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It is shown that in the single j shell model, the double beta decay matrix element of the operator
[o(l}&(o(2)]~t+(1)t+(2)from the ground state of the magic nucleus Ca to the 2+~ state of Ti
vanishes. This is due to a signature selection rule. Other matrix elements in this region are also dis-
cussed. The asymptotic Nilsson model is also discussed, especially for A, =2. The relation of this
operator to double beta decay operators is discussed. The possible confusion of (j)" states with in-
truder states is also considered.

I. INTRODUCTION

Our purpose is to study some properties of the opera-
tors [o(1)Xo(2)]"t+(1)t+(2)with A, =O, 1, and 2. These
operators obviously have an association with the double
beta decay process, although the full operators in that
theory are more complicated. We nevertheless believe
that it would be fruitful to study these somewhat simpler
operators and try to get a feel for how the matrix elements
depend on the nuclear structure. We will also review
some of the developments since the pioneering work of
Primakoff and Rosen. '

For A, =O there is a very close association with the al-
lowed double beta decay from J=0+ to J=0+ with
b, T =2. For A, =2 the above operator is relevant to the
kinematically hindered two neutrino (2v) decay and to the
kinematically allowed neutrinoless (Ov) decay, although
for the latter case the operator is much more complicated,
as shown by Vergados, Doi et al. , ' and Haxton and
Stephenson.

In previous work on ground state double beta decay
transitions J=O+~J=0+ it was noted that Ca is a
rather special case ' as compared with heavier open shell
nuclei such as Ge, Se, and ' Tl. For the latter nuclei
it was noted by Zamick and Auerbach (ZA) (Ref. 10) that
the large matrix elements obtained by Haxton, Stephen-
son, and Strottman (HSS) (Refs. 11 and 12) could be ex-
plained as being due to pairing coherence. This coherence
pertains only to ground state to ground state transition
and does not extend to excited 0+ or 2+ states. On the
other hand for the Ca case there are cancellations. This
will be discussed later.

At the time of this writing there seems to be a con-
sensus among most theorists that the matrix elements for
medium-heavy open shell nuclei are large and in some
sense easy to calculate. One even gets such large matrix
elements in the interacting-boson approximation (IBA)
(Ref. 13). Unfortunately the experimental evidence seems
to indicate that the matrix elements are 5 to 10 times
smaller than theory. This includes both the geochemical

experiments of Kirsten et al. ' and the most recent labo-
ratory experiments of Moe. '

Just how this problem will be resolved is not clear.
Grotz and Klapdor' have suggested that for the case of
2v decay the closure approximation is not good and that
one gets significantly reduced matrix elements by sum-
ming explicitly over intermediate states and putting in the
correct energy denominators. However, Vogel and Fish-
er' (VF) have recently also done these nonclosure calcula-
tions and do not get significant changes for most nuclei
(although for Ge they do get a reduction of a factor of
2). They suggest that Grotz and Klapdor' use effective
interactions which lead to unusually small pairing gaps.
Indeed, both ZA (Ref. 10) and VF (Ref. 17) have shown
that getting the right pairing gap is critical.

Getting back to Ca, the double beta decay here at first
looked promising because of the large energy release and
because of the simple configurations involved. However
the calculated matrix elements were found to be rather
small. This was explained qualitatively by ZA (Ref. 10)
as being due to a I( selection rule, previously introduced
by Lawson' to explain single beta decay. Since they are
small they are sensitive to small configuration admixtures
and as shown first by Suboi et al. ' and then by Brown
the closure approximation is not reliable. Concerning ex-
cited states, Vergados et a/. , who had done much of
the important early work on nuclear structure effects in
double beta decay, noted that the matrix e1ements to excit-
ed 0+ states can be larger than to the ground state. This
may be due to the fact that the change in the K quantum
numbers is less.

In striking contrast to the 0~0 transition, the 0~2
transition is "allowed" only in the neutrinoless case.
Roughly speaking for an allowed two neutrino emission
the electrons have to come out in s states. However to
form spin two the electrons have to have their spins paral-
lel. This violates the Pauli principle. In the neutrinoless
case one of the electrons has to be in a p state, i.e., p3/2.
But the virtual neutrino can have a high energy. It has
been shown by Rosen ' and Doi et al. ' that the 0~2
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matrix element depends on left-right coupling terms but
not on a finite neutrino mass.

Although there are several operators for the 0~2 Ov

transition, in the approximation in which r,J
——r; —

r& is
replaced by Ro ( = rod '

ro ——1.2 fm) the only thing that
survives is [o(1)X(r(2}]"=t+(1)t+(2). This approxima-
tion was considered early on by Primakoff and Rosen. '

Vergados has shown though that the exact matrix ele-

ments can differ considerably from this approximation.

II. TRANSITIONS FROM CALCIUM TO TITANIUM

We calculate the matrix elements

M= If Oi Xa j t+It+ j I;
l (J

for transitions between calcium isotopes and titanium iso-
topes. (Note for A, =O

~=o[(r)&zl = —&- tr)'trz .v'3

Usually in the literature the matrix elements of tr) trz are
quoted for the J=0 to I=0 transitions. ) We will con-
sider only the case where I;=0. Our convention is

~
t+ neutron) =

~
proton).

In the single j shell model (f7/i} the calcium states of
given angular momentum and seniority occur only once.
We will require the two particle coefficients of fractional

parentage

L„L„
DA(L L )[( '2) p(J'N) n]A,

)&X)/i(1)X)/i(2)X ()/i)(3) I ()/i)(n +2) .

Here X (&&&] is a neutron state and X~~q a proton state.
The operator t+ is such that t+7

The matrix element can be shown to be

These are tabulated in many places. It is instructive to
note that one can read these off from the wave functions
of McCullen, Bayman, and Zamick, as given in the
Princeton University report. One simply looks at the
wave functions of states of higher isospin for the titanium
isotopes [r=T(ground) + 2]. The tables list the coeffi-
cients D~(L~L„U}, the probability amplitudes that the
protons couple to angular momentum I.p and the neu-
trons to angular momentum I.„and seniority U.

For beta decay problems it is convenient to introduce
an isospin variable so that the wave function for a titani-
um isotope with n neutrons in the f7/i shell becoines

1
1/2 ~( I2)(3 n +2)

(n +2)!
2!n !

2

- ItZ
(j+1)(2j+1)

J

1 1

x g D (L,L„)(2L,+I)' '((j")L,(j')L.
I
Ij'"'"o) j j L. j =f7/2—

L„L„ ~ ~j j p

where we have introduced the usual nine j symbol. We
note that only even values of L„and L~ enter. This is ob-
vious for Ti (two protons and two neutrons} and Ti
(two protons and two neutron holes) since for two identi-
cal fermions in a single j shell the total angular momen-
tum must be even to satisfy the Pauli principle. For Ti
it is possible for four neutrons to couple to angular
momentum L„=5but the two particle coefficient of frac-
tional parentage (cfp) only allows values of L„equal to
Lp so that the I.„=5term never enters.

For completeness consider the case A, =1. For such a
state we must have L& L„(even). The ni——ne j symbol is

1 1 1

j j Ln

This must vanish because the second and third rom are
identical and the sum of all the nine angular momenta is
odd. Hence the matrix element Uanishes for A, =l. (How-

ever this operator is not associated with double beta decay
for A, = 1.)

We next specialize to Ca~ Ti. One can easily show
that the coefficients of fractional parentage are the fol-
lowing:

2I.„+1
((j )L (j )L,

~ I(j )0)=, L„even.
28

We find for A, =O or 2

M(48) = "+'".'+"V(2)(,+1)j
1 1

X g Q(2Lp+1)(2L„+1) .j j L„,

XD'(L,I.„) .
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The coefficient multiplying D (L~L„) is symmetric under
the interchange of L~ and L„(for A. =O and 2}. What
about D (L~L„) itself?

As discussed by one of us (L.Z.) at an Argonne sympo-
sium in 1964P the findings of McCuilen, Bayman, and
Zamick were that for a system with the same number of
protons and neutron holes the wave functions were such
that for some states D"(LzL„)=+D (L„L~), while for
the rest D (L~L„)=—D~{L„L~). For Ti a signature
quantum number s was introduced such that

D'(L„L,„)=( 1)"+—'D'(L„,L, ) .

The signature quantum number has also been considered
by I.awson and Ogawa.

It has been shown ' that this signature property leads
to several selection rules. For example, for the electric
quadrupole operator e~ gr Y2 ——e„gr Yi Th.e B(E2)
between states of opposite signature is proportional to
(e~+e„},and between states of the same signature to
(e~ —e„) . The quadrupole moment of the 2+ state is
proportional to ep —e„.

This signature selection rule in the context of double
beta decay is relevant to the transition 0+~2+. {The
A, =O states necessarily all have even signature, so nothing
interesting happens here. )

It turns out that the 2+i state of Ti in the single j shell
calculation has odd signature, but the 2+2 state has even
signature. [This is consistent with the fact that the
B(E2) to the 2+i state is much stronger than to the 2+2

state. The former goes as ( e~+e„}, the latter as

(ep —e„) .]
It is now clear that the matrix element M{48) Oi~2i

will uanish because everything multiplying D(L~L„) is
symmetric while D(L&L„) itself is antisymmetric.

Thus the nonobservance of the Oi~2i transition cannot
immediately be used to deduce that the left-right coupling
term is zero. The transition is strongly suppressed by nu-

clear structure effects.
Amusingly, Vergados also obtained some matrix ele-

ments which were zero for the J=0~J=2 transitions in
his early 1976 paper. He did not however comment on
the reason for their vanishing. He did the calculations
with two interactions, one realistic but bare, the other ef-
fective. The first interaction gave a zero result for the
second 2+ state but not the first. The effective interaction
did the opposite. Clearly the result with the effective in-
teraction is the right one. There is no way that the first
2+ state could have even signature. The electric quadru-
pole transition to the first 2+ state is strong and to the
second 2+ state weak. Thus the first 2+ state must have
odd signature (and it turns out that the second 2+ state
has even signature).

We have compiled in Table I a few other matrix ele-
ments (M}of the operator [cr(1)Xo(2)]"t+(1)t+(2)using
the f7&2 wave functions of McCuiien, Bayman, and Zatn-
ick (MBZ). Many of these matrix elements are
suppressed so one expects that configuration mixing will
be important. Nevertheless it is useful to calculate these
in a simple model (even for cases where double beta decay
competes with allowed single beta decay) just to try to get
a feel for the systematic behavior.

TABLE I. Matrix elements of the operator
[o(1)X o (2)] i+ (1)t+(2) in the single j shell model.

Final
nucleus

Ti
Ti

48T1

48T1

Transition

01~01
01~01
01~01
01~02
01—+21

01~21
01~22
01~21
01~22

0.318{—0.550)'
—0.175{0.303)
—0.104(0.180)

0.416( —0.721)
0.051

—0.011
0.157

zero
0.056

'The numbers in parentheses are for the operator
(1) (2)&+(1)t+(2).

In the case of 0~0 transitions we also list in
parentheses the matrix element for the operator
oi ozt+(1)t+(2) since that is what is usually given in the
literature.

Concerning the 0]~2] transition in the single j shell
model, we see that not only is it zero in Ti, but it is very
weak in Ti; Ti, though somewhat larger, is still on the
whole not strong. In the process of calculating the matrix
elements one can see a lot of cancellation of various terms.

%e see that ~he 0&~22 transition matrix element is
larger in general than Oi~2i. There will of course be a
suppression of this process due to loss of phase space.

This is in agreement with previous work of Haxton and
Stephenson, who state very explicitly that the Oi~2i
transition was suppressed and it would be essentially im-
possible to extract a meaningful parameter for the cou-
pling of left-handed and right-handed currents.

It is instructive to consider a detailed example which
shows the strong cancellation of the Primakoff-Rosen
term' for the 0~2+ transition. We consider 0~2i in

Ti and write down in Table II the contributions for each
value of Lr and L„ to the matrix element of
[o(1)Xo(2)]'='r+ (1)t+(2).

We see that the sum is much smaller than the individu-
al terms. The cancellation is almost complete for this

0
2
2
2
4

6
6

Sum

—0.4588
0.7771

—0.2101
0.0368

—0.2273
0.0375
0.0486

—0.0262
0.0117

—0.0107

TABLE II. Contributions of each (L~L, ) component in the
wave function of the 2+i state of Ti to the matrix element

[o(&)xcr(2)]" 'i+(&)r+(2).

Lp
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case. It is obvious that the matrix element will be super-
sensitive to configuration mixing and that this is a very
unfavorable case for extracting the parameter that couples
the left- and right-handed currents.

%'e now consider the transitions 0~0 in more detail.
The 0~0' was already considered by Zamick and Auer-
bach (ZA), ' who noted that a K selection rule, introduced
by Lawson for single beta decay, also applies here and
leads to a suppression of the transition. Roughly speak-
ing, to go from the Ca ground state to the Ti ground
state one takes two neutrons from E = —', states and puts
them into E = —,

' orbits. But ~=+1 or 0 is all that is
allowed for the Gamow-Teller operator.

The expression for the matrix element 0~0 is simple.
We give it here for eri cr2 rather than [o'( I ) Xo(2) ].

1n
N(N —1)

2

X g D (LL)fD (LL);L (L +1) .
I. (even)

In the above expression N refers to the total number of
f7ir nucleons, e g , eig.ht. for Ti. The D (LL}f are the
coefficients describing the final state wave function. The
D (LL); can be regarded either as the two particle frac-
tional parentage coefficients previously introduced, or as
the coefficients describing the wave function of the J=0
state in the titanium isotope which is the double analog of
the ground state of the corresponding calcium isotope,
e.g., in Ti i refers to the T=4, J=0 (unique) state,
while f is either the T =2, J=0 ground state (for Oi ~0i )

or the T =2, J=0 first excited state (for Oi ~02).
Note that in the original ZA paper we had in the above

expression not L(L+1) but [L(L+1)—2j(j+1)].
However the j(j+1) term will vanish because of the
orthonormal property gi D (LL);D (LL)f 5f ~ [For- '

transitions involving b, T =0, e.g., Ca~ Ti the
2j(j+1)must be left in.]

This new way of writing the expression perhaps
changes the physical description of why the matrix ele-
ment is suppressed. The remark has often been made that
the L =0 term and L =2 term cancel. But in this way of
writing things the I. =0 term vanishes. The I. =2 and
L =4 terms add coherently. There is a cancellation from
L =6 however.

The large matrix element to the 02 state of Ti makes
this a promising candidate for the experimental technique
in which one looks for y rays which follow the double
beta decay to excited states.

One motive for looking for transitions to excited 0+
states is that the phase space factors for 2v and Ov decays
are quite different. If T0 is the energy release in units of
the electron rest energy then the energy dependence of 2v
decay is given by a factor

F2„——T 0( I+TD /2+ T0/9+ T 0/90+ T t/1980) .

The corresponding factor of Ov decay is

ED„T/105+2T /30+ 8 T——/30+ 4T +20T . 0

For the ground state transition we have To ——8.343,
whereas for the transition to the 0+2 state at 2.997 MeV
the value of T0 is 2.478. The values of the above quanti-
ties are the following:

ground state: K2„——6.13X 10

Ko„——7.77 X 10

02+ state: E2„——1.78X10

Ko„——1.01 X 10

We see that the 2v factor decreases much more rapidly
with decreasing TQ than does the corresponding Ov factor.
Thus decay to an excited 0+ state would enhance the Ov
decay relative to the 2v decay. In fact we have

E2„(02) K0„(02)=2.91X10 5, =1.31X10
2v 1 KD„(Oi)

Just to get a feeling for the numbers we use the previ-
ously calculated matrix elements MoT(0i ) = —0.104,
MoT(02)=0.416. We recognize that because of strong
cancellations they cannot be taken too seriously.
Nevertheless we calculate the ratio of transition rates

co2 (02) 4 coa„(0r)=4 65X10, =0.21 .
2V(01) ~~(0] )

With the above matrix elements the 2v transition to the
second 02 state is strongly suppressed but the Ov transition
is down by only a factor of 5.

This indicates that it is worthwhile to look for neutri-
noless double beta decay to the first excited state of Ti.
A possible scenario is then that the ground state transition
is overwhelmingly suppressed by nuclear structure effects
but the transition to the 02 state is not.

However one must ~orry about whether the 02 state is
really basically a (fair ) or even (fp) state, or rather an
intruder state. Indeed I.awson has suggested that the 0+2

state in Ti consists of two protons excited from the sd
shell giving one a configuration CrX(sd) . If this
were indeed the configuration then the double beta decay
matrix element would be very strongly suppressed.
Lawson has made a quite reasonable energy estimate of
the energy of the intruder state and finds it even lower
than 3 MeV. He used arguments similar to those of Ban-
sal and French and Zamick. Furthermore the pure
(f7') 02 state comes at 5 MeV using MBZ matrix ele-
ments. On the other hand Haxton claims that a full
(fp} calculation brings the 02 state to about the right en-
ergy to be associated with the 3 MeV state in Ti.

The relative strengths in transfer reactions to various
0+ states are given in Table III.

We are indebted to Sherr for pointing out that the 02
state gets about 10% of the strength in all the above
transfer reactions. This is not inconsistent with a model
in which the 02 is indeed dominantly an intruder state.
Such as CrX(sd}, but with about 10% admixture of
the unperturbed ground state configuration.
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OI

02

03
04

05

0
3.00
3.82
4.59
4.97

100
11

(2
25
73

(a,p) (p,t)

100
13
7

17
(2.3

(d,t)

TABLE III. Relative strengths in various transfer reactions
to 0+ states in Ti.

III. CALCULATIONS FOR OPEN SHELL NUCLEI

%e next consider the I=0+~2+ double beta decay in
another extreme limit —the asymptotic Nilsson scheme.
To this end it is convenient to write out the operators in
the M scheme.

[o Xo]0 ——— [ 4SO(1)SO(2)
3

+2S+(l)S (2)+2S (1)S+(2)],

However, there are other data which we feel more com-
pellingly lead to the conclusion that the Oi state is basical-
ly an (fp) state. This is the strong y decay to the 2+
state. Whereas the decay of the 2+i to ground has a
strength of 12.9 Weisskopf units (W.u.), the 02 to 2i decay
has a strength of 16.7 W.u. , as shown by Bardin et al.
and by Kavaloski and Kossler.

Such a stronII transition would be impossible if the state
was basically CrX(sd) . In the vibrational model the
ratio I o 2, /I z, 0,

——2 and the above empirical results

are not too far from this limit.
Concerning the transfer data there is an amusing result

in the single j shell model22 which prevents the one nu-
cleon transfer (d,t) from going to the excited state. The
values of L} (L~L„}are the same for the J=0 states of

Ti and for the J=-', states of Ti. For example, the
ground state of Ti is

/=0. 91[00]'—0.40[22]'—0.02[44]'+0.15[66]'

and the wave function of the lowest state of Ti is

P= 0.91[—,0] —0.40[—'2] —0.02[—'4]

+0.15[—', 6]'"

This has the consequence that in the reaction 49Ti(d, t)4sTi
the spectroscopic strength in the single j shell model will
all go to the ground state. One need not therefore worry
that there is no strength to an excited f state.

Summarizing this part, the calculated double beta decay
matrix element to the 02 state is relatively large unless the
state is dominantly an intruder state. The E2 transition
of 02 to 2i is strong and this seems to argue against a
dominant intruder state. The transfer data are somewhat
inconclusive, although a more careful quantitative
analysis might lead to more definitive results. Perhaps
the last word has not yet been said on the subject, but it
looks promising that the Oz state has a configuration
which is dominantly (fp} and that the double beta decay
matrix element to this state is reasonably strong. In that
case the technique of looking for y rays would be profit-
able.

Amusingly, Sherr has noted that Alburger's measure-
mentsi4 of the highly forbidden single beta decay of sCa
also sets limits on the double beta decay to the 02 state.
This is because the Alburger experirnent3 would have
detected a y ray not only from a Sc decay but also from
48T.

[crx o ]0 &——2/3[ 4$0( 1)SO(2)

—S+ (1)S (2)—S (1)S+(2)],

where

S /&)=[&), S [t)=[&).
We assume the J=2+ state is a member of the ground

state K =0 band. %e evaluate the above operators in the
intrinsic state, following closely the previous work of
ZA"

In the asymptotic Nilsson model' ' we take two nu-

cleons from the state Kg„and put them into the state
K K, where in more detail

~K) = ~XM, AX),

~
K) =( —1)'+"rz'+" +x

~
NM, A X) . — —

We list in Table IV the values of the matrix elements of
these operators in the three cases that were previously
considered by ZA. ' We can then imagine a smearing of
these matrix elements because of pairing. The expression
for the matrix element

M = g U(K )V(K )U(K„)V(K„)

x((1—P }K K [ x ]~K„K„) .

TABLE IV. Matrix elements in the asymptotic Nilsson
model for A, =O and A. =2.

(1) X =X A&0
(2) X =X A=O
(3) X =X„+1, A~O

[cr Xcr]0

1/~3

2/~3

[o xo]o'

—V2/V3
0

V2/v 3

The product of the U's and Vs is always positive. For
A, =O the matrix elements are all of the same sign. Hence
we get a strong pairing coherence.

For A, =2 however the cases X =X„and X =X„+1
have opposite signs and there will be strong cancellations.
In fact for A+0 there are four possibilities which are list-
ed in Table V.

Half the cases are positive, the other half equal but of
opposite sign. Thus we expect when the smearing due to
the pairing force is taken into account the answer will be
very close to zero.
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TABLE V. Matrix elements of the operator

[cr{1)Xo(2)) = t+ (1)t+(2) in the asymptotic Nilsson scheme.

Proton
state

Neutron
state

Matrix
element

—VZ/V3
—vZ/v 3
vs/v3
3/Z/V 3

IU. IMPROVED EXPRESSION
FOR FINITE DEFORMATIONS

and

We show here that in the Nilsson pairing approxima-
tion the expression for the 0+~0+ ground state to
ground state matrix element for double beta decay is nega-
tive definite even at finite deformation. The matrix ele-

ment can be expressed as

(K~K~ (
cr i o2 j K~„K~„)—

= &K.o,K„)(K.o,K„& &K.o,—K„&&K.o,K„& .

If W is the operator for time reversal then

is at a much higher energy (E =1.79 MeV) than the other
members of the phonon triplet (E =1.12 MeV for the 2+3

state and E =1.20 MeV for the 4+i state). This unfor-
tunately cuts down the phase space considerably and
makes this a bad candidate for experiment. In the decay

Ge~ Se, however, the 0+ state is at an energy
E=1.12 MeV which is consistent with it being a two
phonon state. This nucleus is favorable for experimental
investigation.

Let us here consider a model in which the 0+2 state con-
sists of four quasiparticles. This is consistent with the 0+&

state consisting of two quadrupole phonons coupled to an
overall angular momentum zero. Each phonon is a linear
combination of several two quasiparticle states. (While it
is true that one can form a 0+ state from only two quasi-
particles the energy of such a state would be somewhat
higher, i.e., roughly equal to the pairing gap energy. )

If a» and a» are normal creation and destruction
operators then the transformation to quasiparticles is
given by

&z = Ux&sc+ ~rcmp

ag ——UA;0'g —Vsca

The 0+2 state is written as follows:

102 ) g [dab, a'b'(a. a; )~(ahab ).
ab

gtfc

0
+cob, ~ b (a,ab) (a)t;, a)„

Hence the following relations are obtained:

& K.oK„&= &K.oK, &-',
(K.oK„)=(K.oK„)' .

Hence the value of the double beta decay matrix element

is the following:

M= —g (UV)» (UV)»

+f,b, b (a,-ap) (ab a, )„]
~
0),0

where g' means the sum over states (K ) but not (K ).
The states a, b, a', and b' are all near the Fermi sur-

face. The superscript 0 indicates that we are coupling the
four quasiparticles to total angular momentum zero.

For brevity we introduce the notation

X [ ~

(K aK„) (
'+

~
(K crK„)

~ ) .

This is negative definite. This expression shows why the
results are rather insensitive to deformation, e.g. , Haxton
and Stephenson obtained essentially the same result in a
pairing calculation at a finite deformation as in the
asymptotic Nilsson limit.

Of course the above expression holds only to the extent
that the Nilsson pairing model is valid, and is not expect-
ed to work near closed shells.

U. EXCITED 0+ STATES
IN OPEN SHELL NUCLEI

FOUR QUASIPARTICLE STATES

The first excited 0+ states in open shell nuclei clearly
have more complex structure than the ground states. In
the vibrational nuclei they may form parts of two phonon
triplets and in the rotational region band heads for beta
vibrational bands. In the decay ' Te—+' Xe the 03+ state

i K2oio2K3K4 & = &K)K2cr, o,K3K4 &

—(KiK2oi o2K4K3)

Suppose first that we have only a single four quasiparti-
cle state with d,b, b =1, e =f =0. The expression for
the matrix element would be

M '= —(aa '
~
oioi

~

bb ')(U, U, ) (Vb Vb )„.
This is very similar in form to the ground state matrix
element except for the fact that there is no sutrt ov«
states. Clearly then this matrix element will be much
smaller than that for the ground state. It may even be
zero if the orbits a and b and a and b' (or a ' and b ' and
a ' and b) differ in their radial quantum numbers. In the
most favorable but highly unlikely scenario U, =U,
= Vb= Vb =1/V2 so that M '= ——,(aa'oicr2bb ') and,
further, the neutron and proton states would have to have
the same radial quantum numbers.

The general expression for the matrix element is
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M '= y' [ —d, t, ;$ (,aa '
~

aiCT2
~

bb')(U, U, .) ( Vi, Vb, ),
ab

+«'b, 'b +f'b, 'b ) &ab
I
&i&za'b'&

)& ( U, Ub ) ( V, Vb )„] .

more recently by a Spanish-French collaboration Leccia
et al. The most recent work was by Avignone et al. ,
who considered the neutrinoless decay of Ge to the
ground state of Se. Extensive work on the calcium de-

cay was done by %u's group. Of course the geochemi-
cal results of Kirsten' (the anomalous abundance of ' Xe
in a ' Te sample) show that double beta decay, be it Ov or
2v, has occurred.

Since the wave function must be normalized to unity
the coefficients d, e, and f are all less than unity. In con-
trast to the ground state transition there is no particular
coherence in the sum over states. The matrix element is
therefore expected to be very small.

Thus far no one has claimed to see neutrinoless double
beta decay. There have been measurements of the
J=0~J=2 transition in 6Ge by Fiorini et al. ,

i5 and
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