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Highlights 

 The levels of Trx1 and TrxR1 are decreased in substantia nigra of human PD brains. 

 The cytotoxic effect of 6-OHDA is increased after downregulation of redoxins. 

 Increased dopaminergic degeneration by 6-OHDA in C. elegans trxr-1 null mutants. 

  Both the Trx and Grx systems directly reduce the 6-OHDA-quinone. 

 The Trx and Grx systems may protect cells against the neurotoxin 6-OHDA-quinone. 
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Abstract  

Although the etiology of sporadic Parkinson disease (PD) is unknown, it is well established that 

oxidative stress plays an important role in the pathogenic mechanism. The thioredoxin (Trx) and 

glutaredoxin (Grx) systems are two central systems upholding the sulfhydryl homeostasis by 

reducing disulfides and mixed disulfides within the cell and thereby protecting against oxidative 

stress. By examining the expression of redox proteins in human postmortem PD brains, the levels 

of Trx1 and thioredoxin reductase 1 (TrxR1) were found to be significantly decreased. The 

human neuroblastoma cell line SH-SY5Y and the nematode Caenorhabditis elegans (C. elegans) 

were used as model systems to explore the potential protective effect of the redox proteins 

against 6-hydroxydopamine (6-OHDA) induced cytotoxicity. 6-OHDA is highly prone to 

oxidation, resulting in the formation of the quinone of 6-OHDA, a highly reactive species and 

powerful neurotoxin. Treatment of human cells with 6-OHDA resulted in an increased 

expression of Trx1, TrxR1, Grx1 and Grx2 and siRNA for these genes significantly increased the 

cytotoxic effects exerted by the 6-OHDA neurotoxin.  Evaluation of the dopaminergic neurons in 

C. elegans revealed that nematodes lacking trxr-1 were significantly more sensitive to 6-OHDA, 

with significant increased neuronal degradation. Importantly, both the Trx and the Grx systems 

were also found to directly mediate reduction of the 6-OHDA-quinone in vitro and thus render 

its cytotoxic effects. In conclusion, our results suggest that the two redox systems are important 

for neuronal survival in dopamine induced cell death. 

Key words: 6-hydroxydopamine, thioredoxin, thioredoxin reductase, glutaredoxin, neuronal 

degeneration   
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Introduction 

Parkinson disease (PD) is the second most common neurodegenerative disease, with a 

prevalence of 1-2% in the population over 50. It is clinically characterized by motor problems 

such as tremor, poor balance, slow voluntary movements and rigidity. PD is a progressive 

disease caused by the loss of dopamine producing neurons and their axons mainly in substantia 

nigra of the human brain. It is characterized morphologically by the presence of Lewy bodies, 

which are aggregates of misfolded α-synuclein in the cytoplasm of dopaminergic neurons ([1, 2] 

and references therein). The pathogenesis of PD is still unknown, but among other causes 

mitochondrial dysfunction with malfunction of complex I has been implicated, leading to an 

increased leakage of electrons from the mitochondria, generating increased reactive oxygen 

species (ROS), and consequentially oxidative stress within the cell. In PD, the dopaminergic 

neurons of substantia nigra are degenerating to a greater extent than other neurons, most likely 

due to dopamine itself. Dopamine is normally stored at mM concentrations in vesicles, however, 

this storage is disrupted in the presence of α-synuclein and oxidative stress, leading to an 

increased concentration of dopamine in the cytoplasm [3]. In the presence of oxygen, dopamine 

will oxidize and form 6-hydroxydopamine (6-OHDA) [4], which in turn will efficiently 

autooxidate and generate the highly neurotoxic compound 6-OHDA-quinone (Figure 1). This 

quinone is electron deficient, and if not eliminated by cellular antioxidants such as glutathione 

(GSH), it reacts readily with cellular nucleophiles such as sulphydryl groups on proteins, thereby 

affecting several biological systems in the cell [5]. In addition, during the formation of 6-OHDA-
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quinone ROS are generated in the form of H2O2 [6],  and in turn this reactive species causes 

oxidative stress and damage within the cell that eventually can lead to neuronal death [4].  

In order to sustain the thiol redox homeostasis cells have evolved two separate pathways, the 

thioredoxin (Trx) and the glutaredoxin (Grx) systems. The main function of both these systems is 

to reduce disulfide bonds and thereby rescue cells against injuries sustained in an oxidative 

environment [7]. The thioredoxin system is comprised of Trx together with the selenoenzyme 

thioredoxin reductase (TrxR). It has both cytosolic (Trx1 and TrxR1) and mitochondrial (Trx2 

and TrxR2) isoforms [8]. The glutaredoxin system consists of glutathione reductase (GR), and 

glutathione (GSH) which is required for the reduction of Grx. There are four human Grxs; 

cytosolic Grx1, Grx2c, Grx3 and Grx5, mitochondrial Grx2a, and nuclear Grx2b [9]. Both 

systems are dependent on NADPH as electron donor. The active site of Trx and the dithiol Grxs 

(Grx1 and Grx2) is composed of two cysteins, separated by two amino acids (CXXC), whereas 

the monothiol Grxs (Grx3 and Grx5) are lacking the c-terminal cysteine and instead use GSH for 

their catalytic activity [9]. These systems are known to regulate many biological systems, 

including the synthesis of deoxyribonucleotides, nitric oxide signaling, and protein folding as 

well as acting as key redox regulators of kinases and transcription factors like ASK-1 and p53 [8, 

10].  

In this study we aimed to investigate the role of redox proteins in the defense against 6-

hydroxydopamine induced cell death. We postulate that Trx and Grx are involved in dopamine 

induced neurodegeneration, and that increased levels of these proteins would protect the cell 

against the reactive dopamine metabolite 6-OHDA-quinone. 

  



Arodin et al.  Redox proteins in dopamine induced cell death 

6/27 
 

Materials and methods 

Clinical material 

Paraffin embedded tissue samples from substantia nigra from patients with PD (n=11) and age 

matched controls (n=10) were randomly selected from the archives of the Laboratory for Clinical 

Pathology, Karolinska University Hospital, Sweden, after approval of the Regional Ethical 

Review Board in Stockholm (Dnr: 488/02).  

Immunohistolochemical staining for redox proteins in Substantia Nigra 

The immunohistochemical (IHC) staining was performed using the following antibodies and 

corresponding dilutions against the respective human proteins: Trx1 (IMCOcorp, 1:36000), Trx2 

(Proteintech Europe, TXN 13089-1-AP, 1:25), TrxR1 (Upstate, 07-613, 1:50), Grx1 (IMCOcorp, 

1:1000), and Grx2 (Agrisera (CYLKKSKRKEFQ), 1:50), was performed by the accredited 

laboratory facility at the Division of Pathology, Karolinska University Hospital, Sweden. TrxR2 

was also examined with several different antibodies, but all were proven to be unspecific for IHC 

in the tissue examined and could not be used for further studies. Microphotographs of the 

different stainings were acquired using a microscope with an inbuilt camera (Nikon Eclipse 

E1000) at 4x magnification. To evaluate the IHC, the total stained area was measured, using 

Nikon’s image acquisition tool, NIS-Elements 3.0. The expression of redox proteins was 

calculated as the stained area of neuronal cells in each section divided by the total number of cell 

nuclei in the same image. 

Cell culturing 

The neuroblastoma cell line SH-SY5Y was cultured in DMEM (Gibco) supplemented with 10% 

FBS (Gibco), under normal conditions, 5% CO2 at 37 ºC. To induce differentiation, cells were 
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treated with 10 µM all-trans-retnoic acid (Sigma-Aldrich) in DMEM media, supplemented with 

3% FBS for 48 hours. To investigate the involvement of antioxidants, the cells were pre-treated 

with sodium selenite (Se, 0.5 µM, Sigma-Aldrich) for 24 h, followed by treatment with  6-

OHDA (40 µM, Sigma-Aldrich). Viability was measured using the XTT kit (Cell proliferation 

kit II, Roche). The media was changed before addition of the substrate, and wells with only 

media were used as a blank. Values were normalized to untreated control. 

Transfection 

When seeded into appropriate culturing plates SH-SY5Y cells were transfected with siRNA for 

Trx1 (Silencer® siRNA TXN ID#117158, Ambion), TrxR1 (Silencer® siRNA TXNRD 

ID#111302, Ambion), Grx1 (Silencer® siRNA GLRX ID#117030, Ambion), Grx2 

(GLRX2HSS147234, Invitrogen), and Negative control siRNA (ID#AM4611, Ambion) using 33 

nM LipofectamineTM2000 (Invitrogen). All treatments were performed 24 h after 

seeding/transfection of cells.  

Quantitative PCR 

Cells were lysed using the QiaShredder (Qiagen), and RNA was extracted using RNeasy Plus 

Mini Kit (Qiagen), according to protocol supplied by the manufacturer. The concentration of the 

mRNA was determined using the NanoDrop® Spectrophotometer ND-1000. Omniscript reverse 

transcription kit (Qiagen) was used for the cDNA synthesis using 2 µg of RNA, and oligo(dT) 

(Qiagen) as primer (final concentration 40 ng/µl). Real time quantitative PCR was performed on 

a C1000 Thermal Cycler (Bio-Rad) with 30 ng cDNA per reaction in triplicates on 96-well plates 

using iQ SYBR Green Supermix (Bio-Rad). The final volume for each reaction was 10 µl. 

Primer sequences and concentrations are listed in Supplementary Table 1. The qPCR was 

programmed according to the following steps; initiation: 50 °C, 2 min and 95 °C, 2 min, 
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denaturation (40x): 95 °C, 15 sec, and elongation: 60 °C, 30 sec, Melt curve (80 x): start 

temperature 55 °C with an increase of 0.5 °C per 10 second cycle. The housekeeping gene 

hypoxanthine guanine phosphoribosyltransferase (HPRT) was used as endogenous control, and 

results were analyzed using the 2-ΔΔCt-method.  

Western blot  

Samples were separated on a SDS-PAGE (12% Mini-PROTEAN TGX gel, BioRad) at 140 V 

followed by semi-dry electro blotting onto a nitrocellulose membrane for 45 min at 40 mA. 

Membranes were probed with anti-TrxR1 (1:500), anti-Grx2 (1:3000), and anti-actin (Sigma, 

1:3000) and incubated at 4 °C over night. The membranes were blocked with 5% dried milk for 

2 h in room temperature, followed by incubation with secondary antibodies for 2 h at room 

temperature. For Grx2 HRP conjugated secondary antibody was used (Sigma-Aldrich, 1:3000), 

and for TrxR1 and Actin infrared labeled antibodies IRDye 800CW and IRDye 700RD 

respectively were used (Licore, 1:10000). Bound antibodies were detected with 

chemiluminescence or in the infrared range using the Odyssey Fc infrared imaging system (LI-

COR) according to manufacturer’s instructions.  

ELISA 

ELISA was performed as previously described [11, 12] for the quantification of Trx1, Trx2 and 

Grx1. In brief, 96-well plates were coated with primary antibody and incubated at 4 °C over 

night [2.5 µg/ml anti-Trx1 (Agrisera), 5 µg/ml anti-Trx2 (Agrisera), 2 µg/ml anti-Grx1 

(IMCOcorp)]. The plates were blocked with 150 µl blocking buffer, and standard and samples 

were incubated on the plates over night at 4°C. The plates were incubated with secondary 

antibody 2 h at room temperature [5 µg/ml biotinylated Trx1 (Agrisera), 5 µg/ml biotinylated 

Trx2 (Agrisera), 1µg/ml biotinylated Grx1 (IMCOcorp)]. ALP conjugated streptavidin (1:1000) 
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was incubated on the plates for 1h prior to addition of phosphatate substrate. The plates were 

read at 405 nm in a PowerWave HT (BioTek) spectrometer.  

C. elegans strains 

C. elegans strains were maintained at 20 °C on NGM agar plates seeded with a lawn of E. coli 

OP50 as food source. The worm strains used in this study were: OH7193 [13], otIs181[Pdat-

1::mCherry; Pttx-3::mCherry] III; him-8(e1489) IV, VB1363 [14], trxr-1(sv43) IV, RB1637 

(obtained from the publicly funded Caenorhabditis Genetics Center/CGC), trx-5 (ok2014) V. 

Crossing of the Pdat1-::mCherry reporter strain with the deletion mutants generated the 

following new strains; OE4550, otIs181[Pdat-1::mCherry; Pttx-3::mCherry] III; trxr-1(sv43) IV 

and OE4551, otIs181[Pdat-1::mCherry; Pttx-3::mCherry] III; trx-5(ok2014) V].  PCR 

conditions and primer sequences to follow up the respective deletion mutants can be provided 

upon request. 

6-OHDA treatment of C. elegans 

Worms were treated with 6-OHDA as previously described [15]. In brief, worms were 

synchronised by placing 50 gravid hermaphrodites on seeded agar plates for four hours, and their 

progeny was allowed to grow until the L3-L4 stage at 20 °C. These worms were then washed off 

the plates in distilled water and washed additionally three times. A stock solution of 100 mM 6-

OHDA were prepared freshly in 20 mM ascorbic acid prior to treatment. The stock solution was 

diluted to the desired concentrations in water (20 mM or 40 mM 6-OHDA). Worms were treated 

in 1 ml for one hour, at room temperature with gentle shaking. After one hour, the treatment was 

removed and the worms were washed once in water and three times in M9 buffer. Worms were 

plated and allowed to recover for 24 hours, followed by evaluation of neuronal degeneration by 
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microscopy on a Zeiss Axioplan II. Evaluations were performed with Cy3/DsRed filter at 200ms 

exposure time, with 20-40x magnification.   

Evaluation of neuronal degeneration in C. elegans 

Approximately 40 worms were anaesthetised in 3 mM levamisole on agarose pads. 30 worms per 

treatment were scored for neuronal degeneration. Neuronal degeneration was evaluated 

according to the following criteria; Unaffected, with no effect on the fluorescent neurons, 

Blebbing, where changes of the dendrite or axon and slightly decreased fluorescence of the cell 

body was observed, Snap, defined by loss of dendrite or axon, low florescence and rounding of 

the cell body, and complete cell loss where all but the non-dopaminergic AIY neurons were 

missing (Supplementary figure 1 A-E), as previously described by Tucci et al [15]. 

Determination of thioredoxin and thioredoxin reductase activity 

The activity measurements were performed as previously described [16] with some 

modifications. A mixture of 50 mM Tris pH 8, 1 mM EDTA pH 8.0, and 0.15 mg/ml NADPH 

was prepared. 6-OHDA was dissolved in MilliQ-H2O and added to a 96-well plate (25, 50 and 

100 µM final concentration). Mammalian TrxR1 (30 nM, IMCOcorp) and Trx1 (2 µM, 

Promega), and Catalase (20U, Sigma-Aldrich) was added to the mixture, and the consumption of 

NADPH was monitored at A340 for 20 minutes.  

Determination of glutaredoxin activity 

The assay was performed as previously described, with minor modifications [17]. A mixture of 

0.1 M Tris pH 8, 2 mM EDTA pH 8, 0.1 mg/ml BSA, 50 µM GSH pH 5.0, 2 mg/ml NADPH, 

and 0.008 OD/ml yeast GR was prepared (all reagents were purchased from Sigma-Aldrich). 6-

OHDA was dissolved in MilliQ-H2O and added to a 96-well plate (with a final concentration of 
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25, 50 or 100 µM). Reactions were performed with 1 µM hGrx1 (IMCO Corporation) and 20U 

Catalase (Sigma-Aldrich). A 100 µl mixture was added, and the final volume was adjusted to 

110 µl per well. Consumption of NADPH was monitored at A340 for one hour.  

Statistical analysis 

The Kruskall-Wallis statistical method was used to calculate the significance level in the 

quantification of the IHC, and t-test for independent samples were used for calculating the 

significance from the experiments conducted in SH-SY5Y cells and C. elegans. All statistical 

calculations were performed using the Statistica Program (Statsoft).   
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Results  

The thioredoxin system but not the glutaredoxin system is downregulated in PD brains  

To investigate the expression pattern of the redox proteins in PD brains, paraffin embedded 

tissue from substantia nigra from Parkinson patients (n=11) and controls (n=10) were sectioned 

and stained for Trx1, Trx2, TrxR1, Grx1, and Grx2 (Figure 2).  The tissue was also stained for 

TrxR2, but all antibodies tested were proven to be unspecific for IHC in the tissue examined and 

was therefore not evaluated. To evaluate the immunohistochemical staining, the stained area was 

measured and divided by the number of nuclei in the section. A significant downregulation of 

Trx1 and TrxR1 in substantia nigra of PD patients compared to controls was observed, which 

was not detected for the other proteins examined (Figure 2). 

Treatment with 6-OHDA in the human neuroblastoma cell line SH-SY5Y altered the 

expression of redox proteins 

To further explore the involvement of redox proteins in relation to dopamine induced cell death, 

the human neuroblastoma cell line (SH-SY5Y) was differentiated with retinoic acid and the 

viability was evaluated after treatment with increasing concentrations of 6-OHDA. As no 

difference in toxicity was observed in differentiated cells compared to undifferentiated cells (data 

not shown), all subsequent experiments were conducted in undifferentiated cells. The IC50 value 

of 6-OHDA in undifferentiated cells was determined to 40 µM, as calculated from the dose 

response curve (data not shown).  

In addition to 6-OHDA, cells were also pretreated with selenite (0.5 µM)  for 24 h. Selenium 

compounds have known antioxidant properties at low to moderate doses, suggestively through 

the incorporation into selenoproteins (including TrxR1 and TrxR2) [18]. Our results demonstrate 
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a strong protective effect of selenite pretreatment, with a 50% higher viability compared to when 

cells were only treated with 6-OHDA (Figure 3A). Next, the mRNA levels of the redox proteins 

were determined in SH-SY5Y cells treated with 6-OHDA. Increased mRNA levels of Trx1, 

TrxR1, TrxR2, Grx1, Grx2(total), as well as the Grx2 splice forms Grx2a and Grx2c were 

observed (Figure 3B and C). However, there was no difference in terms of mRNA expression of 

redox proteins between the samples pretreated with selenite and the ones without, suggesting that 

the increase is caused by the addition of 6-OHDA and not by the selenite pre-treatment. 

Treatment with 6-OHDA was also shown to increase the total enzymatic activity of TrxR1 and 

TrxR2 (Figure 3F), as well as increasing the protein levels of Trx2 (Figure 3E) and Grx1 (Figure 

3H).  In contrast, the protein levels of Trx1, TrxR1and Grx2 remained unaffected (Figure 3D, 3G 

and 3I) 

Knock-down by siRNA of redox proteins increases the toxicity induced by 6-OHDA in 

neuroblastoma cells. 

With the observed changes in the mRNA levels of Trx1, TrxR1, Grx1, and Grx2 upon treatment 

with 6-OHDA, the potential impact of proteins belonging to the thioredoxin and glutaredoxin 

systems on the cytotoxicity of 6-OHDA was examined by knock-down of Trx1, TrxR1, Grx1 

and Grx2 using siRNA. Increased cytotoxicity of 6-OHDA was observed in cells after knock 

down of TrxR1, Grx1 and Grx2 but not in Trx1 siRNA (Figure 4A). Control experiments with 

siRNA for Trx1, TrxR1, Grx1 and Grx2 are illustrated in figure 4B.  

C. elegans trxr-1 mutants are more sensitive to 6-OHDA toxicity 

As the brains of PD patients exhibited low levels of Trx1 and TrxR1, the effects of dopaminergic 

cell degeneration in connection to the thioredoxin system was studied in C. elegans, an amenable 

animal model system with a simple, well described dopaminergic system consisting of eight 
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dopaminergic neurons in the hermaphrodite (two ADE and four CEP neurons in the head plus 

two PDE neurons in the posterior part of the body) [19]. The C. elegans thioredoxin system is 

composed of five thioredoxins (trx-1 to trx-5) and two thioredoxin reductases trxr-1 and trxr-2. 

C. elegans trx-1 to trx-4 have known localizations outside the dopaminergic neurons [20-22](and 

Miranda-Vizuete unpublished data) and were therefore not chosen for this study. In addition, 

both trxr-2 and trx-2 are known for their mitochondrial localization where dopamine is expected 

to have less effect, and based on this were also excluded. Therefore, we focused our approach 

with C. elegans on the trxr-1 and trx-5 genes. Animals harboring the trxr-1(sv43) [14] and trx-

5(ok2014) null alleles were used, and treated with 20 and 40 mM 6-OHDA. The neuronal 

integrity was evaluated by scoring the degeneration of the four dopaminergic CEP (marked with 

dat-1::mCherry) neurons and the two non-dopaminergic AIY (marked with ttx-3::mCherry) 

neurons (Supplementary Figure 1). The stages of the neuronal degeneration were defined as 

unaffected, neurite blebbing, dendritic snap, and complete cell loss (the classification is 

thoroughly explained in material and methods) [15]. The internal control cells (AIY) showed no 

degeneration in any of the treatments. Increased neuronal degeneration in the nematodes was 

observed in the trxr-1 mutant when treated with 40 mM 6-OHDA, as illustrated in Figure 5 and 

Supplementary Table 2. The degeneration in the trxr-1 mutant had significant differences when 

comparing the unaffected neurons (ptrxr-1 = 0.004 and ptrx-5= 0.08) and complete cell loss (ptrxr-1 = 

0.03 and ptrx-5=0.13). 

6-OHDA-quinone as a substrate for the glutaredoxin and thioredoxin systems 

To assess whether the protective effects of the redoxins were indirect via protection against 

oxidative stress or direct through an interaction and reduction of the 6-OHDA-quinone, 

enzymatic activity measurements of the thioredoxin and glutaredoxin systems using 6-OHDA as 
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substrate were conducted and the consumption of NADPH was monitored over time. To exclude 

that the reaction observed was not due to the known peroxidase activity of the Trx or Grx 

systems [23, 24] acting on the spontaneously formed hydrogen peroxide when 6-OHDA converts 

to 6-OHDA-quinone in the presence of oxygen, catalase was included in excess to the reaction 

mixture. Our data demonstrate that TrxR1 has the capacity to reduce the 6-OHDA-quinone, and 

that this reaction was enhanced in the presence of Trx1 (Figure 6A, Supplementary Figure 2A). 

When examining the Grx system, we observed a modest increased consumption of NADPH with 

increasing concentration of 6-OHDA in the presence of GSH alone (Supplementary Figure 2B), 

as previously reported by others [25]. However, this reaction rate was significantly increased 

with the addition of Grx1 to the reaction mixture compared to the reaction catalyzed by GSH 

alone (Figure 6B). Both systems have well documented peroxidase activities, and consequently 

part of the total activity measured is likely due to the peroxidase activity exhibited by these redox 

systems. However, oxidation of NADPH remained even after the addition of catalase to the 

reaction mixture (Figure 6), thus confirming the ability of these proteins to reduce the 6-OHDA-

quinone. The reduction of the 6-OHDA-quinone was further shown to occur in a concentration 

dependent manner (Supplementary figure 2 A-B). To explore the catalytic mechanism, we used a 

human Grx1 mutant variant lacking the C-terminal cysteine in the active site, and compared it to 

the wild-type protein. As illustrated in supplementary figure 2C no NADPH consumption was 

obtained with the mutated glutaredoxin, confirming that the dithiol mechanism is required for the 

reduction of the 6-OHDA-quinone. These redoxins thus exert their protective effect against PD-

induced neuronal cell death by directly being able to reduce the neurotoxin 6-OHDA-quinone. 
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Discussion 

Although PD is the second most common neurodegenerative disorder, affecting a growing 

number of people due to increased age, the etiology of PD is largely unknown. A deeper 

understanding of the underlying mechanisms behind dopamine induced cell death would be 

essential for the development of efficient treatment strategies. This study demonstrates that the 

thioredoxin and the glutaredoxin systems not only play an important role against dopamine 

induced cell death, but they also exert critical protective effects by direct enzymatic reduction of 

the neurotoxic dopamine metabolite 6-OHDA-quinone.  

Familial PD has been linked to mutations in the α-synuclein gene, and it has been suggested that 

a loss of the normal function as well as a toxic effect of the mutated form of this protein 

promotes the accumulation of dopamine in the cytoplasm [6]. Free in the cytosol, dopamine will 

auto-oxidize to form 6-OHDA and 6-OHDA-quinone with H2O2 as a byproduct that will further 

contribute to the increased oxidative stress in the nigrostratial regions where most of the 

neurotransmitter is synthesized and stored. Low levels of the cytosolic thioredoxin system in 

substantia nigra, as was found in the human tissue examined from PD patients, would therefore 

lead to a decreased defense against the oxidative stress. 

TrxR1 and TrxR2 are two of the 25 selenoproteins known in human [26]. Selenium containing 

proteins have vital functions in the body, making selenium an essential trace element. It has been 

shown that the highest retention of selenium occurs in the brain in comparison with other tissues 

[27], placing the brain at the top of a tissue hierarchy.  Feeding rats with a selenium-deficient 

diet resulted in a high priority of selenium distribution to the brain. The Se-deficient rats showed 

dramatically decreased levels of selenium in liver and kidneys, whereas the levels in brain were 
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far less affected [28]. The preferential supply of selenium in the brain during prolonged periods 

of selenium deficiency has also been reported by others [29], and gives a strong indication of an 

important function of this essential trace element in the brain. In three large trials carried out 

among elderly persons, low selenium levels were associated with faster decline in cognitive 

functions and poor performance in tests assessing coordination and motor speed [30].  Low 

levels of selenium have further been observed in patients suffering from PD [31]. Selenium-

deficient diet has also resulted in a large decrease in activity of the selenoprotein containing 

TrxR and GPx in rat liver [32]. With immunohistochemical evaluations of human post mortem 

substantia nigra we showed a decreased level of the selenium containing protein TrxR1, which 

might possibly be explained by the low selenium levels reported by others in PD.  

In previous studies with 6-OHDA, pre-treatment with sodium selenite resulted in an upregulation 

in antioxidant status and lowered dopamine loss in a rat model [33]. Sulfohydryl antioxidants 

protected against neuronal degradation in the stratium, particularly in the case of cysteine and 

was attributed to its capacity to remove the H2O2 produced in the auto-oxidation of 6-OHDA 

[34]. Furthermore, SH-SY5Y cells exposed to 50 µM 6-OHDA have been reported to increase 

the GSH concentrations 12-fold, but with no change in GSH:GSSG ratio, suggesting an 

induction of oxidative stress, with an adaptive increase in intracellular GSH [35]. Based on the 

indicative role of selenium in PD, selenium pretreatment was performed prior to the addition of 

6-OHDA. Addition of selenium to the neuroblastoma cells protected the cells against 6-OHDA. 

The protective effect seen by selenite, could however not be explained by an increased 

expression of the redoxins examined in this set up, as the expression did not differ significantly 

from the 6-OHDA treatment alone. The protective effect observed by the selenite pretreatment, 

might instead be explained by the involvement of other selenoproteins. One very likely candidate 
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is the selenium containing glutathione peroxidase that exhibits well-established peroxidase 

activity [36]. These peroxidases would be able to protect against the spontaneously formed 

hydrogen peroxide when 6-OHDA is autooxidised to the 6-OHDA-quinone.  

The involvement of TrxRs in protecting against oxidative stress, mitochondrial dysfunction and 

cell death in dopaminergic cells has been previously reported by inhibition of total TrxR with the 

specific gold compound auranofin and through knockdown of TrxR2 with shRNA. Knockdown 

of TrxR2 potentiated H2O2 release and cell death, resulting from subtoxic concentrations of 

paraquat in two dopaminergic cell lines [37]. Additionally, inhibition of TrxRs in N27 

dopaminergic cells prior to treatment with 6-OHDA increased the levels of H2O2 and subsequent 

cell death [37]. In agreement with these results, we show increased levels of Trx1 and both the 

cytosolic TrxR1 and the mitochondrial TrxR2 mRNA upon treatment with 6-OHDA in the 

neuroblastoma cell line SH-SY5Y. Increased enzymatic activity of total TrxR upon treatment 

with 6-OHDA was also seen, further strengthening the suggested role of the Trx-system in the 

protection against dopamine induced cell death. The mRNA levels of Grx1, Grx2(tot), Grx2a, 

and Grx2c were also increased after 6-OHDA treatment. Toxicity induced by 6-OHDA has 

previously been shown to be inhibited by Grx1 overexpression [38], and Escherichia coli Grx2 

has been shown to protect cerebellar granule neurons from dopamine induced apoptosis, by 

activating NF-кB signaling pathway through Ref-1 [39]. The protection was further shown to be 

attributed to the activation of the Ras/PI3K/Akt and JNK/AP-1 pathways, culminating in NF-кB 

activation [40].  

Knocking down TrxR1, Grx1, and Grx2 with siRNA in our setup increased the vulnerability to 

6-OHDA. Increased dopaminergic cell death was also observed upon treatment with 6-OHDA in 
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a C. elegans trxr-1 null mutant strain. No significant difference could be seen after deletion of 

trx-5, even though a strongly similar trend was observed.   

Through direct enzymatic interaction, both the thioredoxin and the glutaredoxin systems were 

able to reduce the neurotoxic 6-OHDA-quinone. The thioredoxin system presented the highest 

activity in vitro for this neurotoxin, and with significantly lowered levels in substantia nigra of 

PD patients, this might implicate a diminished protective effect of the neuronal cells in substantia 

nigra to this highly cytotoxic metabolite. It has previously been shown that GSH can reduce the 

6-OHDA-quinone to dopamine or covalently bind to dopamine-quinone [5]. We can demonstrate 

that the glutaredoxins are much more efficient at reducing 6-OHDA-quinone than GSH alone. 

The direct reduction of the 6-OHDA-quinone by these systems, strongly suggest that the 

thioredoxins and the glutaredoxins are able to render the cytotoxic effects generated by the 

neurotoxin, and is supported by the increased sensitivity of the SH-SY5Y cells to 6-OHDA 

during down regulation of the redoxins. Taken together, the present work reveals the importance 

of Grx and Trx systems in the defense against dopamine induced apoptosis.  
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Supplementary Table 1.  

Primer sequences and concentrations for qPCR reaction. 

Primer Sequence Concentration (nM) 

HPRT Fwd 3’-GCAGACTTTGCTTTCCTTGG-5’ 

Rev 3’-TATCCAACACTTCGTGGGGT 

300 

900 

Grx1 [41]  

Grx2 (tot) [41]  

Grx2a [41]  

Grx2b [41]  

Grx2c Fwd 3’-TAAGCAAGATGGAGAGCAA-5’ 

Rev 3’-GTTCCACCACTTTATAGTTA-5’ 

900 

900 

Grx3 Fwd 3’-GTGAAGTTGGAAGCTGAAGGTGT-5’ 

Rev 3’-CACTAGATGCATGTCGCTGAAC-5’ 

900 

900 

Grx5 Fwd 3’-GCTCCGACAAGGCATTAAAGAC-5’ 

Rev 3’-TTCAGTTCTTCCACCAAGTCCC-5’ 

300 

300 

Trx1 Fwd 3’-GATCCATTTCCATCGGTCCTTACA-5’ 

Rev 3’-AGAGAGGGAATGAAAGAAAGGCTT-5’ 

900 

900 

Trx2 Fwd 3’-GTCCTCATCTTGGTCCCTTCC-5’ 

Rev 3’-ACAAAACAGCAGCTGGAAAGAG-5’ 

900 

900 

TrxR1 [42]  

TrxR2 Fwd 3’-TCAGAAGATCCTGGTGGACTCC-5’ 

Rev 3’-TCGTGGGAACATTGTCGTAGTC-5’ 

300 

300 
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Supplementary Table 2. 

Levels of degeneration on dopaminergic CEP neurons in C. elegans after 20 or 40 mM 6-OHDA 
treatment. Levels represent the percentage (0.00-1.00) of total number of cells from each 
treatment.  Significance was calculated by t-test for independent samples, trx-5 or trxr-1 
compared to wt. 

Genotype  
6-OHDA 
(mM) Unaffected p-value

Neurite 
blebbing p-value

Dendritic 
snap p-value Cell loss p-value 

wt 20 0.42  0.26  0.12  0.19  

trx-5  20  0.28 0.25 0.31 0.62 0.15 0.42 0.25 0.35 

trxr-1  20 0.22 0.10 0.32 0.31 0.09 0.44 0.37 0.07 

wt 40 0.42  0.30  0.11  0.17  

trx-5  40  0.25 0.08 0.33 0.84 0.10 0.94 0.33 0.13 

trxr1  40  0.18 0.004 0.31 0.93 0.13 0.58 0.38 0.03 
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Figure legends 

Figure 1. Chemical structure of DA, 6-OHDA and 6-OHDA-quinone. 

Figure 2. Immunohistological staining of redox proteins in substantia nigra of PD patients 

(nC=10, nPD=11).  Representative figures of staining with Trx1, Trx2, TrxR1, Grx1, and Grx2, 

and quantification of immunohistological stainings from Substantia nigra (stained area/nuclei). 

Pictures were taken with 20x magnification. The dot represents the mean value, the box indicates 

the mean +/- standard error, and the brackets represents mean +/- standard deviation. The 

Kruskall-Wallis statistical method was used to calculate the significance level (*p<0.05, 

**p<0.01).  

Figure 3. Changes in redox response in SH-SY5Y cells upon pre-treatment with selenite 

and treatment with 6-OHDA (Se 0.5 µM, 6-OHDA 40 µM). A. Viability in cells after 

pretreatment with selenite (Se, 0.5µM) and treatment 6-OHDA (40 µM) measured by XTT. 

Values are normalized to mock treated cells. B-C. Relative mRNA levels after treatment with Se 

and 6-OHDA. HPRT was used as reference gene and all values are normalized to untreated 

control. D. Protein levels of Trx1 E. Protein levels of Trx2 F. Total TrxR, enzymatic activity 

measured in cell lysate after treatment with 6-OHDA for 24h G. Protein level of TrxR1 H. 

Protein level of  Grx1 I. Protein level of Grx2. Protein levels were measured after treatment with 

Se and/or 6-OHDA and measured either with ELISA (Trx1, Trx2 and Grx1) or with western blot 

(Grx2 and TrxR1). For western blot actin was used as loading control and values were 

normalized to mock treated cells. Statistical analysis was performed with t-test for independent 

samples (*p<0.05, **p<0.01 and ***p<0.001).  

Figure 4. Knock-down of redox proteins with siRNA. A. Viability of SH-SY5Y cells after 

knockdown of redox proteins followed by 6-OHDA treatment. Levels of significance were 

calculated using t-test for independent samples (*p<0.05, **p<0.01 and ***p<0.001). B. A 

representative figure of protein levels of Trx1, TrxR1, Grx1 and Grx2 after 24h siRNA 

treatment, measured by ELISA (Trx1, Trx2, and Grx1) or Western Blot (TrxR1 and Grx2).  

Figure 5. Role of redox proteins in neuronal toxicity in C. elegans. A. Schematic overview of 

neurons marked with mCherry in the worm model. Dopaminergic (4 CEP and 2 ADE) in red and 
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non-dopaminergic (AIY) in purple. B. Unaffected neuron. C. Complete loss of the CEP 

dopaminergic neurons, AIY unaffected. D. Loss of dopaminergic CEP in C. elegans with 

deletion of trx-5 or trxr-1. AIY was used as survival control cells, and only animals with intact 

AIY were calculated (n = 30 for each experiment). Levels of significance were calculated using 

t-test for independent samples (*p<0.05). A full representation of all measured parameters can be 

found in Supplementary figure 1.  

Figure 6. Activity of TrxR1 and Grx1 in the presence of 6-OHDA. A. TrxR1 activity assay 

with 100 µM 6-OHDA in the presence or absence of 20 U Catalase. B. Activity assay for Grx1 

with 100 µM 6-OHDA in the presence or absence of 20 U Catalase.  

Supplementary Figure 1. Neuronal degeneration in C. elegans; Dopaminergic CEP neurons 

visualized by red rings, and unaffected non-dopaminergic AIY neurons are indicated with purple 

arrows. A. Schematic overview of the neurons studied in this paper. The dopaminergic neurons 

are shown in red and the non-dopaminergic AIY neurons in purple. B. Unaffected; no 

degeneration of either the CEP neurons (red circle) or the AIY neurons (purple arrow). C. 

Neurite blebbing; blebbing of the dendrite visualized by the white arrows, and slightly lower 

fluorescence of the cell body (red ring). D. Dendritic snap; the dendrite is completely broken as 

indicated with the white arrows, and the cell body is rounded and the fluorescence is low.  E. 

Cell loss; the entire CEP neuron is missing, only low fluorescence seen as apoptotic bodies 

remain. F. Degeneration of the dopaminergic CEP neurons in C. elegans with deletion of trx-5 or 

trxr-1. AIY was used as survival control cells, and only animals with intact AIY were calculated 

(n = 30 for each experiment). Animals were scored according to above mentioned criteria. Levels 

of significance were calculated using t-test for independent samples (*p<0.05, **p<0,01).  

Supplementary Figure 2. 6-OHDA-quinone as substrate for the thioredoxin and 

glutaredoxin systems. A. Assay for the thioredoxin system with different concentrations of 6-

OHDA. B. Grx1 activity assay with different concentrations of 6-OHDA. C. Reaction with 100 

µM 6-OHDA and wild type Grx1 or the mutant Grx1C14S. 
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