Rigorous modelling is at the core of computer aided food process engineering. As part of model building parameter estimation (PE) from experimental data is critical to achieve desired model predictive properties.

This work takes a new look into the PE problem in food process modelling: 1st is presented and 3rd tion

CONCLUSIONS

- This work presents a data-based protocol for model identification in food engineering intended to diagnose and to surmount the most common pitfalls.
- The protocol was validated with an example related to the thermal processing of packaged foods. Experiments were performed in our pilot plant at the IIM-CSIC.
- The application of the protocol is supported by software tools available from the authors.
- Methods and tools are general in the sense that they can be applied to any other food process model.

REFERENCES

Balsa-Canto E & Banga JR 2011. Bioinformatics, 27, 2311–2313

ACKNOWLEDGEMENTS

The authors acknowledge financial support from the EU (Project SPECTRAFISH), Spanish Ministry of Science and Innovation (Project IFOREQUALITY) and CSIC (Project CONTROL- LA). Authors acknowledge the collaboration of J.I. Molina in the experimental validation.

ILLUSTRATIVE EXAMPLE

Thermal processing of packaged food

Mathematical model formulation

\[\frac{\partial T}{\partial t} = \frac{h}{\rho c} \left(T_{w} - T \right) \]

\[\frac{\partial T}{\partial z} = \frac{h}{\rho c} \left(T_{w} - T \right) \]

Reduced order model

\[\dot{\theta} = F(\theta, u, t) \]

Structural identifiability analysis

Use power series methods to check if parameters can be given unique values (M structurally identifiable).

A protocol for model parametric identification

Practical identifiability analysis

Sensitivity analysis, robust confidence intervals, correlation analysis and core predictions.

Parameter estimation with global optimization

Optimal experimental design

Model validation

Evaluate predictive capabilities comparing model core predictions with a new set of data.

Optimal experimental design

To design:

- i) Initial / boundary conditions
- ii) Observed / measured quantities
- iii) Control profile
- iv) Sensor locations / sampling times
- v) Experiment duration to maximize confidence on parameter estimates.

Successful model

Due to

\[A \cdot \theta = y \]

Common pitfalls

Different parameter values lead to exactly the same fit. Due to lack of structural or practical identifiability.

Best parameter values result in a bad fit. Either the model is not correct or the solution is suboptimal (multimodal parameter estimation problem).

Good fit but unsuccessful validation. Related to over-fitting or to low reliability of parameter estimates. Data are scarce or non-informative.