to obtain all parameters of the model. Both TL and TL-an models require 5 parameters 
to be fitted, where ε1() of TL model is replaced in the present model with a damping 
parameter. The new model was successfully applied to characterize the optical constants of 
SiC, both with the plain novel analytic model and also with the model combined with a 
Lorentz oscillator to include the reststrahlen band in the fitting. 

The same procedure was also used to generate an analytic model, TLU-an, that also 
includes the Urbach tail; the procedure consisted in adding a weight function with an 
exponential term below the bandgap energy. In this model, ε2 converges to zero at zero 
energy, as required. TLU-an model involves 6 parameters. The new model was successfully 
applied to characterize the optical constants of Si3N4, resulting in an excellent fit in a broad 
spectral range extending down to well below the bandgap energy. TLU-an results in a fully 
analytic model that enables optical-constant characterization in a wide spectrum including the 
specific TL spectral range and extending down to zero energy. 
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