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I. INTRODUCTION

The standard random phase approximationss-RPAd is one
of the most popular many-body approaches known. It was
invented in condensed matter physicsssee, e.g., Ref. 1d and
has subsequently spread to almost all branches of physics,
including atomic physics,2 molecular physics,3 plasma
physics,4 relativistic field theory,5 nuclear physics,6 and
many more. The definition of the s-RPA is not uniform, de-
pending on whether exchange is included or not. We under-
stand it—e.g., as in nuclear physics6—as the small-amplitude
limit of time-dependent Hartree-FocksTDHFd theory and
therfore with exchange. Its popularity probably stems from
its conceptual simplicity, its numerical tractabilitysin spite of
some serious problems in finite-size systemsd, and most of
all its well-behaved properties concerning fulfillment of con-
servation lawssWard identiesd, Goldstone theorem, and res-
toration of spontaneously broken symmetries. Though there
exist respectable general theoriesssee, e.g., Refs. 7 and 8d,
any practical attempt to go beyond this basic HF-RPA
scheme conserving these properties turned out to be techni-
cally extremely demanding and no well-accepted general and
practical extension has emerged so far. Nevertheless, the
standard RPA has also quite serious shortcomings and it is
desirable to overcome them. One of the most prominent is its
violation of the Pauli principle, often paraphrased as the
“quasiboson approximation.” It is most critical for only mod-
erately collective modes or when the self-interaction of the
gas of quantum fluctuations becomes important as in ultras-
mall finite quantum systems. Since a couple of years two of

the present authors and collaborators have been working on a
nonlinear extension of the RPAsRef. 9d which has shown
surprisingly accurate results in a number of nontrivial
models.10 It is called the self-consistent RPAsSCRPAd and
can be obtained from minimizing an energy-weighted sum
rule. Therefore the s-RPA which is perturbative in the sense
that it sums a certain class of diagramssthe bubblesd is up-
graded in the SCRPA to a nonperturbative variational theory
though it is in general not of the Raleigh-Ritz type. A strong
bonus of this extension of the s-RPA is that it generally pre-
serves its positive features as conservation laws and restora-
tion of symmetries as well as numerical tractability, since it
leads to equations of the Schrödinger type.11 In this paper we
want to apply this theory to the Hubbard model for strongly
correlated electrons. Because of its necessarily increased nu-
merical complexity over the s-RPA, we first want to consider
finite clusters in reduced dimensions. Before going into the
details, let us very briefly repeat the main ideas of the
SCRPA.

One way of presentation is to outline its strong analogy
with the Hartree-Fock-BgoliubovsHFBd approach to inter-
acting boson fieldsb† andb. The HFB canonical transforma-
tion reads

qn
† = o

i

ui,nbi
† − vi,nbi . s1d

The amplitudesu andv can be determined12 from minimiz-
ing the following mean energysenergy-weighted sum ruled:
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vn =
k0ufqn,fH,qn

†ggu0l
k0ufqn,qn

†gu0l
, s2d

whereH is the usual many-body Hamiltonian with two-body
interactions and the ground stateu0l is supposed to be the
vacuum to the quasiboson operatorsqn—i.e.,

qnu0l = 0. s3d

With this scheme and the usual orthonormalization condi-
tions for the amplitudesu andv, which allows the inversion
of Eq. s1d, one derives standard HFB theory6 with no need to
constructu0l explicitly. Of course, in this way the fact that
the HFB theory is a Raleigh-Ritz variational theory is not
manifest but the scheme has the advantage to be physically
transparent and to lead to the final equations with a minimum
of mathematical effort.

For the SCRPA we follow exactly the same route. We
replace in Eq.s1d the ideal boson operators by fermion pair
operators of the particle-holesphd type and form an ansatz
for a general transformation of ph-fermion pairs:

Qn
† = o

ph

sXph
n ap

†ah − Yph
n ah

†apd, s4d

with unl=Qn
†u0l an excited state of the spectrum. In analogy

with Eq. s2d we minimize a mean excitation energy

Vn =
k0ufQn,fH,Qn

†ggu0l
k0ufQn,Qn

†gu0l
, s5d

with u0l, in analogy with Eq.s3d, the vacuum to the operators
Qn, i.e.,

Qnu0l = 0, s6d

and arrive at equations of the usual RPA type:6

S A B
− B* − A* DSXn

Yn D = VnSXn

Yn D , s7d

with

Aph,p8h8 =
k0ufah

†ap,fH,ap8
† ah8ggu0l

Înh − npÎnh8 − np8

,

Bph,p8h8 = −
k0ufah

†ap,fH,ah8
† ap8ggu0l

Înh − npÎnh8 − np8

. s8d

Here we supposed to work in a single-particle basis which
diagonalizes the density matrixsnatural orbitsd,

k0uak
†ak8u0l ; nkdkk8, s9d

and therefore thenk’s are the occupation numbers. ForH
with a two-body interaction, Eqs.s8d only contain correlation
functions of theka†al and ka†aa†al types and, since Eq.s6d
admits the usual RPA orthonormalization relations for the
amplitudesX and Y,6 the relations4d can be inverted and
with Eq. s6d the correlation functions in Eq.s8d be expressed
by X andY.

However, to be complete, occupation numbersnk
=k0uak

†aku0l and two-body correlation functions with other

index combinations than two-times particle and two-times
hole need extra considerations. That will be done in the main
text. This is, in short, the SCRPA scheme which, as HFB
theory, is obviously non-linear, since the elementsA andB
in Eq. s7d become functionals of theX andY amplitudes. We
want to point out that no bosonization of fermion pairs is
operated at any stage of the theory.

We want to apply this scheme to the Hubbard model of
strongly correlated electrons which is one of the most wide-
spread models to investigate strong electron correlations and
high-Tc superconductivity. Its Hamiltonian is given by

H = − t o
ki j ls

cis
† cjs + Uo

i

n̂i↑n̂i↓, s10d

wherecis
† and cjs are the electron creation and destruction

operators at sitei and then̂is=cis
+ cis are the number opera-

tors for electrons at sitei with spin projections. As usualt is
the nearest-neighbor hopping integral andU the on-site Cou-
lomb matrix element. In this exploratory work, we will limit
ourselves to the simplest cases possible; i.e., we will con-
sider closed chains in one dimensions1Dd with an increasing
number of sites at half filling, starting with the two-site prob-
lem. It will turn out that the next case of four sites is a
configuration with degeneracies which cause problems in the
SCRPA, as do all 4nsn=1,2,3, . . .d configurations in 1D. We
therefore will postpone the treatment of these cases to future
work and directly jump to the case of six-sites and only
shortly outline at the end why the four-site case is unfavor-
able and how the problem can eventually be cured. In this
work we will stop with the six-site case, considering it as
sufficiently general to be able to extrapolate to the more-
electron case. In this way one may hope to approach the
thermodynamic limit in increasing the number of sites as
much as possible. Let us mention that an earlier attempt to
solve the SCRPA in 1D in the thermodynamic limit in a
strongly simplified version of the SCRPA, the so-called
renormalized RPAsr-RPAd, produced interesting results.13

In detail our paper is organized as follows: in Sec. II we
present the two-site case with its exact solution. In Sec. III
we outline the six-site case with a detailed discussion of the
results, and in Sec. IV we present the difficulties encountered
in the four-site case and how, eventually, one can overcome
them. Finally in Sec. V we give our conclusions together
with some perspectives of this work.

II. TWO-SITE PROBLEM

In this section we will apply the general formalism of the
SCRPA outlined in the Introduction to the two-site problem
at half filling—i.e., two electrons with periodic boundary
conditions. This case may seem trivial; the fact, however, is
that such popular many-body approximations as the s-RPA,
GW,14 Gutzwiller wave function,15 the two-particle self-
consistentsTPSCd approach by Vilk, Chen, and Tremblay,16

etc., do not yield very convincing results in this study case,
whereas it has recently been shown that the SCRPA solves
two-body problems exactly.10,11,17We again will briefly dem-
onstrate this here for the two-site problem.

First we will transform Eq.s10d into momentum space.
With the usual transformation to plane waves,cj ,s
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=s1/ÎNdokak̃,se−i k̃·x̃ j, this leads to the standard expression
for a zero-range two-body interaction:

H = o
k̃,s

sek − mdn̂k̃,s +
U

2N
o

k̃,p̃,q̃,s

a
k̃,s

†
ak̃+q̃,sap̃,−s

† ap̃−q̃,−s,

s11d

wheren̂k̃,s=a
k̃,s

†
ak̃,s is the occupation number operator of the

mode sk̃ ,sd and the single-particle energies are given by
ek̃ =−2tod=1

D cosskdd with the lattice spacing set to unity.
For our further considerations it is convenient to trans-

form Eq.s11d to HF quasiparticle operators viaswe switch to
1Dd

ah,s = bh,s
† , ap,s = bp,s, s12d

where h and p are momenta below and above the Fermi
momentum, respectively, so thatbk,suHFl=0 for all k where
uHFl is the Hartree-Fock ground state in the plane-wave ba-
sis. For the two-site problem with periodic boundary condi-
tions we then write, after normal ordering, the Hamiltonian
s11d in the following way:

H = HHF + Hq=0 + Hq=p, s13d

with

HHF = EHF + o
s

f− e1ñk1,s + e2ñk2,sg,

e1 = − t +
U

2
, e2 = t +

U

2
, s14d

Hq=0 =
U

2
sñk2,↑ − ñk1,↑dsñk2,↓ − ñk1,↓d, s15d

Hq=p = −
U

2
sJ↑

− + J↑
+dsJ↓

− + J↓
+d, s16d

and Js
− =b1,sb2,s, Js

+ =sJs
−d+, and ñki,s

=bi,s
† bi,s, where we in-

troduced the abbreviation “1” and “2” for the two momenta
k1=0 andk2=−p of the system, respectively. The HF ground
state isuHFl=b1,↑b1,↓uvacl and the corresponding energy is
given by

E0
HF = kHFuHuHFl = − 2t +

U

2
. s17d

The RPA excitation operator corresponding to Eq.s4d can,
because of rotational invariance in spin-space, be separated
according to spin-singletsS=0, charged and spin-triplet
sS=1d excitations. The latter still can be divided into spin-
longitudinal sS=1,ms=0d and spin-transversesS=1,ms

= ±1d excitations. Let us first consider the charge- and spin-
longitudinal sectors. For later convenience we will not sepa-
rate them and write, for the corresponding RPA operator,

Qn
† = X↑

nK↑
+ + X↓

nK↓
+ − Y↑

nK↑
− − Y↓

nK↓
−, s18d

whereKs
± =Js

± /Î1−kMsl, Ms= ñ1s+ ñ2s, and the mean val-
uesk¯l are always taken with respect to the RPA vacuum:

QnuRPAl = 0. s19d

Because of the orthonormality relations

o
s

sXs
nXs

n8 − Ys
nYs

n8d = dnn8,

o
s

sXs
nYs

n8 − Ys
nXs

n8d = 0,

o
n

sXs
nXs8

n − Ys
nYs8

n d = dss8,

o
n

sXs
nYs8

n − Ys
nXs8

n d = 0, s20d

one can invert Eq.s18d to obtain

Js
− = Î1 − kMslo

n

sXs
nQn + Ys

nQn
†d,

Js
+ = sJs

−d†. s21d

The operatorsJs
± and 1−Ms form a SUs2d algebra of spin-12

operators and, therefore, using the Casimir relation we obtain

Ms = 2Js
+Js

−. s22d

In this way we can calculate with Eq.s19d the following
expectation values:

kJs8
+ Js

−l = Îk1 − Ms8lk1 − Mslo
n

Ys8
n Ys

n ,

kJs8
− Js

+l = Îk1 − Ms8lk1 − Mslo
n

Xs8
n Xs

n ,

kJs8
+ Js

+l = Îk1 − Ms8lk1 − Mslo
n

Ys8
n Xs

n ,

kJs8
− Js

−l = Îk1 − Ms8lk1 − Mslo
n

Xs8
n Ys

n , s23d

with

kMsl =
2on

uYs
n u2

1 + 2on
uYs

n u2
. s24d

We will see that in order to close the system of SCRPA
equations, expectation valueskMsMs8l will also be needed.
It is easy to see that we have

MsMs = 2Ms s25d

and

MsMs8 = 4Js
†Js8

† Js8Js ss Þ s8d. s26d

With Eq. s21d the expectation value of Eq.s26d gives
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kMsMs8l = 4s1 − kMslds1 − kMs8ldo
nn8

o
n1n2

Ys
nYs

n8Ys8
n1Ys8

n2

3kQnQn1
Qn2

† Qn8
† l. s27d

For the calculation of the correlation functions which appear
on the right-hand side of Eq.s27d one commutes the destruc-
tors Qn to the right and uses Eq.s6d, yielding again correla-
tion functions kMsMs8l. One then obtains a closed linear
system of equations for the latter. Details are given in Ap-
pendix A.

The SCRPA matrix elements can be expressed in the fol-
lowing way:

A↑,↑ = kfK↑
−,fH,K↑

+ggl = 2t + B↑,↑,

A↓,↓ = kfK↓
−,fH,K↓

+ggl = 2t + B↓,↓,

A↑,↓ = kfK↑
−,fH,K↓

+ggl = B↑,↓,

A↓,↑ = kfK↓
−,fH,K↑

+ggl = B↓,↑, s28d

B↑,↑ = − kfK↑
−,fH,K↑

−ggl = UÎ1 − kM↓l
1 − kM↑l

o
n

sX↑
nY↓

n + X↑
nX↓

nd,

B↓,↓ = − kfK↓
−,fH,K↓

−ggl = UÎ1 − kM↑l
1 − kM↓l

o
n

sX↑
nY↓

n + Y↑
nY↓

nd,

B↑,↓ = − kfK↑
−,fH,K↓

−ggl = −
U

2

ks1 − M↑ds1 − M↓dl
Îs1 − kM↑lds1 − kM↓ld

,

B↓,↑ = − kfK↓
−,fH,K↑

−ggl = B↑,↓. s29d

With our previous relationss23d, s24d, and s27d we can en-
tirely express the elements of Eqs.s28d ands29d by the RPA

amplitudes and therefore we have a completely closed sys-
tem of equation for the amplitudesX, Y. With the orthonor-
mality relationss20d we furthermore have

A↑,↑ = A↓,↓ = A, A↑,↓ = A↓,↑ = A8,

B↑,↑ = B↓,↓ = B, B↑,↓ = B↓,↑ = B8, s30d

and, therefore, the SCRPA equation can be written in the
following form:

1
A A8 B B8

A8 A B8 B

− B − B8 − A − A8

− B8 − B − A8 − A
21

X↑
n

X↓
n

Y↑
n

Y↓
n
2 = En1

X↑
n

X↓
n

Y↑
n

Y↓
n
2 . s31d

The system s31d has the two positive rootsE1
=ÎsA−A8d2−sB−B8d2 and E2=ÎsA+A8d2−sB+B8d2. The
SCRPA equations31d can be solved numerically by iteration,
leading, as expected, to the exact result. This latter fact can
also be seen analytically in noticing that, by symmetry,

X↑
1 = − X↓

1 ; Xsp, Y↑
1 = − Y↓

1 ; Ysp,

X↑
2 = X↓

2 ; Xch, Y↑
2 = Y↓

2 ; Ych. s32d

Therefore the 434 equations31d decouples into two 232
equations corresponding to chargeschd and spinsspd. Then
we see that the exact ground-state wave function which con-
tains only up to 2p-2h excitations

u0l ~ s1 + dJ↑
+J↓

+duHFl s33d

is the exact vacuum to the RPA operators—i.e.,
QchsspduRPAl=0—under the condition that

d = SY
XDchsspd

; tansfd. s34d

We therfore can express the SCRPA equations by the single
parameterf and obtain the solution analyticallysup to the
solution a nonlinear equation forfd. The solution agrees for
all quantities with the exact result. For example the ground-
state energy is given by

E0
SCRPA= − 2t coss2fd +

U

2
f1 − sins2fdg. s35d

This expression can either be derived directly fromkHl using
Eq. s33d ands34d or one uses a generalization of the standard
RPA expression for the ground-state energy:6

E0
SCRPA= EHF −

1

2o
s

s1 − kMsldfE2uYchu2 + E1uYspu2g.

s36d

It is straightforward to verify that expressionss35d and s36d
are identical.

The standard RPA expression are recovered from Eq.s31d
in replacing in all expectation values the RPA ground state
by the uncorrelated HF determinant. In Fig. 1 we compare

FIG. 1. Excitation energies of the standard RPAsdashed linesd,
SCRPAscrossesd, and exact solutionssolid linesd as a function ofU
in the channels of chargeschd and longitudinal spinsspd for the
two-site case.
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the standard RPA with the SCRPA and exact results for the
excitation energies and in Fig. 2 the corresponding ground-
state energies together with the HF values are shown. From
these figures one should especially appreciate the long way
the SCRPA has gone from the s-RPA to recover the exact
result. For instance it is clearly seen that the instability of the
s-RPA atU=2 is, as expected for such a small system, an
artifact and is completely washed out by the self-consistent
treatment of quantum fluctuations contained in the SCRPA
approach.

Without explicit demonstration let us also mention
that the SCRPA in the spin-transverse channel with
Qn

†=X1↓2↑
n b2↑

† b1↓
† +X1↑2↓

n b2↓
† b1↑

† −Y1↓2↑
n b1↓b2↑−Y1↑2↓

n b1↑b2↓ as
well as in the particle-particle channel withQ†=Xb2↑

† b2↓
†

−Yb1↓b1↑ also gives the exact solution for the two-site prob-
lem. How thepp-SCRPA works can be seen in Ref. 10 where
for the pairing problem the two-particle problem is also
solved exactly.

The fact that the SCRPA solves the two-site problem ex-
actly is nontrivial, since other well-known many-body
approaches,14–16as already mentioned, so far failed to obtain
this limit correctly.

III. SIX-SITE PROBLEM

After this positive experience with the two-site problem
we next will consider the one-dimensional six-sites case, as
for the four-site case problems appear needing particular
considerations to be outlined in Sec. IV. We again consider
the plane-wave transformation explained in Sec. II with the
corresponding Hamiltonian in momentum spaces11d. In the
first Brillouin zone −pøk,p we have forN=6 the follow-
ing wave numbers:

k1 = 0, k2 =
p

3
, k3 = −

p

3
,

k4 =
2p

3
, k5 = −

2p

3
, k6 = − p. s37d

With the HF transformation

ah,s = bh,s
† , ap,s = bp,s, s38d

such thatbk,suHFl=0 for all k, we can write the Hamiltonian
in the following waysnormal order with respect tob†, bd:

H = HHF + Huqu=0 + Huqu=p/3 + Huqu=2p/3 + Huqu=p, s39d

where

HHF = E0
HF + o

s

se4ñ4,s + e5ñ5,s + e6ñ6,s − e1ñ1,s

− e2ñ2,s − e3ñ3,sd, s40ad

Huqu=0 = Go
i=1

3

sñpi,↑ − ñhi,↑do
j=1

3

sñpj,↓ − ñhj,↓d, s40bd

Huqu=p/3 = GhhfsS4↑,6↑
− + S6↑,5↑

+ d − sS2↑,1↑
+ + S1↑,3↑

− d

+ sJ2↑,4↑
− + J5↑,3↑

+ dgfsS6↓,4↓
+ + S5↓,6↓

− d − sS1↓,2↓
− + S1↓,3↓

− d

+ sJ4↓,2↓
+ + J3↓,5↓

− dgj + c.c.j, s40cd

Huqu=2p/3 = GhhfsS5↑,4↑
+ − S3↑,2↑

+ d + sJ1↑,5↑
− + J4↑,1↑

+ + J3↑,6↑
−

+ J6↑,2↑
+ dgfsS4↓,5↓

− − S2↓,3↓
− d + sJ5↓,1↓

+ + J1↓,4↓
− + J6↓,3↓

+

+ J2↓,6↓
− dgj + c.c.j, s40dd

Huqu=p = GfsJ1↑,6↑
− + J2↑,5↑

− + J3↑,4↑
− d + c.c.gfsJ1↓,6↓

− + J2↓,5↓
−

+ J3↓,4↓
− d + c.c.g, s40ed

with the definition of operators

ñk,s = bk,s
† bk,s,

Jph,s
− = bh,sbp,s, Jph,s

+ = sJph,s
− d†

Sll8,s
+ = bl,s

† bl8,s, with l . l8 Sl8l,s
− = sSll8,s

+ d†, s41d

and

EHF = − 8t +
3

4
U,

e1 = − 2t +
U

2
, e2 = e3 = − t +

U

2
,

e4 = e5 = t +
U

2
, e6 = 2t +

U

2
,

G =
U

6
. s42d

The level scheme is shown in Fig. 3. The hole states are
labeledh=h1,2,3j and the particle statesp=h4,5,6j. The
HF ground state is

uHFl = a1,↑
† a1,↓

† a2,↑
† a2,↓

† a3,↑
† a3,↓

† u− l. s43d

We see that the Hamiltonian for six sites has largely the
same structure as the one for two sites. It is only augmented

FIG. 2. Ground-state energy in HFsdot-dashed lined, standard
RPA sdashed lined, SCRPAscrossesd, and exact solutionssolid lined
as a function ofU in the charge and longitudinal spin responses for
the two-site case.
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by Huqu=p/3+Huqu=2p/3 which contains theS operators on
which we will comment below.

There are three different absolute values of momentum
transfers as shown in Table I. Since the momentum transfer
uqu is a good quantum number, the RPA equations are block
diagonal and can be written down for eachuqu value sepa-
rately. For example, foruqu=p /3 we have the following RPA
operator for charge and longitudinal spin excitations:

Ququ=p/3,n
† = X2↑,4↑

n K4↑,2↑
+ + X2↓,4↓

n K4↓,2↓
+ + X3↑,5↑

n K5↑,3↑
+

+ X3↓,5↓
n K5↓,3↓

+ − Y2↑,4↑
n K2↑,4↑

− − Y2↓,4↓
n K2↓,4↓

−

− Y3↑,5↑
n K5↑,3↑

− − Y3↓,5↓
n K3↓,5↓

− , s44d

where

Kps,hs
± =

Jps,hs
±

Î1 − kMps,hsl
s45d

and

Mps,hs = ñp,s + ñh,s. s46d

We write this RPA operator in shorthand notation as

Qn
† = o

i=1

4
1

Î1 − kMil
sXi

nJi
+ − Yi

nJi
−d, s47d

again with the properties

unl = Qn
†u0l, s48ad

Qnu0l = 0. s48bd

The matrix elements in the SCRPA equation

S A B
− B* − A* DSXn

Yn D = EnSXn

Yn D
are then of the form

Ai,i8 =
kfJi8

− fH,Ji
+ggl

Îs1 − kMi8lds1 − kMild
, s49ad

Bi,i8 =
kfJi8

− fH,Ji
−ggl

Îs1 − kMi8lds1 − kMild
. s49bd

Since the SCRPA equations have the same mathematical
structure as the standard RPA, one also has equivalent ortho-

normality relationsoisXi
nXi

n8−Yi
nYi

n8d=dnn8, etc., in analogy
to Eqs.s20d of the two-site case. This allows us to invert Eq.
s47d and to calculate the expectation values which will ap-
pear in Eqs.s49ad ands49bd in complete analogy to Eq.s23d.

The missing expectation valueskMil can be expressed
by the X and Y amplitudes in observing thatJi

± and Ji
0

= 1
2sMi −1d form, as in the two-site case, anSUs2d Lie alge-

bra for spin-12 particles. Using the Casimir relation one again
obtainsMi =2Ji

+Ji
− and thus

kMil =
2on

uYi
nu2

1 + 2on
uYi

nu2
. s50d

We also will need expectation values of

MiMj = 4Ji
+Jj

−Jj
+Ji

− for i Þ j

ffor MiMi =2Mi we can use Eq.s50dg. Those can again be
calculated following the same procedure as outlined in Eq.
s27d and Appendix A.

In order to solve the SCRPA equations we now practically
have prepared all we need. Nonetheless, at this point we have
to discuss a limitation of our RPA ansatzs44d which is not
absolutely necessary but which turned out to be convenient
for numerical reasons. The fact is that our RPA ansatz is
restricted to ph and hp configurations, as this is also the case
in standard RPA. In the latter case this is a strict consequence
of the use of HF occupation numbersnp

0 andnh
0 with values

zero or one, respectively. In the SCRPA case with a corre-
lated ground state the occupation numbers are different from
zero and one anda priori there is no formal reason not to
include into the RPA operator also pp and hh configurations
of the formap

†ap8;bp
†bp8 andah

†ah8;−bh8
† bh. Such terms are

usually called scattering or anomalous terms.19 With rounded
occupation numbers the SCRPA equationssat T=0d are for-

TABLE I. The various momentum transfers in the six-site
case.

uqu=
2p

3
uqu=p uqu=

p

3

51→q51=−2p/3 61→q61=−p 42→q42= + p/3

41→q41= + 2p/3 52→q52=−p 53→q53=−p/3

62→q62= + 2p/3 43→q43= +p

63→q63=−2p/3

FIG. 3. Excitation spectrum of the HF ground stateU=0 for the
chain with six sites at half filling and projection of spinms=0. The
occupied states are represented by the solid arrows and those not
occupied are represented by the dashed arrows.
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mally and mathematically equivalent to standard RPA equa-
tions at finite temperature where also pp and hh components
are to be included, in principle.18 The inclusion of those scat-
tering terms18,19 fthe S terms in Eq.s39dg usually is of little
quantitative consequence,11 but entails, however, the impor-
tant formal property that, as for the standard RPA, the
energy-weighted sum rule is fulfilled exactly.11,19 In spite of
this desirable feature, we had to refrain from the inclusion of
the scattering configurations in this work because the factors
Î1−kMil by which the SCRPA matrix is dividedfsee Eqs.
s49ad and s49bdg can become very small in these cases and
this perturbed the convergence process of the iterative solu-
tion of the SCRPA equations. Though we do not exclude that
a more adequate numerical procedure could be found to sta-
bilize the iteration cycle, we decided to postpone such an
investigation, because, as already mentioned and as will be
shown later, the influence of the scattering terms is, as found
already in other studies,11 very small. We will shortly come
back to this discussion when presenting the results for the
energy-weighted sum rule below. As a consequence and for
consistency we then also will have to disregard theS terms
of the Hamiltoniansremember that also in standard RPA
these terms do not contributed. Under these conditions we
then obtain a completely closed systemof SCRPA equations.
For completeness we give some examples of SCRPA matrix
elements which correspond to the ansatzs44d for uqu=p /3:

A1,1=
kfJ2↑,4↑

− fH,J4↑,2↑
+ ggl

s1 − kM24,↑ld

= e4 − e2 − Gh2kJ2↑,4↑
− sJ3↓,5↓

− + J4↓,2↓
+ dl

+ ksJ1↑,4↑
− + J2↑,6↑

− dsJ1↓,5↓
− + J3↓,6↓

− + J4↓,1↓
+ + J6↓,2↓

+ dl

+ ksJ3↑,4↑
− + J2↑,5↑

− dfsJ1↓,6↓
− + J2↓,5↓

− + J3↓,4↓
− d

+ c.c.gljs1 − kM24,↑ld−1, s51ad

A2,1=
kfJ2↓,4↓

− fH,J4↑,2↑
+ ggl

Îs1 − kM24,↓lds1 − kM24,↑ld

= Ghks1 − M24,↑ds1 − M24,↓dl

+ ksJ4↑,1↑
+ − J6↑,2↑

+ dsJ1↓,4↓
− − J2↓,6↓

− dl

+ ksJ4↑,3↑
+ − J5↑,2↑

+ dsJ3↓,4↓
− − J2↓,5↓

− dlj

3hs1 − kM24,↓lds1 − kM24,↑ldj−1/2

A s51bd

The other matrix elements can be elaborated along the
same lines. Of course in the approximation where the expec-
tation values in Eqs.s51ad and s51bd are evaluated with the
HF ground state the usual matrix elements of the standard
RPA are recovered. We should also mention that in expres-
sions s51ad and s51bd expectation values such as, for ex-
ample, kJ1↑,4↑

− J4↓,1↓
+ l which involve momentum transfers

other than the one under considerationsuq3u=p /3 in the spe-
cific exampled must be discarded. That this implicit channel
coupling cannot be taken into account without deteriorating
the quality of the SCRPA solutions is an empirical law which
was established quite sometime ago.20 It is part of the decou-

pling scheme and it is intuitively understandable that, since
each channel is summing specific correlations, one cannot
mix the channels implicitly without perturbing the balance of
the minimization procedure which is done channel by chan-
nel. It can also be noticed that, neglecting theS terms inH,
the channel coupling disappears.

We here give for the transferuqu=p /3 the totality of the
elements of the matrix SCRPA,A andB, just as was used in
the numerical calculation. For others transfers there will be
analogous expressions. Indeed with the abbreviations

i = 1 ; s2↑,4↑d, i = 2 ; s2↓,4↓d,

i = 3 ; s3↑,5↑d, i = 4 ; s3↓,5↓d,

the elements of matricesA andB are given by

A1,1= e4 − e2 − 2G
kJ2↑,4↑

− sJ3↓,5↓
− + J4↓,2↓

+ dl
1 − kM24,↑l

,

A2,1= G
ks1 − M24,↑ds1 − M24,↓dl

Îs1 − kM24,↓lds1 − kM24,↑ld
,

A3,1= A4,1= A3,2= A4,2= 0,

A2,2= e4 − e2 − 2G
ksJ3↑,5↑

− + J4↑,2↑
+ dJ2↓,4↓

− l
1 − kM24,↓l

,

A3,3= e5 − e3 − 2G
kJ3↑,5↑

− sJ2↓,4↓
− + J5↓,3↓

+ dl
1 − kM35,↑l

,

A4,3= G
ks1 − M35,↑ds1 − M35,↓dl

Îs1 − kM35,↓lds1 − kM35,↑ld
,

A4,4= e5 − e3 − 2G
ksJ2↑,4↑

− + J5↑,3↑
+ dJ3↓,5↓

− l
1 − kM35,↓l

, s52ad

B1,1= − 2G
kJ2↑,4↑

− sJ2↓,4↓
− + J5↓,3↓

+ dl
1 − kM24,↑l

,

B2,1= B3,1= B4,2= B4,3= 0,

B4,1= G
ks1 − M24,↑ds1 − M35,↓dl

Îs1 − kM35,↓lds1 − kM24,↑ld
,

B2,2= − 2G
ksJ2↑,4↑

− + J5↑,3↑
+ dJ2↓,4↓

− l
1 − kM24,↓l

,

B3,2= G
ks1 − M35,↑ds1 − M24,↓dl

Îs1 − kM24,↓lds1 − kM35,↑ld
,

B3,3= − 2G
kJ3↑,5↑

− sJ3↓,5↓
− + J4↓,2↓

+ dl
1 − kM35,↑l

,
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B4,4= − 2G
ksJ3↑,5↑

− + J4↑,2↑
+ dJ3↓,5↓

− l
1 − kM35,↓l

. s52bd

Let us add that the matricesA andB are symmetric and that
the expectation valuesk¯l in Eqs. s52ad and s52bd can be
expressed in an analogous way as the expectation valuess23d
and s27d by the amplitudesX, Y.

The structure of the self-consistent matrix elementss52ad
ands52bd is also quite transparent: the bare interaction which
survives in the limit of the standard RPA is renormalized—
i.e., screened—by two-body correlation functions which are
calculated self-consistently. The general structure of the
scheme is in a way similar to the one proposed by Tremblay
and co-workers;16 however, the details of the expressions and
the spirit of derivation are different. One can also interpret
our theory as a mean-field theory of quantum fluctuations as
this was done in Ref. 9.

Let us now come to the presentation of the results. In
Figs. 4, 5, and 6 we display the excitation energies in the
three channelsuqu=p, 2p /3, andp /3 as a function ofU / t.
The exact values are given by the solid lines, the SCRPA
ones by crosses, and the ones corresponding to the standard
RPA by the dashed lines. We see that in all three cases the
SCRPA results are excellent and a strong improvement over
the standard RPA. As expected, this is particularly important
at the phase transition points where the lowest root of the
standard RPA goes to zero, indicating the onset of a stag-
gered magnetization on the mean-field level. It is particularly
interesting that the SCRPA allows one to go beyond the
mean-field instability point. However, contrary to the two-
site case where the SCRPA, in the plane-wave basis, solved
the model for all values ofU, here at some valuesU.Ucr
the system “feels” the phase transition and the SCRPA stops
to converge and also deteriorates in quality. Up to these val-
ues ofU the SCRPA shows very good agreement with the
exact solution and in particular it completely smears the

sharp phase transition point of the standard RPA which is an
artifact of the linearization.

In Fig. 7 we show the ground-state energyfsee Eq.s36dg

E0
SCRPA= EHF − o

n

Eno
i

s1 − kMilduYi
nu2 s53d

as a function ofU. In addition to the exact, SCRPA, and
s-RPA values we also show the HF energy. Again we see that
the SCRPA is in excellent agreement with the exact solution.
The standard RPA is also good for low values ofU but
strongly deteriorates close to the lowest phase transition
point which occurs in theuqu=p channel atU=12t /5. The
HF energies, on the contrary, deviate quite strongly from the
exact values.

The reader certainly has remarked that our RPA ansatz
s44d has so far not separated charge and spin excitations. In
the two-site problem this was automatically and exactly the

FIG. 4. Energies of excited states in the standard RPA, SCRPA,
and exact cases as a function ofU for six sites with spin projection
ms=0 and foruqu=p. States of the charge response and those of the
longitudinal spin response are denoted bych andsp, respectively.

FIG. 5. Same as Fig. 4 but foruqu=2p /3.

FIG. 6. Same as Fig. 4 but foruqu=p /3.
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case. However, here, since we did not consider theS opera-
tors in the Hamiltonian or the RPA operator, spin symmetry
is violated. On the other hand, this permits us to evaluate the
importance of theS operators. Normally the eigenvectors of
the RPA matrix should be such that for chargeschd excita-
tions the operatorsJph↑

+ +Jph↓
+ and Jph↑

− +Jph↓
− can be factored

whereas for spinsspd excitations the combinationsJph↑
+

−Jph↓
+ and Jph↑

− −Jph↓
− hold. Because of our violation of spin

symmetry, this factorization is not exact. To have a measure
of this violation we plot in Fig. 8 the ratio

r =
uXph↑

n u − uXph↓
n u

uXph↑
n u + uXph↓

n u
. s54d

For exact spin symmetry,r should be zero. From Fig. 8 we
see that the violation is on the level of a fraction of 1%. This,
therefore justifies,a posteriori, having neglected the scatter-
ing termssS termsd in the Hamiltonian and RPA operator. A
further indication thatS terms are not important comes from
the energy-weighted sum rule. We know that the sum rule

including theS terms is fulfilled in the SCRPA.13,19However,
neglecting them gives a slight violation. Considering the ex-
act relation

L = R, s55d

with

L = o
n

sEn − E0duknuFu0lu2

= o
n,uqu

sEn − E0duk0uQuqu,nFu0lu2

= o
n,uqu

sEn − E0duk0ufQuqu,n,Fgu0lu2

= o
n,uqu

sEn − E0dU o
isuqud

Î1 − MisXi
n + Yi

ndU2
, s56ad

R=
1

2
k0ufF,fH,Fggu0l

= o
isuqud

Î1 − Mi o
i8suqud

Î1 − Mi8sAi,i8 − Bi,i8d, s56bd

with

F = o
isuqud

sJi
+ + H.c.d, s57d

we trace in Fig. 9 the ratioj=sR−Ld /R. Again we see that
the violation is on the level of a fraction of 1%, confirming
the very small influence of the scattering terms.

A further quantity which crucially tests the ground-state
correlations is the occupation numbers. We have no direct
access to them; however, we will use the so-called Catara
approximation for their evaluation:21

nps = kn̂psl = o
h

kJph,s
+ Jph,s

− l = o
h

s1 − kMphsldo
n

uYphs
n u2,

s58ad

FIG. 7. Energy of the ground state in the HF, standard RPA,
SCRPA, and exact cases as a function ofU for six sites with spin
projectionms=0.

FIG. 8. The ratior fEq. s54dg as a function of the interactionU
for the ph excitationss2, 4d and s3, 5d in the channeluqu=p /3.

FIG. 9. The ratioj=sR−Ld /R of the energy-weighted sum rule
in the charge response for the six-site case.
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nhs = kn̂hsl = o
p

kJph,s
+ Jph,s

− l = 1 −o
p

s1 − kMphsldo
n

uYphs
n u2.

s58bd

We show these quantities in Figs. 10 and 11 in comparison
with the exact values and the ones of the standard RPA. We
again see the excellent performance of the SCRPA.

Concluding this section we can say that the expectation
we had from the two-site case, with its exact solution, have
very satisfactorily also been fulfilled in the six-site case.
However, in spite of the very good performance of the
SCRPA, there is the limitation that the SCRPA, in the sym-
metry conserving basis of plane waves used here, cannot be
employed in the strong-U limit. One also may wonder how

the extension to cases with sites number 2+4n with n.1
works. For such cases it does not make sense anymore to
elaborate the Hamiltonian in its detailed form as given in Eq.
s40d. This explicit expression was only given to make clear
the detailed internal structure of the approach for a definite
example. In the general case with many sites one would just
take the forms11d of the Hamiltonian, calculate the double
commutators as needed in Eqs.s8d, and then express the
resulting correlation functions by theX and Y amplitudes.
That such a program is feasible in terms of analytic work and
numerical execution was demonstrated in our earlier work on
the multilevel pairing model10 where cases up to 100 levels
were treated. However, this number was not considered an
upper limit. Though the present model is slightly more com-
plicated, we think that a generalization to the case of many
sites is perfectly possible. It needs, however, some invest-
ment which is planned for the future. This also concerns the
D=2 case. Another question to ask is whether the degrada-
tion of the SCRPA results going from theN=2 to theN=6
case does not go on consideringN=10,14, etc.? One again
may cite the experience with the multilevel pairing model10

where also theN=2 case turned out to be exact in the
SCRPA but not the other cases. However, allN.2 cases
showed more or less the same degrees of accuracy: excellent
results of SCRPA up to the phase transition point and dete-
rioration beyond. Since this behavior has also been found in
simpler models,12 we think that this is a generic feature of
the SCRPA and that this behavior will also translate to the
case of the present model.

Another problem for further work is how to continue the
present theory into the strong-coupling regime. Of course,
there exists the possibility to perform the SCRPA in the
symmetry-broken basis, but details and how to match with
the symmetry-unbroken phase must still be worked out. Also
the inclusion of higher-order operators, as will shortly be
discussed in the next section, may be an interesting direction
in this respect.

IV. FOUR-SITE PROBLEM

A. Symmetry-unbroken case

The problem of the four-site case is easily located in re-
garding the level scheme of Fig. 12ssee also Ref. 22 dealing
with the attractive Hubbard model in 1Dd. We see that the

FIG. 10. Occupation numbers as function of the interactionU
for various values of the momentak for states above the Fermi
level. For each approximation, s-RPA and SCRPA, the occupation
numbers are represented in increasing order likek s−p ,
−2p /3 ,2p /3d. Let us notice that the modesk=2p /3 and k=
−2p /3 are degenerate.

FIG. 11. Occupation numbers as a function of the interactionU
for various values of the momentak for the holes states. For each
approximation, s-RPA and SCRPA and exact solution, the occupa-
tion numbers are represented likek=0,p /3 ,−p /3. Let us notice
that the modesk=p /3 andk=−p /3 are degenerate.

FIG. 12. Level spectrum forU=0 for the half-filled chain with
four sites with spin projectionms=0. The occupied states are rep-
resented by the solid arrows and those not occupied are represented
by the dashed arrows.
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Fermi energy coincides with the second level which is half
filled. The uncorrelated ground state is therefore degenerate
and excitations with momentum transferuqu=p cost no en-
ergy. On the other hand, for excitations withuqu=p /2 there is
no problem. The corresponding RPA operator is given by

Ququ=p/2,n
† = X13,↑

n K31,↑
+ + X24,↑

n K42,↑
+ + X13,↓

n K31,↓
+ + X24,↓

n K42,↓
+

− Y13,↑
n K13,↑

− − Y24,↑
n K24,↑

− − Y13,↓
n K13,↓

− − Y24,↓
n K24,↓

− .

s59d

In Fig. 13 we show the results of the s-RPA and SCRPA,
together with the exact solution. We see that the lower exci-
tation is still very well reproduced by the SCRPA, whereas
for the second excited state the SCRPA only reduces the
difference of the s-RPA to exact by half. The real problem
shows up for the transferuqu=p. The corresponding operator
is

Ququ=p,n
† = X14,↑

n K41,↑
+ + X14,↓

n K41,↓
+ + X23,↑

n K32,↑
+ + X23,↓

n K32,↓
+

− Y14,↑
n K14,↑

− − Y14,↓
n K14,↓

− − Y23,↑
n K23,↑

− − Y23,↓
n K23,↓

− .

s60d

The standard RPA produces a doubly degenerate zero mode
independent ofU as seen in Fig. 14. As compared with the
exact solution, we see that these two zero modes approxi-
mate two very low-lying exact solutions. Unfortunately, be-
cause of these modes at low energy, the SCRPA could not be
stabilized. The only possibility consisted in excluding the
componentsK32,↑

± and K32,↓
± in the RPA operator. Then self-

consistency was achieved without problem and the result is
shown in Fig. 14. The result of the SCRPA is halfway be-
tween the s-RPA and the exact solution. On the other hand,
because of the omission of the two lower states, the ground-
state energy cannot correctly be calculated in the SCRPA.
Therefore, for the four-site problem in the symmetry-

unbroken basissplane wavesd, the SCRPA cannot fully ac-
count for the situation.

B. Symmetry-broken basis

An analysis of the HF solution shows that, as soon asU
Þ0, the plane-wave state becomes unstable and the system
prefers a staggered magnetization. The general HF transfor-
mation can be written as

1
c1,↑

†

c2,↑
†

c3,↑
†

c4,↑
†
2 =

1
Î21

v − 1 0 u

u 0 − 1 − v

v 1 0 u

v 0 1 − v
21

a1,↑
†

a2,↑
†

a3,↑
†

a4,↑
†
2 , s61ad

1
c4,↓

†

c3,↓
†

c2,↓
†

c1,↓
†
2 =

1
Î21

v − 1 0 u

u 0 − 1 − v

v 1 0 u

v 0 1 − v
21

a1,↓
†

a2,↓
†

a3,↓
†

a4,↓
†
2 , s61bd

with u=cossqd and v=sinsqdeiw. The minimization of the
ground-state energy, with

uHFl = a1,↑
† a1,↓

† a2,↑
† a2,↓

† u− l, s62d

shows thatw=0 for any value ofU and the angleq is ob-
tained from

tan4sqd −
U

2t
tan3sqd − 1 = 0. s63d

The occupation numbers are given by

n1,↑ = n3,↑ = n2,↓ = n4,↓ =
1

2
f1 + sin2sqdg,

FIG. 13. Energies of excited states with the standard RPA,
SCRPA, and exact solution for four sites with spin projectionms

=0 and foruqu=p /2 in the symmetry-unbroken basis.

FIG. 14. Energies of excited states with the standard RPA,
SCRPA, and exact solution for four sites with spin projectionms

=0 and foruqu=p in the symmetry-unbroken basis.
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n1,↓ = n3,↓ = n2,↑ = n4,↑ =
1

2
cos2sqd, s64d

and shown in Fig. 15 which illustrates the spontaneous sym-
metry breaking for any value ofU. For U→` we have a
perfect antiferromagnet.

We can now perform a SCRPA calculation in the
symmetry-broken basis. The RPA operators are given by

Qsn
† = X1s,3s

n K3s,1s
+ + X2−s,4−s

n K4−s,2−s
+ − Y1s,3s

n K1s,3s
−

− Y2−s,4−s
n K2−s,4−s

− , s65d

with s= ± 1
2. We also have two other excitation operators

Q1n
† = X1↑,4↑

n K4↑,1↑
+ + X1↓,4↓

n K4↓,1↓
+ − Y1↑,4↑

n K1↑,4↑
− − Y1↓,4↓

n K1↓,4↓
−

s66d

and

Q2n
† = X2↑,3↑

n K3↑,2↑
+ + X2↓,3↓

n K3↓,2↓
+ − Y2↑,3↑

n K2↑,3↑
− − Y2↓,3↓

n K2↓,3↓
− .

s67d

In Figs. 16 and 17 we give the results. The most striking
feature is that the s-RPA and SCRPA are very close and that
the error with respect to the exact solution does not become
greater than 25% for any value ofU. Though the improve-
ment of the SCRPA over the s-RPA is very small in each
channel, at the end in the ground-state energy this sums to a
more substantial correction in the right direction for the
ground-state energy. This is shown in Fig. 17 as a function of
a tansU / td. We see that the HF, s-RPA and SCRPA become
exact forU=0 andU→`. In between the SCRPA deviates,
e.g., by 8% from the exact result atU.6 fa tansU / td
.1.4g whereas this deviation is 20% for the s-RPA.

Concluding this section on the four-site case at half filling
we can say that in the symmetry-unbroken basis the SCRPA
is unable to account for some low-lying excitations and
therefore fails to reproduce the ground-state energy as well.
In the symmetry-broken basis the SCRPA gives very little
correction over the s-RPA. However, the maximum error is
not greater than 25% for all values ofU for the excited states

and the ground-state energy in the SCRPA whereas this is
30% for the standard RPA. This may be an interesting result
in view of the importance of the so-called “plaquettes”ssee,
e.g., Ref. 23d in high-Tc superconductivity. Nevertheless,
even though one plaquettesfour sitesd may reasonably be
described, the present approach cannot account for the situ-
ation of many plaquettes in interaction which is the real situ-
ation in 2D. For the future it is therefore very interesting to
develop an extension of the present SCRPA which not only
gives an exact solution for the two-site case but equally for
the four-site case. Such a generalization is possible in includ-
ing into the RPA operator in addition to the fermion pair
operators also quadruples of fermion operators. This is a gen-
eral principle and it has already been demonstrated to hold
true in the case of the simpler Lipkin model.24 One could call
such an extension a second SCRPA in analogy to the well-
known standard second RPA which involves in addition to
the ph configurations also 2p-2h ones. In the case of many

FIG. 15. Occupation numbers for site 1,n1,↑ et n1,↓, as a func-
tion of interactionU in the symmetry-broken basis. FIG. 16. Energies of excited states with the standard RPA,

SCRPA, and exact solution as a function ofU for four sites with
spin projectionms=0 in the symmetry-broken basis.

FIG. 17. Ground-state energies in the HF, standard RPA,
SCRPA, and exact solution as a function ofa tansU / td for four sites
with spin projectionms=0 in the symmetry-broken basis.

JEMAI et al. PHYSICAL REVIEW B 71, 085115s2005d

085115-12



plaquettes this second SCRPA would then constitute a self-
consistent mean-field theory for plaquettes.

V. DISCUSSION, CONCLUSIONS, AND OUTLOOK

In this work a many-body approach which was essentially
developed in the nuclear physics context in recent years9 has
been applied to the Hubbard model for a finite number of
sites. The theory is an extension of the standard RPA, called
the self-consistent RPA, which aims to correct its well-
known deficiencies such as the quasiboson approximation
with its ensuing violation of the Pauli principle and its per-
turbation theoretical aspect. Of course the appealing features
of the RPA, such as, for instance, fulfillment of sum rules,
restoration of broken symmetries, Goldstone theorem, nu-
merical practicability, and physical transparency, should be
kept as much as possible. That this is indeed the case with
the SCRPA has in the past been demonstrated with applica-
tions to several nontrivial models10 such as, for instance, the
many-level pairingsRichardsond model10 and the three-level
Lipkin model.11 The SCRPA can be derived by minimizing
an energy-weighted sum rule and it is therefore a nonpertur-
bative variational approach though it is in general not of the
Raleigh-Ritz type. The resulting equations are a nonlinear
version of the RPA type which can be interpreted as the
mean-field equations of interacting quantum fluctuations.
Though the SCRPA equations are of the Schrödinger type,
their nonlinearity nonetheless makes their numerical solution
quite demanding. We therefore thought it indicated to begin
with applications to the Hubbard model, restricting them to
low-dimensional cases given by a finite number of sites
where exact diagonalization can easily be obtained. We then
logically started out considering the two-site caseswith pe-
riodic boundary conditionsd, increasing the number of sites
by steps of 2—i.e.,N=2,4,6, . . . To oursatisfaction the
SCRPA solves the two-site problem exactly for any value of
U. This, as a matter of fact, did not come entirely as a sur-
prise, since the same happened already with the pairing prob-
lem for two fermions10 and indeed it can be shown that the
SCRPA solves a general two-body problem exactly.17 It is
nonetheless worth pointing out that other respectable many-
body theories fail in the two-particle case, apart from the
low-U limit.

In the four-site problem at half filling the SCRPA failed.
This, as in all 4n sn=1,2,3, . . .d cases, presents the particu-
lar problem that the system is unstable with respect to the
formation of staggered magnetization for any finite value of
U and this prevented the SCRPA solution from existing in
the plane-wave basis for particular values of the momentum
transferuqu. At the end of the paper we indicated that extend-
ing the present RPA ansatz of ph pairs to include quadruples
of fermion operators can solve not only the two-electron but
also the four-electron case exactly. This is particularly inter-
esting in view of the fact that the four-site casesplaquetted
may be very important for the explanation of high-Tc super-
conductivity, in considering the many plaquette configura-
tions in 2D.23 In this work we jumped directly to the six-site
problem which, as all 2+4n cases, causes no particular dif-
ficulties in the SCRPA, even in the symmetry-unbroken basis

of plane waves. Of course, in the case of six sites, the
SCRPA is not exact anymore. However, it is shown that the
results are still excellent for all quantities considered: excited
states, ground state, and occupation numbers. Contrary to the
two-site case, the SCRPA solutions in the plane-wave basis
cannot be obtained for all values ofU. Somewhere after the
point where, as a function ofU, the first mean-field instabil-
ity shows up, the SCRPA also starts to deteriorate and in fact
does not converge any longer. Often the mean-field critical
value of U is by passed by 20% up to 50% in the SCRPA,
still staying excellent. However, to go into the strong-U limit
we have to introduce the above mentioned quadruple fer-
mion operators or perform a SCRPA calculation in the
symmetry-broken basis.12 Such investigations shall be left
for the future. We also gave arguments why we think that,
going to theN.6 cases, the precision we found forN=6
will not deteriorate. We therefore think that our formalism
will allow one to find precise results for system sizes where
an exact diagonalization becomes prohibitive. Problems in
2D with closed-shell configurations probably also can and
shall be considered with the present formalism. Also, as
shown in Ref. 10, the extension to finite temperatures is pos-
sible.

We also should mention that in this work we neglected the
so-called scattering terms of the formap

†ap8 or ah
†ah8—that is,

fermion ph operators where either both indices are above or
both below the Fermi level. In the standard RPA those con-
figurations automatically decouple from the ph and hp
spaces. However, in the SCRPA with its rounded occupation
numbers, there is formally no reason not to include them. As
a matter of fact, as shown in earlier work,11,19 to assure the
fulfillment of the f sum rule and the restoration of broken
symmetries, these scattering terms must be taken into ac-
count. In the present case, as well as in earlier studies, the
scattering terms seem to be almost linearly dependent with
the ordinary ph and hp configurations. This fact induced dif-
ficulties with the iteration procedure, since they correspond
to very small eigenvalues of the norm matrix. Though we do
not exclude the possibility that this difficulty could be mas-
tered with a more refined numerical algorithm, we finally
refrained from pursuing this effort, since we could show that
the influence of the scattering terms on the results is only on
the level of a fraction of percent and also thef sum rule is
only violated on this order.

In short we showed that the SCRPA, as in previous mod-
els, performs excellently in the symmetry-unbroken regime
of the Hubbard model. However, the high-U limit and the
4n-site cases need further developements.
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APPENDIX A: PARTICLE-HOLE CORRELATION
FUNCTIONS

We give the commutations rules which will be useful
in the calculation of the correlations functions in the
ph channel:
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fQn,Qn8
† g = o

i

sXi
nXi

n8 − Yi
nYi

n8d
1 − Mi

1 − kMil
,

fQn,Qn8g = o
i

sYi
nXi

n8 − Xi
nYi

n8d
1 − Mi

1 − kMil
,

fMi,Qng = − 2Yi
no

n1

sXi
n1Qn1

† + Yi
n1Qn1

d,

fMi,Qn
†g = 2Yi

no
n1

sYi
n1Qn1

† + Xi
n1Qn1

d. sA1d

Thus, the following average values can be calculatedscom-
muting theQ’s to the rightd:

kQn3
Qn2

† Qn1
Qn0

† l = o
i j

sXi
n3Xi

n2 − Yi
n3Yi

n2d
s1 − kMild

sX j
n1X j

n0 − Y j
n1Y j

n0d
s1 − kMjld

ks1 − Mids1 − Mjdl, sA2d

kQn3
fQn1

,Qn2

† gQn0

† l = o
i j

sXi
n3Xi

n0 − Yi
n3Yi

n0d
s1 − kMild

sX j
n1X j

n2 − Y j
n1Y j

n2d
s1 − kMjld

ks1 − Mids1 − Mjdl − 2o
i

Xi
n3Xi

n2Xi
n1Xi

n0 − Yi
n3Yi

n2Yi
n1Yi

n0

s1 − kMild
.

sA3d

Finally, one can express the correlation function according to the amplitudes RPA,kMil and of kMiMjl as

kQn3
Qn1

Qn2

† Qn0

† l = kQn3
fQn1

,Qn2

† gQn0

† l + kQn3
Qn2

† Qn1
Qn0

† l = 2o
i j

sXi
n3Xi

n2 − Yi
n3Yi

n2d
s1 − kMild

sX j
n1X j

n0 − Y j
n1Y j

n0d
s1 − kMjld

ks1 − Mids1 − Mjdl

+ o
i j

sXi
n3Xi

n0 − Yi
n3Yi

n0d
s1 − kMild

sX j
n1X j

n2 − Y j
n1Y j

n2d
s1 − kMjld

ks1 − Mids1 − Mjdl − 2o
i

Xi
n3Xi

n2Xi
n1Xi

n0 − Yi
n3Yi

n2Yi
n1Yi

n0

s1 − kMild
.

sA4d

APPENDIX B: DENSITY-DENSITY CORRELATION
FUNCTIONS

Given that this RPA formalism preserves the number of
particles per spin,s sowing to the fact that the transforma-
tion HF does not break the symmetry of spind, one has

N̂s = Ns + o
p

ñps − o
h

ñhs sB1d

and the average valuekN̂sl=Ns=N/2, which gives us

o
p

kñpsl = o
h

kñhsl. sB2d

On the other hand, one also has

N̂sN̂s8 = SNs + o
p

ñps − o
h

ñhsDSNs8 + o
p8

ñp8s8 − o
h8

ñh8s8D ,

sB3d

with the average valuekN̂sN̂s8l=Ns+Ns8, which gives us

KSop

ñps − o
h

ñhsDSo
p8

ñp8s8 − o
h8

ñh8s8DL
= Ns8KSo

p

ñps − o
h

ñhsDL
+ NsKSo

p8

ñp8s8 − o
h8

ñh8s8DL . sB4d

Thus, for our case, there is the relation

KSop

ñp↑ − o
h

ñh↑DSo
p8

ñp8↓ − o
h8

ñh8↓DL
= 3So

ps

kñpsl − o
hs

kñhslD = 0. sB5d
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