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Despite the massive literature and the efforts devoted to understand the creep behavior of

aluminum alloys, a full description of this phenomenon on the basis of microstructural parameters

and experimental conditions is, at present, still missing. The analysis of creep is typically carried

out in terms of the so-called steady or secondary creep regime. The present work offers an alterna-

tive view of the creep behavior based on the Orowan dislocation dynamics. Our approach considers

primary and secondary creep together as solid state isothermal transformations, similar to recrystal-

lization or precipitation phenomena. In this frame, it is shown that the Johnson-Mehl-Avrami-

Kolmogorov equation, typically used to analyze these transformations, can also be employed to

explain creep deformation. The description is fully compatible with present (empirical) models

of steady state creep. We used creep curves of commercially pure Al and ingot AA6061 alloy at

different temperatures and stresses to validate the proposed model. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4961524]

I. CREEP OF METALS

Creep of metals is a key topic for different industries

such as energy, transport, or chemical. The creep behavior of

pure metals and alloys has been extensively investigated in

the past. This behavior is usually described through the accu-

mulated plastic deformation e (t) as a function of time t under

given conditions of applied stress, r, and temperature, T.

Three regions are typically distinguished, namely, a primary

creep region (where €eðtÞ < 0Þ; a secondary regime, also

called steady state (where €eðtÞ ¼ 0); and a tertiary region

(where €eðtÞ > 0) before creep rupture occurs (double dot

denotes second time derivative). Many authors, as Evans,1

reduce the steady state regime to a single turning point from

the primary to the tertiary regions in the creep curve. This is,

then, called the minimum creep rate state. For simplicity,

however, we will refer throughout this work to a steady state

region. Most of the investigations aimed at correlating the

creep behavior with microstructural parameters of the alloy

under study restrict their analysis to the steady state regime,

where the creep rate is independent of time, i.e., one can

write _e ¼ _essðr; TÞ (dot denotes first time derivative).2–4

From the large amount of steady state data available,

there is general agreement on the following two findings:

First, a power law relationship between steady state creep

rate, _ess, and applied stress r commonly holds, i.e.,

_eSS ¼ C
r
G

� �n

; (1)

where n is the stress exponent, G is the shear modulus, and C
is a microstructure and temperature dependent constant. The

exponent n is differently interpreted in the existing literature:

for Sherby,5 the value of n establishes the dominant deforma-

tion mechanism, while Blum6 relates it to the microstructural

features; C presents an Arrhenius-type dependence with

temperature

C ¼ K exp
�Qc

RT

� �
; (2)

where Qc is the activation energy for creep, R is the universal

gas constant, and K is a dimensionless microstructure-

dependent constant. Some authors use the elastic modulus,

E, instead of G, but the relation between r
G

� �
and the micro-

structure invites to use naturally Equation (1).6

Second, the activation energy for creep, Qc, is usually

identified with the activation energy for atomic self-

diffusion, Qd, revealing the importance of the diffusion phe-

nomenon in the creep process. Using Qd in Eq. (2) implies

that the term K needs to contain D0 (the pre-exponential term

of the diffusion coefficient, D ¼ D0 � expð�Qd

RT Þ). This is very

clearly shown in the work of Sherby,7 in which data of about

twenty pure metals, ranging from indium to tungsten, show a

linear correlation between Qc and Qd. However, the descrip-

tion of creep in metals solely based on steady state regime

data represents a very limited vision of the whole phenome-

non. This limitation undermines our capability to describe

the creep deformation evolution with time and to predict this

behavior on the basis of the material’s microstructural

parameters (and of the experimental conditions).

Some authors have attempted approaches to describe the

creep strain evolution with time. Among the most ancient

models is the one proposed by Garofalo8 in 1965. This model

restricts the description of creep evolution to the primary

region8 and writes the strain as a function of time as
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e ðtÞ ¼ e0 þ eTð1� e�vtÞ; (3)

e0 being the initial elastic strain, eT the limiting transient

creep deformation, and v a constant. Equation (3) requires

the initial creep data in order to find appropriate fitting

parameters for predicting the primary creep curve under dif-

ferent conditions. Clear correlations between the constant v
and microstructural parameters are missing in this model.

Almost 20 years later, Wilshire9 developed a modified

model, which includes an additional term into the Garofalo

equation, accounting for tertiary creep. This model describes

creep curves by using four parameters: h1, h2, h3, and h4

combined in the following equation:

e ¼ h1ð1� e�h2tÞ þ h3ðeh4t � 1Þ: (4)

The first term describes the primary and onset of secondary

creep, while the second term, corresponding to the tertiary

region, completes the creep curve until material failure. The

model was constructed with the aim of describing complete

creep curves. The model uses this description for life assess-

ment prediction purposes. While the model is simple and ele-

gant, h1 to h4 are purely fitting parameters without any

microstructural/physical-base justification. Again, creep data

are required to find the specific hi values. Further attempts at

correlating these parameters with the physical phenomena

governing the creep process have systematically failed.10

A different approach to describe the evolution of creep

strain with time was developed by Mecking and Kocks,11

in their model known as “One microstructural parameter.”

They assumed that the microstructural evolution during

plastic deformation of metallic materials can be described

in terms of the evolution of the dislocation population. The

deformation rate results, then, from the balance between

the accumulation and annihilation of dislocations (respon-

sible for plastic deformation). The ratio of accumulation/

annihilation for small grain size or dispersion strengthened

materials can be described according to Mecking and

Kocks11 as

dq
de
¼ k1 � k2q; (5)

where q is the dislocation density and k1 and k2 are the fitting
parameters corresponding to the dislocation multiplication

and annihilation processes, respectively. In spite of the sound

physical base of this model, the above fitting parameters are

again obtained from previous creep tests.12

Creep evolution has successfully been treated in the

Laplace-domain for piezoelectric materials.13 This allowed

fitting, without a microstructural/physical base, the strain

dependence on time, and corrected the unwanted strain drift.

In summary, there is so far no physical based predictive
model of creep of metals and alloys that describes the creep

deformation evolution with time, even the primary regime,

on the basis of only microstructural parameters.

The objective of this paper is to give a description of pri-

mary and secondary creep under the viewpoint of solid state

transformations, but using the movement of dislocations as

the basic mechanism. We will see that experimental data

fully support this view, and the model allows estimating

microstructural parameters such as the subgrain size.

II. SOLID STATE ISOTHERMAL REACTIONS

Solid state isothermal reactions can be divided in homo-

geneous and heterogeneous.14 In the first case, the probabil-

ity of the transformation to occur is the same for all locations

in the system, and the transformation rate decreases mono-

tonically with time. Heterogeneous transformations are char-

acterized by a nucleation, growth, and saturation sequence,

which presents a maximum transformation rate at times

t> 0, and are usually modeled by the Johnson-Mehl-

Avrami-Kolmogorov (JMAK) equation15

f ¼ ð1� e�BtmÞ; (6)

where f is the fraction transformed at time t during the iso-

thermal reaction, B is a mechanism dependent parameter,

and m is an exponent that depends mainly on geometrical

and dimensional aspects. The parameter B is usually

described as

B ¼ xe
�H
RT ; (7)

where x is the frequency of the process, i.e., proportional to

the reaction rate, H is the activation energy of the process, R
is the universal gas constant, and T is the temperature.

Usually, the parameters B and m are extracted by a least

square fit of ln(1–f) vs. ln t data.

The JMAK equation successfully describes the kinetics

of crystallization, chemical reactions, and precipitation phe-

nomena in solid state physics.14,15 It has also been applied in

other fields of physics, such as crystallization kinetics of lip-

ids16 or polymers,17 the analysis of depositions on surface

science,18 the evolution of ecological systems,19 and even in

cosmology.20

III. SOLID STATE TRANSFORMATION CREEP (SSTC)
MODEL

As mentioned before, creep is a diffusion-controlled

process. This fact allows us to describe the creep strain evo-

lution with time as an isothermal process based on atoms

self-diffusion under the viewpoint of phase transformations.

This can be done if creep strain is considered as a state func-

tion of time, stress, and temperature, related to the fraction

of the “transformed quantity,” f

e ¼ A � f ¼ A � ð1� e�BtmÞ; (8)

where the deformation A is a function of r, T, and micro-

structure of the material.

The parallelism between the main features of solid state

creep transformation under isothermal conditions and precip-

itation, traditionally described by the JMAK equation, is

displayed in Table I.

The isothermal solid state transformation creep repre-

sents the transformation of the material by creep under the

action of a stress field from the initial undeformed state e0

(sample with length l0) to the final deformed one, e (sample
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with length l) (see Figure 1). This is described for a uniaxial

stress test by

de ¼ e� e0 ¼
dl

l0

: (9)

Strain results from the cooperative movement of a huge

amount of dislocations inside grains. This is described by

Orowan’s equation6

eOr ¼ M�1bqhðgÞ; (10)

where b is the Burger’s vector; q is the mobile dislocation

density, depending on applied stress; h(g) is the average dis-

tance that dislocations travel inside grains/subgrains (being g
the grain size); and M is the Taylor factor, allowing for tex-

ture. Therefore, the movement of one dislocation by the

Burger’s vector can be considered as a “quantum” of strain.

Adding up “quanta” produces a macroscopic strain when the

whole dislocation population moves within the grains of a

polycrystalline metal (e.g., during creep). In other words, the

cooperative movement of dislocations induces a macroscopic

strain, and the fraction of strain (material “transformed by

creep”) increases with time. We propose that dislocation
movement, solely impeded by dislocation structures as grain
boundaries or dislocation forests, and/or the formation of
subgrains, Blum,6 are analogous to a homogeneous solid
state transformation, which has m¼ 1 (in Eq. (8), see

Mittemeijer14). This description matches the traditional con-

sideration of creep deformation as a homogeneous phenome-

non (over the whole specimen). However, during dislocation

motion within the grains, subgrains start to develop in class

M alloys, i.e., those which creep behavior is similar to pure

metals and develop subgrains,21 as a consequence of disloca-

tion rearrangement in low-energy configurations. After grain

boundaries have saturated (this corresponds to the last stages

of the primary creep regime), the further evolution of sub-

grain structure (subgrain thickening) controls the deforma-

tion rate (Fig. 2). This substructure evolution follows the

conventional scheme of heterogeneous transformations

described by the JMAK model. Bulk nucleation of subgrains

is described by an exponent m¼ 3 (see Eq. (8), and

Mittemeijer14), including growth and coalescence (subgrain

boundary impingement). Subsequently, dislocations will

accumulate until subgrain boundary saturation. In class-A

alloys, the dislocation distribution during primary creep

remains homogeneous forming a forest. Although no sub-

grains are formed during creep of these alloys, it is consid-

ered that the evolution of forests of dislocations during creep

can be described using an equivalent sequence that of sub-

grains for the present purpose.

Finally, the strain due to dislocation movement saturates

because (a) there is a finite quantity of dislocations that can

be stored in the material,22 or (b) the stress field associated

with the subgrain/forest structure increases until it cancels

the effect of the external stress field, i.e., it exhausts the driv-

ing force for dislocation movement.

In summary, the two contributions to strain: (a) disloca-

tions movement inside the grain boundary until grain bound-

ary saturation and complete subgrain structure development

in class-M alloys (m� 1), and (b) subgrain boundary thick-

ening up to subgrain saturation/forest saturation (m� 3) can

be described as

e ¼ e0 þ A1ð1� e�A2tÞ þ A3ð1� e�A4t3Þ; (11)

where A1 and A3 are strain terms that depend on stress and

temperature and A2 and (A4)1/3 are frequencies (analogous to

reaction rates in isothermal transformations). Although dam-

age always occurs along the whole creep curve, its contribu-

tion to deformation is considered negligible during subgrain

formation and saturation.

It is further proposed that: (a) the primary creep region

is dominated by dislocation movement inside the grain until

complete subgrain formation, Figure 2 step (I) to step (III),

TABLE I. Comparison of precipitation and creep phenomenon in the JMAK

theory.

Precipitation Creep

Driving element Vacancies Vacancies

Driven element Solute atoms Dislocations

Driving force Chemical potential Stress

Nucleation preformed Yes Yes

Nuclei existing Yes

Solute atoms

Yes

Grain boundaries and

grain interior

JMAK (m exponent) 1–3 1 and 3

Energy barrier Free energy (DG) Self diffusion

FIG. 1. Strain evolution during creep from (a) an undeformed state to (b) a

deformed state under the action of a stress, r.

FIG. 2. Pictorial description of the microstructure evolution at different

stages of the creep curve, based on experimental data of AA6061. The two

terms of Eq. (11) as well as their sum are displayed.
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and (b) the secondary creep region is controlled by the stor-

age of dislocations at subgrain boundaries, Figure 2 step (III)

to step (V). The increase in creep strain rate associated with

the tertiary stage is not controlled by diffusive process of dis-

location movement, but rather by damage.23–25 Therefore,

we will not consider tertiary creep in the SSTC model.

IV. PHYSICAL MEANING OF CREEP PARAMETERS
IN SSTC MODEL

A. Strains as a function of microstructural parameters

A1 in Eq. (11) represents the total amount of strain accu-

mulated until subgrain formation is complete (primary

creep). Therefore, it is possible to describe it using the

Orowan relationship6

eOr ¼ A1 ¼ M�1bqhðgÞ: (12)

The dislocation density involved in the phenomenon is given

by the Taylor equation26

q ¼ r
aGbM

� �2

; (13)

where r is the applied stress during creep and a is a constant

that depends mainly on the geometrical configuration of dis-

locations. The temperature dependence is introduced through

the shear modulus G. The average distance h(g) traveled by

dislocations is equal to the subgrain size because dislocations

will only travel the distance required to generate those sub-

grains (i.e., they will meet before they reach any grain

boundary). The subgrain size is inversely proportional to the

applied stress r.27

Similarly to A1, A3 represents the total amount of strain

accumulated from complete subgrain formation until sub-

grain boundary saturation (secondary creep, note that this

saturation corresponds to the stage when damage becomes

dominant) and is also described by Eq. (12).

As the stress is kept constant during creep, and the

amount of active Frank-Reed sources for mobile dislocations

generation does not depend on the grain or subgrain struc-

ture, it is readily deduced that

A3 ¼ A1 ¼
h gð Þ
bM3

r
aG

� �2

: (14)

The mobile dislocation density is only a small fraction of

the total dislocation density. The proportionality between

mobile and total dislocation density shown in Henderson-

Brown28 has been used to calculate the subgrain size using

Eq. (14).

B. Strain rates as a function of microstructural
parameters

The physical meaning of A2 and A4 parameters is related

in the JMAK model to the frequency of atomic jumps

involved in the diffusion mechanisms. In the present view,

they are linked to the half-lives for completion of the

processes of subgrain formation and subgrain boundary satu-

ration (see Fig. 2):

t1=2�sgf ¼
ln2

A2

and t1=2�sgs ¼
ln2

A4

� �1=3

: (15)

A2 and ðA4Þ1=3
can, therefore, be interpreted as deformation

rates. We will call them characteristic deformation rates.

Since the deformation mechanism is the same before

and after subgrain formation, the two parameters must be

proportional to each other, i.e.,

A4 ¼ ðaA2Þ3: (16)

While, at this point, this is just a reasonable hypothesis, we

will see later that experimental data do support it.

During subgrain boundary saturation, a stress field around

subgrain boundaries slows the dislocation movement down,

while no hindrance is present when subgrains are still forming.

In other words, the effective stress acting on moving disloca-

tions during secondary creep decreases as the “reaction” pro-

ceeds. It is proposed that the factor a in Eq. (16) quantifies the

effect of the stress field on the dislocation motion (deformation

rate). a is in fact a measure of the decrease of creep rate due to

the presence of subgrains. It depends on both material and

experimental conditions. This dependence is at present

unknown, and a cannot be quantitatively related to microstruc-

tural parameters. It can be written as

a3 ¼ ln2

ln2ð Þ3
�

t1=2�sgf

t1=2�sgs

� �3

¼ 2:08 �
t1=2�sgf

t1=2�sgs

� �3

:

In general, a 2 [0,21/3], and it must hold a� 1.

We can discuss two limit cases:

a ! 0 implies either that formation of subgrain bound-

aries is instantaneous (t1/2-sgf ! 0) or there is no saturation

of the subgrain boundaries (t1/2-sgs ! 1). The first case is

unrealistic, while the second corresponds to materials with

coarse grain structures, or undergoing a very low applied

stress.

a ! 21/3 implies that subgrains form and subgrain

boundaries saturate simultaneously; this occurs, for instance,

in very small grain size materials, where the subgrain size

coincides with the grain size. This is also known as the case

of constant substructure creep.29

Based on the well-known equations of the “steady state”

creep, Eqs. (1) and (2), it is possible to link A2 and A4 to

microstructural parameters. In fact, deriving Eq. (11) with

respect to time, we obtain

_eðtÞ ¼ A1A2e�A2t þ 3A3A4t2e�A4t3 : (17)

From Eqs. (1) and (2), the minimum creep strain rate is

described as

_ess ¼ K
r
G

� �n

e
�Qc
RT : (18)

Therefore, equating expressions (17) at time tm (time to

reach the minimum strain rate) and (18), and using Eq. (14)
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eOr A2e�A2tm þ 3A4tm
2e�A4tm

3
� �

¼ K
r
G

� �n

e
�Qc
RT : (19)

Considering Eq. (13), we find

A2 e�A2tm þ 3 � a3 A2tmð Þ2e� aA2tmð Þ3
� �

¼ K

eOr

r
G

� �n

e
�Qc
RT : (20)

At this point, tm is still unknown. However, as the strain rate

is minimum at tm, deriving again Eq. (17) and considering

Eqs. (14) and (16), we find

€e ¼ eOr ½�A2
2e�A2tm þ 6a3 � ðA2

3tmÞe�ðaA2tmÞ3

�9a6ðA2
3tm

2Þ2e�ðaA2tmÞ3 � ¼ 0: (21)

The solution of this transcendental equation can be found

reorganizing it into two terms. If we define x ¼ A2tm and

a0 ¼ 3a3, we can write

e�x ¼ a0x � e�
a0x3

3 2� a0x3ð Þ: (22)

The functions at the two sides of the equality are plotted in

Figure 3.

There are two solutions to Eq. (22) for x> 0, say, x1 and

x2> x1. They can be identified with two different strain rates.

In fact, there are two known mechanisms controlling deforma-

tion during high temperature creep of metals: dislocation climb

and dislocation glide.30,31 The creep strain rate (or the transfor-

mation reaction rate) will depend on the slowest between the

controlling mechanisms. Therefore, x1 (depending on a) must

be chosen as the physically meaningful root of Eq. (22).

Inserting x1¼A2� tm in Eq. (20) and taking into

account Eq. (14), we find that

A2 ¼
bK aMð Þ2

g � l a; x1ð Þ
r
G

� �n�2

e
�Qc
RT ; (23)

where lða; x1Þ ¼ e�x1 þ 3 � a3x1
2e�ðax1Þ3 .

Consequently, we obtain

A4 ¼ a
bK aMð Þ2

g � l a; x1ð Þ

 !3

r
G

� �3 n�2ð Þ
e
�3Qc

RT ; (24)

and

tm ¼
x1 � g � l a; x1ð Þ

bK aMð Þ2
r
G

� �2�n

e
Qc
RT: (25)

The creep curve in the primary and secondary stages can be

described as

e ¼
h gð Þ

b aMð Þ2
r
G

� �2��
1� e

�bK aMð Þ2
g�l a; x1ð Þ

r
Gð Þn�2

e
�Qc
RT t
�

þ 1� e
� abK aMð Þ2

g�l a; x1ð Þ

� �3

r
Gð Þ3 n�2ð Þ

e
�3Qc

RT t3

� �	
: (26)

The SSTC model allows predicting the creep behavior of the

alloy on the basis of microstructural and mechanical proper-

ties, as well as on experimental conditions. The sole parame-

ter a needs to be experimentally determined. The

microscopic creep mechanism is related to the n parameter

in Equation (26) in the same way as it was described by

Sherby,5 Equation (1). Moreover, the transitions between

creep mechanisms with the applied stress32,33 are considered

in the model in the same manner as in the classical steady

state power law creep description.

V. EXPERIMENTAL CREEP CURVES

The creep behavior of ingot metallurgy commercially

pure aluminum (99.8%) and AA6061 alloy was studied by

means of stress-controlled tensile creep tests at 573 and

623 K and applied stresses between 2.7 and 16.1 MPa (see

Table II). A heating rate of 100 K/h until the creep testing

temperature was applied, following previous works.30 This is

equivalent to a heat treatment prior to sample loading and

provokes an averaged precipitation state in the material.

Constant stress during sample elongation was guaranteed by

means of an Andrade’s cam, which reduces the applied load

according with the sample section reduction. Cylindrical

samples, with threaded heads and a gauge region of 3 mm

diameter and 10 mm length, were machined. The tensile axis

was parallel to the extrusion axis of the samples. The elonga-

tion and the applied load as a function of time were recorded

by two linear variable differential transducers, LVDTs and a

load cell, respectively. A clamping system was developed in-

house, in order to suppress the contribution of the machine

and grip elongation to the total strain. This allows obtaining

the actual sample creep deformation with time.

Samples were deformed until failure or until the maxi-

mum displacement of the Andrade’s arm was reached (which

corresponds to e¼ 0.55 in the present case). Selected plots of

strain vs. time are shown in Figure 4.

VI. MODEL RESULTS: DETERMINATION
OF MICROSTRUCTURAL PARAMETERS

We proceed the following way: we first fit the experi-

mental creep curves considering A1 to A4 as fitting parame-

ters. This approach will allow us to (a) determine the

unknown parameter a and (b) extract some relevantFIG. 3. Graphical solution of Equation (22) showing two roots for x> 0.
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microstructural parameter contained in Eq. (26), such as the

subgrain size. In fact, the subgrain size strongly depends on

the experimental conditions and can only be measured post-
mortem.

An example of creep curve fitting made using Eq. (11)

is shown in Figure 5.

The parameters Ai (i¼ 1–4) extracted from the fit of all

available data are shown in Table II.

The analysis of the parameters A1 to A4 confirms that

they are not independent from each other.

As predicted by the model, it holds A1 	 A3 (Figure 6).

This means that the total strains due to subgrain formation

and subgrain boundary saturation are indeed the same.

We represent in Fig. 7 all data of 99.8% Al and AA6061

alloy confounded, plotting the curve A4¼ (a�A2)c. We find

a linear relationship between A2 and A4 (Figure 7). The expo-

nent of the fitting curve is c¼ 2.45 6 0.42, and we obtain

a¼ 0.05 6 0.05. In Figure 7, a line with slope c¼ 3 is also

displayed. We can observe that the model curve (c¼ 3) lies

very near to the experimental data, and therefore, we can

trust the obtained value of a as a reasonable estimation of the

parameter in Eq. (22).

The experimentally determined proportionality between

A4 and A2 confirms the hypothesis made above: that the

mechanisms for deformation during subgrain formation and

subgrain boundary saturation are basically the same:

TABLE II. Results from fitting procedure using Eq. (11), as well as test conditions for the 99.8% Al and AA6061 alloy.

Material Stress (MPa) _eSS (s�1) T (K) Total strain A1¼ eOR A2 A3¼ eOR A4 h(g) (lm)

Al 99.8% 2.1 8.83 � 10�9 573 0.55 0.028 8.64 � 10�5 0.070 3.89 � 10�15 49

Al 99.8% 5.2 1.23 � 10�7 573 0.56 0.150 8.62 � 10�7 0.081 9.62 � 10�19 121

Al 99.8% 3.9 1.66 � 10�6 623 0.55 0.258 1.31 � 10�6 0.300 8.62 � 10�17 267

Al 99.8% 7.7 4.85 � 10�5 623 0.53 0.261 2.91 � 10�4 0.289 2.30 � 10�12 132

Al 99.8% 8.9 8.93 � 10�5 623 0.50 0.352 4.76 � 10�4 0.336 6.71 � 10�12 159

AA6061 9.2 1.10 � 10�7 623 0.54 0.127 2.30 � 10�6 0.163 2.30 � 10�19 54

AA6061 10.3 1.00 � 10�7 623 0.08 0.039 8.93 � 10�6 0.050 6.76 � 10�18 15

AA6061 12.0 4.20 � 10�7 623 0.14 0.100 4.78 � 10�6 0.090 3.53 � 10�17 28

AA6061 14.8 1.70 � 10�6 623 0.55 0.200 1.33 � 10�5 0.237 8.85 � 10�15 42

AA6061 16.1 6.20 � 10�6 623 0.51 0.200 3.50 � 10�5 0.253 8.85 � 10�14 39

FIG. 4. Selected creep curves (a) 99.8% Al: (1) 3.9 MPa and 573 K and (2) 9 MPa and 623 K. (b) AA6061 alloy: (3) 9.2 MPa and 623 K and (4) 16.1 MPa and

623 K. Both e vs. t and de/dt vs. e are shown for the same sets of data.
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diffusion controlled dislocation motion. The functional

dependences shown in Figures 6 and 7 can be considered as

a validation of our model.

The model set above also allows us to determine the

subgrain size, using Eq. (14) and the input parameters listed

in Table III. The results are given in Table II. The obtained

subgrain size reasonably agrees with the microstructure of

the 99.8% Al and the AA6061 alloy, shown in Fig. 8 and

with data reported in Blum6 and Nakai.34

VII. TERTIARY CREEP STAGE

The secondary creep regime terminates once the stress

field generated by the saturated subgrain boundaries prevents

the dislocation movement. This internal stress field also pro-

motes material damage evolution during the tertiary creep

regime. Although tertiary creep is outside the scope of this

work, we now discuss how to incorporate existing damage

models into the above developed scheme, to include tertiary

creep in our description.

Creep damage is manifested by the formation and

growth of creep voids or cavities from tenths to tens of

microns.35,36 Although cavities appear since the early stages

of creep37 or can be present even prior to creep testing,38

they dominate the strain rate only after the onset of the

tertiary stage of creep. Finally, cavity coalescence form grain

boundary cracks, which then propagate to cause failure.

In order to explain the rupture time under creep condi-

tions, Kachanov24 has postulated a power law dependence

(on applied uniaxial stress) of a damage function. This

dependence was linked to creep strain rate by Rabotnov39

and further extended to multiaxial stress states by Leckie.40

The relationship reads

_e / rt

1� wð Þs ; (27)

where w is a damage function, and s and t are constants.

Equation (27) is the most common way to introduce the

effect of creep damage on the strain rate. It seems reasonable

to insert an additional term similar to the right hand side of

Eq. (27) into Eq. (22) in order to include creep damage and

describe tertiary creep.

VIII. SUMMARY AND CONCLUSIONS

A view of primary and secondary creep of metals is pro-

posed based on isothermal transformation processes

(described by the JMAK model). Physically, this is justified

by the fact that creep is a diffusion-controlled process. We

used experimental creep curves of pure aluminum (99.8%)

and AA6061 alloy to validate the proposed model. The main

conclusions of this work are as follows:

FIG. 5. Creep curve fitting using the SSCT model described in Eq. (11).

Open squares are not used for the fit.

FIG. 6. Linear relationship between A1 vs. A3 parameters of Eq. (11) (open

squares Al 99.8%). The solid line indicates fitting curve.

FIG. 7. Relationship between A4 vs. (A2)3 parameters of Eq. (11) (open

squares Al 99.8%). The solid line indicates fitting curve, and black dashed

line represents a slope of 3 curve.

TABLE III. Parameters used in the calculation of the subgrain size.

Parameter Definition Value (Units)

a Constant 0.3

G Shear modulus 21 800 (MPa) @573 K

20 900 (MPa) @623 K

b Burgers vector 2.86 � 10�10 (m)

M Taylor factor 3.06

D Diffusion coefficient

D ¼ D0 � exp �Qd

RT

� � 1.7 � 10�4 e(�142000/RT) (m2s�1)

R Gas constant 8.314 (J/K mol)

k Boltzmann constant 1.38 � 10�23 (J/K)
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(1) Creep in metals can be described by accumulation of

deformation “quanta,” given by the Orowan relation.

Those “quanta” are related to the minimum distance

travelled by a dislocation (the Burger’s vector b).

(2) The collective dislocation motion first creates subgrains

in class-M alloys and then saturates their boundaries. In

class-A alloys, a similar evolution of dislocations struc-

tures but arranged in forests is assumed.

(3) The deformation associated with subgrain formation and

subgrain saturation describes creep curves until damage

becomes dominant (tertiary creep). In this framework,

primary and secondary creeps are described in a unified

way.

(4) Experimental data on 99.8% Al and commercial

AA6061 alloy fully validate the model. It is proven that

(a) the total deformations associated with subgrain for-

mation and saturation coincide; this reflects the fact that

the average distance travelled by a dislocation is basi-

cally the subgrain size; (b) the characteristic deformation

rates associated with subgrain formation and saturation

are proportional, i.e., the deformation mechanism is the

same before and after subgrain formation, but

dislocations move under a reduced equivalent stress after

subgrain formation.
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