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ABSTRACT 

Obesity is a worldwide problem that has reached epidemic proportions both in developed and 

developing countries. The excessive accumulation of fat poses a risk to health since it favours 

the development of metabolic alterations including insulin resistance and tissue inflammation, 

which further contribute to the progress of the complex pathological scenario observed in the 

obese. In this review we put together the different outcomes of fat accumulation and insulin 

resistance in the main insulin-responsive tissues, and discuss the role of some of the key 

molecular routes that control disease progression both in an organ-specific and also in a more 

systemic manner. Particularly, we focus on the importance of studying the integrated 

regulation of different organs and pathways that contribute to the global pathophysiology of 

this condition with a specific emphasis on the role of emerging key molecular nodes such as 

the G protein-coupled receptor kinase 2 (GRK2) signalling hub. 

 

INTRODUCTION 

Obesity is a pathological condition in which there is an excessive accumulation of body 

fat that contributes to a myriad of pathological effects. Over the last decade, the prevalence of 

obesity has reached epidemic proportions. The onset of obesity is linked to an imbalance 

between energy intake and energy expenditure (EE) (Weiser, 1997). However, given the 

complex nature of the regulation of fat mass content and the multiple compensatory 

mechanisms involved, counteracting obesity stands as a difficult challenge. Of note, visceral 

obesity is recognized as a key risk factor for the development of hypertension, dyslipidaemia, 

impaired glucose tolerance and insulin resistance (IR) (Kopelman, 2007). Insulin signalling 

regulates glucose and lipid metabolism as well as energy homeostasis by acting on different 

insulin-target tissues including liver, skeletal muscle, adipose tissue, heart and vessels (Figure 
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1). Therefore, the consequences of IR underlie the development of a wide variety of metabolic 

disorders, including cardiovascular disease, non-alcoholic fatty liver disease (NAFLD), and 

type 2 diabetes (T2D). Considering the multi-organ effects of insulin and the integration of 

the effects of obesity and IR in the different tissues (Figure 1), it is crucial to understand how 

this physiopathological network operates in order to design suitable therapeutic approaches 

for the treatment of these disorders. 

The functional defects associated to IR partially arise from impaired insulin signalling 

through the PI3K/AKT axis in the different insulin-target tissues. In this regard, insulin exerts 

its actions via complex signalling networks with positive and negative modulators acting at 

different stages of the transduction cascade, which tightly control the biological response to 

this messenger. Alterations in any of these modulators may lead to the development of IR. 

These alterations include changes in protein functionality as well as mutations or aberrant 

posttranslational modifications in the components of the insulin signalling pathway 

(Biddinger and Kahn, 2006, Gesta, 2006).  

 

Insulin signalling and IR 

Insulin binding stimulates tyrosine auto-phosphorylation in the insulin receptor β subunits 

which activates its kinase activity and recruits and phosphorylates members of a family of 

adaptor proteins called insulin receptor substrates 1–6 (IRS1–6) (reviewed in (Taniguchi, 

2006)). IRS proteins act as scaffolds coupling IR stimulation to downstream effectors, 

recruiting and activating various SH2 domain–containing proteins, including the 

phosphatidylinositol 3-kinase (PI3K). The activation of PI3K produces PI3,4P2 and 

PI3,4,5P3, which recruit PDK1 and AKT to the plasma membrane. AKT is activated via 
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phosphorylation at T308 by PDK1 and at S473 by mTOR in complex with Rictor, this 

complex known as mTORC2 and also termed PDK2. AKT phosphorylates many cellular 

proteins, allowing the metabolic and transcriptional reprogramming of the cell (White, 2003) 

(Figure 2). In many cases AKT substrates directly controlling metabolic steps have been 

identified, such as glycogen synthase kinase 3 (GSK3) (Cross, 1995), the transcription factor 

Forkhead box O (FoxO) (Biggs, 1999), the phosphodiesterase PDE3B (Kitamura, 1999) or 

TBC1D4/AS160, a Rab GTPase-activating protein (GAP) (Kane, 2002), which plays an 

important role in insulin-stimulated translocation to the plasma membrane of the glucose 

transporter GLUT4. Additionally, AKT activation can activate mTOR in complex with 

Raptor, also known as mTORC1, which in turn activates S6K1 promoting the serine 

phosphorylation of IRS1 and reducing its stability in an auto-regulatory negative feedback 

loop (Harrington, 2005). Indeed, in contrast to tyrosine phosphorylation, the multi-site 

serine/threonine phosphorylation of IRS has classically been described to inhibit the 

interaction between its PTB domain and the phosphorylated receptor causing their 

dissociation and decreasing tyrosine phosphorylation (reviewed in (Copps and White, 2012)), 

although some studies have demonstrated that certain phosphorylations on serine residues 

have a positive effect on insulin signalling (Copps, 2010). 

IR is a pathological condition in which cells fail to respond to the actions of insulin. Given 

that IR is a complex metabolic disorder that challenges a key signalling pathway, defining the 

precise mechanisms of IR in peripheral tissues is difficult while vital for the development of 

new and more effective therapies for T2D. In this regard, several studies have demonstrated 

that hyperinsulinemia, hyperlipidaemia, mitochondrial dysfunction and oxidative stress routes 

lead to attenuated insulin signalling and decreased cellular responsiveness to insulin. 

Moreover, accumulation of lipid metabolites, activation of the unfolded protein response 
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(UPR) and activation of proinflammatory signalling cascades have also been related to the 

pathogenesis of this disorder (reviewed in (Samuel and Shulman, 2012)).   

Inflammation and IR  

Remarkably, obesity itself has been described to result in a chronic low grade inflammatory 

state, contributing to IR and metabolic dysfunction (Gregor and Hotamisligil, 2011). In fact, 

the proinflammatory cytokine TNFα has long been considered as a link between obesity and 

IR (Fernandez-Veledo, 2009a), and the roles of this cytokine in other pathologies associated 

with obesity have been examined in several experimental systems including obese mice with 

homozygous null mutations at the TNFα or TNF receptor loci (Hotamisligil, 2000, Xu, 2002). 

Several studies of this inflammatory process underlying the IR and metabolic dysfunction that 

precedes T2D, have identified components of both the innate and adaptive immune response 

as key players in regulating metabolic homeostasis (reviewed in (Brestoff and Artis, 2015)).  

TNFα and other proinflammatory cytokines activate MAP kinases (Tanti, 2012) thus 

interfering with insulin signalling. In this regard, the activity of IκB-kinase β (IKKβ) and c-

Jun NH(2)-terminal kinase (JNK), both activated by TNFα, is elevated in different tissues 

during obesity, and several studies in mice have established the importance of these kinases in 

the development of IR (Tanti, 2012, Hirosumi, 2002). Heterozygous IKKβ mice are partially 

protected against diet-induced IR (Kim, 2001a), and disruption of JNK1 function protects 

mice against obesity-induced IR (Hirosumi, 2002, Sabio and Davis, 2010). JNK2 may also 

play a role in IR, but to a lesser extent (Tuncman, 2006). At the molecular level, one 

mechanism by which these kinases impair insulin signalling is the phosphorylation of IRS 

proteins on inhibitory serine sites, either directly or indirectly (Hirosumi, 2002) (Figure 2). In 

the same line, activation of the mTORC1 node by TNFα (Gao, 2003) is known to feedback 

negatively on IRS1 via S6K, thus decreasing insulin sensitivity (Figure 2). Accordingly, mice 
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with adipose-specific knockout of the Raptor component of mTORC1 are lean, resistant to 

diet-induced obesity (Polak, 2008) and display improved glucose tolerance and 

insulin sensitivity.  

On the other hand, activation of the innate immune system in the course of obesity may also 

be mediated by metabolic signals, such as increased circulating free fatty acids (FFAs), that 

may be recognized by receptors involved in the immune response, and thereby lead to 

stimulation of inflammatory signalling cascades, including IκBα kinase/nuclear factor-κB 

(IKK/NF-κB) or endoplasmic reticulum (ER) stress-induced unfolded protein response 

(UPR), that may interfere with insulin signalling (reviewed in (Ringseis, 2015)). 

Alternative molecular mechanisms leading to IR  

While distinct signalling mechanisms specific for each tissue will be described later in 

individual paragraphs, an overview of the general mechanisms leading to IR is summarized in 

this section (and in Figure 2). 

Emerging data are pointing at endoplasmic reticulum (ER) stress as an important player in the 

pathophysiology of obesity, IR and T2D (Ozcan, 2004). In obesity the capacity of the ER is 

surpassed, thus leading to the accumulation of misfolded/unfolded proteins, a condition 

termed ER stress. Accordingly, interventions that suppress ER stress can improve diabetes 

and associated comorbidities (Ozcan, 2006). In addition, diacylglycerol (DAG)-mediated IR 

has been suggested as a further unifying hypothesis to explain the most common forms of IR 

associated with obesity and T2D. Thereby, an increase in intracellular DAG content, due to an 

imbalance between fatty acid delivery and intracellular fatty acid oxidation and storage, 

would lead to activation of new protein kinase C (PKC) isoforms that may in turn inhibit 

insulin action in liver and skeletal muscle (reviewed in (Erion and Shulman, 2010)).  
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Another mechanism potentially responsible for the insulin signalling defects found in obesity 

is the increased expression and/or activity of protein tyrosine phosphatases (PTPs), able to 

terminate signals propagated through tyrosine phosphorylation events. For instance, protein 

tyrosine phosphatase 1B (PTP1B) has been described to directly modulate insulin action in 

vitro and in vivo (Figure 2) (Goldstein, 2001). This phosphatase is increased in expression 

and/or activity in muscle and adipose tissue of obese humans and rodents (Goldstein, 2001), 

and the activation of the negative regulator of insulin signalling IKKβ/NFκB pathway 

increases its levels (Zabolotny, 2008). Accordingly, PTP1B-deficient mice show increased 

insulin sensitivity and resistance to diet-induced obesity, partly by an increased energy 

expenditure (Goldstein, 2001). Interestingly, the improved insulin sensitivity is present in 

muscle and liver but not in adipocytes (Goldstein, 2001). PTP1B inhibitors have shown 

beneficial effects to enhance insulin sensitivity, but structural homologies in the catalytic 

domain of PTP1B with other PTPs present a challenging task to achieve selectivity 

(Tamrakar, 2014).  

Along the same line, the lipid phosphatase and tensin homologue (PTEN) has also been 

widely implicated as a negative regulator of insulin/PI3K signalling (Sasaoka, 2006) (Figure 

2), apart from its role as a tumour suppressor. Several studies have shown that specific down-

regulation of PTEN in different insulin target tissues protects against insulin resistance and 

diabetes (Carracedo and Pandolfi, 2008).  On the contrary, transgenic mice overexpressing 

PTEN have also been reported to display enhanced insulin sensitivity, suggesting that 

moderate overexpression of PTEN results in improved insulin signalling and in protection 

from the damaging effects of high-fat diet (HFD). This effect, apparently paradoxical, is 

explained by the concomitant reduction in the negative feedback routes that emanate from the 

insulin signalling pathway (Ortega-Molina, 2012). 
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In the context of insulin signalling modulators, recent lines of research support the 

identification of G protein-coupled receptor kinase 2 (GRK2) as a novel and important 

negative regulator of insulin effects (reviewed in (Mayor, 2011)). GRK2 is a Ser/Thr kinase 

that has been classically named and widely studied for its role in the regulation and 

desensitization of G protein-coupled receptors (GPCRs). Besides such canonical role, recent 

data indicate that GRK2 is also able to phosphorylate a variety of non-GPCR substrates 

(Penela, 2010, Ribas, 2007). In addition, changes in GRK2 expression and activity have been 

identified in several relevant inflammatory, metabolic, cardiovascular or cancer diseases, 

suggesting that those alterations may contribute to the onset or development of these 

pathologies (Gurevich, 2012). In particular, recent data from our laboratory suggest that 

GRK2 levels play a relevant role in insulin signalling and resistance as well as in fat mass 

accretion (Garcia-Guerra, 2010). In fact, GRK2 expression levels are increased in insulin-

resistant human adipocytes, in muscle and adipose tissue from TNFα, aging or HFD-induced 

insulin-resistant murine models and also in peripheral blood cells from metabolic syndrome 

patients (Garcia-Guerra, 2010). Accordingly, GRK2 haploinsufficient (GRK2
+/-

) mice 

maintain glucose tolerance and insulin signalling in the major insulin-responsive tissues under 

different conditions of insulin resistance (Garcia-Guerra, 2010), suggesting that enhanced 

GRK2 expression impairs insulin sensitivity (Figure 2) and that a moderate decrease in GRK2 

levels/activity could be a new and feasible therapeutic strategy to tackle T2D. In keeping with 

these findings, peptide GRK2 inhibitors result in improved glucose homeostasis in different 

animal models of diabetes (Anis, 2004). Moreover, a recent work from our laboratory has 

shown that decreasing GRK2 levels in a tamoxifen-inducible mice model is not only able to 

prevent, but also to reverse a pre-established insulin-resistant and obese phenotype (Vila-

Bedmar, 2015). In this context, several tissue-specific processes seem to contribute to the 

beneficial effects of a reduction in GRK2 during a high fat feeding: improved insulin 
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signalling, enhanced lipolysis, increased expression of fatty acid oxidation and thermogenesis 

markers, and reduced hepatic steatosis and inflammation (Vila-Bedmar, 2015). At the 

molecular level, enhanced GRK2 expression appears to impair insulin-mediated AKT 

stimulation and insulin-induced glucose uptake by different mechanisms in specific tissues: 

directly interacting with IRS1 in adipocytes and myocytes (Garcia-Guerra, 2010); directly 

phosphorylating IRS1 at Ser 307 in cardiomyocytes (Ciccarelli, 2011); and by mediating 

endothelin-1-induced IR in 3T3-L1 preadipocytes via the inhibition of both Galphaq/11 and 

IRS1 pathways (Usui, 2005). Thus, the precise mechanisms modulating GRK2-mediated IR 

development in different tissues and the potential implication of phosphorylation events on 

GRK2-mediated IRS1 modulation are key issues for future research. Moreover, these findings 

are in agreement with the fact that IRS proteins represent a major node key to the 

development of IR (Copps and White, 2012).  

 

INSULIN TARGET TISSUES 

Insulin target tissues are able to function in response to insulin, given they express the insulin 

receptor and hold the appropriated intracellular enzymatic machinery able to regulate lipid 

and glucose metabolism. Under obesity or T2D conditions, these tissues are resistant to many 

of the actions of insulin. Thus, unravelling the different outcomes of obesity and IR in the 

main insulin-responsive tissues, as well as the physiopathological mechanisms involved, is 

crucial to understand the overall implications of an obese and insulin-resistant phenotype. 

In the next sections we will next summarize the most important obesity-induced alterations in 

the normal physiological functions of the different insulin target tissues, and relate these 
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alterations to the key molecular mechanisms implicated in each case, with a clear focus on the 

integration of the different mechanisms contributing to the global IR phenotype. 

 

Adipose Tissue 

The adipose tissue can be considered a multi-depot organ since it consists of several "stores" 

located in two compartments: subcutaneous and visceral (Cinti, 2005). Likewise, adipose 

depots are commonly classified following their appearance in white and brown adipose tissue, 

although some groups also refer to ‘beige’ (Ishibashi and Seale, 2010) or ‘brite’ (brown in 

white) (Petrovic, 2010) adipocytes, meaning regions of white adipose tissue containing brown 

or brown-like adipocytes.   

White adipose tissue  

White adipose tissue (WAT) has been classically considered as a mere energy store and 

generally regarded as a connective tissue lacking specific anatomy. However, accumulating 

data support the idea that WAT forms a large organ with discrete anatomy, specific vascular 

and nerve supplies, high physiological plasticity (Cinti, 2012) and important endocrine and 

homeostatic functions (Trayhurn and Beattie, 2001). Accordingly, the structural and/or 

functional changes or distribution of adipose tissue as well as its excessive fat load, rather 

than obesity itself, are the key features correlating with metabolic alterations (Primeau, 2011, 

McLaughlin, 2012).  In this regard, many researchers have reported that the intra-abdominal 

(visceral) adipose depot is a major contributor to metabolic risk, whereas the subcutaneous 

depot may have a protective role (McLaughlin, 2011). In fact, contrary to the subcutaneous 

WAT, excess of fat in visceral depots drives adipocyte hypertrophy rather than adipogenesis, 

a form of storage associated with more important metabolic alterations and inflammation 
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(McLaughlin, 2014). Nevertheless, when adipogenesis is impaired, IR and inflammation 

develop also in the subcutaneous fat, so that this depot could also participate in the 

pathogenesis of the metabolic syndrome (Weyer, 2000). Remarkably, obese mice and humans 

without adipocyte hypertrophy (hyperplastic obesity) are insulin-sensitive (Cinti, 2005, 

Hoffstedt, 2010). 

Along this line, macrophages seem to play an important role in the development of the 

metabolic disorders associated with obesity. Classical resident macrophages in WAT harbour 

a M2 or alternatively activated phenotype and produce anti-inflammatory cytokines. By 

contrast, obesity induces the recruitment of macrophages prone to M1 priming (Lumeng, 

2007) which produce pro-inflammatory cytokines that interfere with insulin signalling 

pathways (Gregor and Hotamisligil, 2011). Other immune cell populations are also modified 

in the obese such as CD8
+
 and CD4

+
TH1 lymphocytes which are increased and probably 

contribute to M1 macrophage recruitment and polarization (Nishimura, 2009, Winer, 2009). 

However, macrophages are generally considered as the effector cells contributing to 

inflammation-mediated IR, and it is macrophage infiltration what positively correlates with 

the size of adipocytes both in visceral and in subcutaneous fat (Cinti, 2005). Nevertheless, the 

number of macrophages is much higher in visceral fat, both in diet- and in genetically-

induced obesity (Strissel, 2007, Murano, 2008). This fact is in agreement with the more 

deleterious consequences of visceral obesity (compared to the subcutaneous type) on insulin 

action, and with the depot-specific effect of TNFα inducing IR through the activation of 

JNK1/2 and serine phosphorylation of IRS1 in human visceral but not in subcutaneous 

adipocytes (Fernandez-Veledo, 2009b).  

Molecular keys in WAT 
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The production of adipokines (bioactive molecules released from adipose tissues) by 

overloaded and inflamed adipose depots is altered during obesity. This deregulated adipokine 

secretion pattern further contributes to adipose inflammation and altered lipid homeostasis 

(Jung and Choi, 2014), which promotes IR and fat accumulation in ectopic tissues (DeFronzo, 

2004) leading to the stimulation of stress-induced kinases such as JNK and IKK-β. Moreover, 

activation of these kinases within the adipose tissue further contributes to the production of 

pro-inflammatory cytokines, such as IL-6, that lead to the development of IR in other tissues, 

including the liver (Sabio, 2008), and also in vitro in human myocytes (Fernandez-Veledo, 

2008). FFAs also exacerbate pro-inflammatory cytokine secretion from M1 macrophages 

through activation of toll like receptors (TLRs). Interestingly, stress kinases may also be 

directly induced by FFA or endotoxemia through activation of TLR2 and 4 (Shoelson, 2007), 

thus providing an additional mechanism for the direct induction of IR and inflammation by 

dietary and gut-derived products. On the contrary, exercise reduces TLR4 expression, 

suppressing M1 macrophage infiltration in adipose tissue and/or promoting phenotypic 

switching from pro-inflammatory M1 to anti-inflammatory M2 macrophages (Ringseis, 

2015). Along the same line, increasing fatty acid oxidation in adipocytes and macrophages 

has been suggested to decrease TG content and inflammation in adipocytes and reduce ER 

stress and oxidative damage in macrophages as well as improving insulin sensitivity 

(Malandrino, 2015). 

Importantly, insulin is a critical regulator of several aspects of adipocyte biology. This 

hormone promotes adipocyte triglyceride storage by several mechanisms, including 

promoting adipocyte differentiation, and stimulating glucose uptake and triglyceride synthesis 

while inhibiting lipolysis. Insulin also enhances the uptake of FA from circulating 

lipoproteins by stimulating lipoprotein lipase (LPL) activity in WAT. Thus, maintaining the 

integrity of insulin signalling in adipocytes is crucial for the proper functioning of this tissue. 
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Contrary to skeletal muscle, during obesity and T2D the expression of the glucose transporter 

GLUT4 is selectively decreased in adipocytes, and adipose-specific knockout or 

overexpression of GLUT4 alters systemic insulin sensitivity (Abel, 2001, Yang, 2005, 

Carvalho, 2005). Another important molecule, the phosphatase PTP1B, positively correlates 

with adiposity and contributes to IR. However, the role of PTP1B specifically in adipocytes is 

unclear, with studies demonstrating beneficial, detrimental or no effect(s) of adipose PTP1B 

deficiency on whole body mass and IR. Nevertheless, in a recent study using adipocyte-

specific PTP1B knockout mice, no benefit of this deletion was found in terms of glucose 

homeostasis, lipid metabolism or adipokine secretion, suggesting that PTP1B does not appear 

to be the major negative regulator of IR in adipocytes (Owen, 2012). 

On the other hand, mice lacking PTEN specifically in adipose tissue show improved systemic 

glucose tolerance and insulin sensitivity, in association with decreased fasting insulin levels, 

even when no differences in adiposity or plasma FFA were found (Kurlawalla-Martinez, 

2005). Moreover, and in contrast to the increased global insulin sensitivity of transgenic mice 

overexpressing PTEN, the WAT of these mice showed reduced levels of phosphorylated 

AKT, but also decreased levels of IRS1 in serine inhibitory sites (Ortega-Molina, 2012). 

Finally, in our laboratory we have put forward GRK2 not only as a novel regulator of insulin 

signalling in different insulin-target tissues including WAT, but also as a modulator of overall 

adiposity and fat mass accretion (reviewed in (Mayor, 2011)). In fact, GRK2 can act as an 

inhibitor of insulin-mediated glucose uptake in 3T3L1 adipocytes by interfering with Gαq/11 

(Usui, 2005), and by interacting with IRS1 independently of its kinase activity (Garcia-

Guerra, 2010). Furthermore, WAT from GRK2
+/-

 mice presents a reduced expression of 

enzymes involved in lipogenesis (Vila-Bedmar, 2012) consistent with the decreased size of 

white adipocytes in aged or HFD-fed mice compared with WT littermates (Garcia-Guerra, 
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2010). This reduced size is not related to alterations in the differentiation capacity of white 

adipocytes, since inducing GRK2 loss during a HFD also decreases epidydimal fat mass and 

adipocyte size, in association with an enhanced lipolytic capacity in WAT (Vila-Bedmar, 

2015).  

Brown adipose tissue 

Brown adipose tissue (BAT) represents a natural target for increasing energy expenditure 

(EE) since it is the main organ involved in heat production through a process known as non-

shivering adaptive thermogenesis, an energy-dissipating process key to maintaining body 

temperature. This process depends on the specific expression of the uncoupling protein 

(UCP)1 in the mitochondrial inner membrane of brown adipocytes, which allows to dissipate 

the excess of energy in the form of heat (reviewed in (Cannon and Nedergaard, 2004)). 

Therefore, although insulin regulates metabolism in both brown and white adipocytes, the role 

of both tissues in energy storage and utilization is quite different. Unlike WAT, BAT 

accumulates lipids not as a store for excess of energy but as a source of FA to be oxidized in 

mitochondria when thermogenesis is activated to produce heat at the expense of coupled ATP 

production, although an increase in the uncoupling machinery of brown adipocytes has also 

been described to be followed by an enhancement of proteins involved in ATP synthesis 

(Guillen, 2013). BAT was classically considered of metabolic significance only in small 

mammals and human newborns, since it was thought to disappear rapidly after birth in 

humans. However, several pieces of evidence have put forward the role of this tissue in the 

regulation of energy balance in humans (reviewed in (Vila-Bedmar and Fernandez-Veledo, 

2011, Cypess and Kahn, 2010)).  As a result, much interest has focused on BAT as a target for 

pharmacotherapy of obesity-associated disorders. In fact, alterations in this tissue have been 

related to adiposity control, IR and T2D (Lowell, 1993, Feldmann, 2009). 
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Given the role of BAT as a sink for draining and oxidation of glucose and triglycerides from 

blood, promotion of BAT development/activity or even remodelling of WAT depots in order 

to promote browning of this tissue offers the possibility of increasing EE, contributing to the 

reduction of body weight and the improvement of glucose tolerance. In keeping with this 

notion, the inherent plasticity of the adipose organ offers the possibility to manipulate this 

tissue, pointing at the enhancement of BAT activity as an important therapeutic strategy in the 

protection against obesity and metabolic syndrome. In fact, animals with higher amount of 

BAT are more resistant to obesity and T2D (Kopecky, 1995, Collins, 2004, Almind, 2007) 

whereas, animals without functional BAT are prone to these conditions (Lowell, 1993, 

Feldmann, 2009). Most interestingly, these observations are also valid for humans (Vila-

Bedmar and Fernandez-Veledo, 2011, Cypess and Kahn, 2010).  

Molecular keys in BAT 

While sympathetic innervation of BAT plays an essential role in its thermogenic function, 

several studies in vitro and in vivo have revealed that brown adipocytes are also target cells 

for insulin action, since insulin stimulation increases glucose uptake and GLUT4 translocation 

to the plasma membrane in foetal brown adipocytes (Lorenzo, 2002, Valverde, 2005). 

Interestingly, IR in BAT has been associated with impaired thermogenesis in obese mutant 

rodents (Mercer and Trayhurn, 1984). However, the mechanism by which insulin affects 

glucose transport in brown fat appears to be unrelated to the activation of thermogenesis. In 

fact, transgenic mice moderately overexpressing PTEN present BAT hyperactivity mediated 

by the inhibition of PI3K/AKT/Foxo signalling pathway and associated with increased EE 

and with lower adiposity and body weight. These effects run in parallel to a number of 

systemic beneficial consequences, including improved insulin sensitivity and protection from 

HFD-induced IR and steatosis (Ortega-Molina, 2012). Additionally, in the absence of insulin, 
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physiological concentrations of norepinephrine stimulate glucose transport in brown 

adipocytes via β-adrenergic pathways (Dallner, 2006, Shimizu, 1991).  

One key mediator of IR in brown adipocytes, as described in WAT, are proinflammatory 

cytokines such as TNFα. The molecular mechanisms involved in TNFα-induced IR depend on 

de novo ceramide production (Fernandez-Veledo, 2006a) and on the activation of stress 

kinases and potential Ser-Thr phosphorylation of IRS2 (Hernandez, 2004). A significant 

enhancement of PTP1B expression and activity is observed in TNFα-treated brown 

adipocytes, and the lack of this phosphatase conferred protection against TNFα-induced 

impairment of glucose uptake or insulin signalling (Fernandez-Veledo, 2006b). Interestingly, 

this cytokine not only stimulates IR in BAT, but also acts as a negative regulator of 

adipogenic and thermogenic differentiation in brown adipocytes (Lorenzo, 2008). In addition,  

Besides glucose uptake, de novo lipid synthesis also occurs in BAT with insulin as an 

essential lipogenic regulator. In this regard, lack of IRS1 leads to IR in brown adipocytes at 

the level of thermogenic gene expression (Valverde, 2003) and lipid synthesis (Valverde, 

1999). Thus, besides its essential role in adipogenesis, IRS1 is a key molecule in mediating 

insulin-induced thermogenic gene expression in foetal brown adipocytes. 

Finally, GRK2 also appears to play an important role in BAT function and architecture, as 

well as in brown adipocyte differentiation (Vila-Bedmar, 2012). In this regard, the decreased 

weight observed in 9-month old GRK2
+/-

 mice seems to be due, at least in part, to an 

increased function of BAT in these animals. Accordingly, GRK2 hemizygous mice display 

higher EE and lower respiratory exchange ratio, which correlates with an improved 

morphology of BAT in GRK2
+/-

 adult mice (Vila-Bedmar, 2012). Along the same line, 

inducing GRK2 depletion with tamoxifen during a HFD also preserved the morphology of 

BAT that shows an enhanced lipolytic response to adrenergic stimulation. These features 

Page 18 of 60

URL: http://mc.manuscriptcentral.com/napb  Email: eckel@uni-duesseldorf.de

Archives Of Physiology And Biochemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

 18

were associated to an increased expression of thermogenic and FA oxidation markers, such as 

uncoupling protein 1 (UCP1) and carnitine palmitoyltransferase 1 (CPT1), respectively, 

which may underlie an increased capacity for fatty acid metabolism and thermogenesis in 

BAT upon GRK2 downmodulation. Accordingly, these changes would allow BAT to act as 

an efficient "metabolic sink" for the extra free fatty acids produced in WAT, thereby avoiding 

the establishment of lipotoxicity (Vila-Bedmar, 2015).  Thus, our data point toward GRK2 

inhibition as a potential tool for the enhancement of brown fat activity in addition to the 

reported function of this kinase in the regulation of insulin signalling.  

 

Liver 

The liver plays a central role in the maintenance of glucose homeostasis. During fasting, the 

liver is responsible for the synthesis of glucose from non-carbohydrate sources, in a process 

called gluconeogenesis. After feeding, when the glucose levels rise, the liver acts as a glucose 

sensor inactivating the endogenous production of glucose and storing the excess of 

monocarbohydrates as glycogen. These two processes are mainly regulated by insulin and in 

physiological conditions restore the normoglycaemia after a meal. However, in the obesity-

related diabetic or pre-diabetic state, the liver is an end-organ for the effects of IR.  Hepatic IR 

causes an increased glucose output and a decreased glucose clearance leading to sustained 

hyperglycaemia.  

One of the most important complications related to obesity-induced hepatic IR is non-

alcoholic fatty liver disease (NAFLD). NAFLD expands different stages, from simple 

steatosis to non-alcoholic steato-hepatitis (NASH) involving the development of 

inflammation, varying degrees of fibrosis and, ultimately, cirrhosis, end-stage liver failure and 
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hepatocellular carcinoma (Malaguarnera, 2009). IR promotes hepatic triglyceride 

accumulation as a result of increased peripheral adipose lipolysis and the influx of free FA 

released from dysfunctional and insulin-resistant adipocytes. IR also upregulates the levels of 

hepatic lipogenic transcription factors (Smith and Adams, 2011) causing hepatic steatosis, a 

condition often present in metabolic syndrome patients. In the steatotic liver the lipotoxicity 

caused by FFA accumulation and triglyceride-derived toxic metabolites (such as DAGs and 

ceramides) triggers the activation of inflammatory pathways, reactive oxygen species (ROS)-

induced cellular dysfunction and ER stress. Altogether, these mechanisms lead to hepatic 

inflammation and worsening of hepatic IR (Smith and Adams, 2011, Malaguarnera, 2009, 

Cusi, 2012).  

 

Moreover, the liver of subjects with NAFLD might release a variety of proatherogenic, 

proinflammatory, and diabetogenic mediators (Anstee, 2013), which play an important role in 

the pathogenesis of systemic inflammation and may contribute to the development of IR and 

cardiovascular disease (Stefan and Haring, 2013). In this regard, the discovery of proteins that 

are exclusively or predominantly secreted from the liver and that directly regulate 

inflammation as well as glucose and lipid metabolism, such as fibroblast growth factor 21 

(FGF21), has boosted the investigation into this field. In parallel to the proteins released from 

adipose tissue these liver-derived proteins are known as hepatokines. Therefore, the liver not 

only functions as a target organ of inflammatory and lipolytic reactions occurring within 

dysfunctional adipose tissue, but as an inducer of systemic inflammation.  

 

Molecular keys in the liver 
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Cumulative evidence suggests that IRS2 is the major effector of the actions of insulin in 

cultured hepatocytes. A distinctive role for IRS1 and IRS2 have been suggested on the basis 

that individual knockouts of IRS1 or IRS2 have only modest effects on murine nutrient 

metabolism, while the combined knockouts result in diabetes (Dong, 2006, Haeusler and 

Accili, 2008, Gonzalez-Rodriguez, 2010). Importantly, IRS2 is highly regulated by nutrient 

signals in this tissue (Dong, 2006, Ide, 2004), and the accumulation of DAG is described to 

activate PKCϵ and/or JNK1, which can lead to impaired IRS2 tyrosine phosphorylation thus 

contributing to hepatic IR (Erion and Shulman, 2010). 

 In line with this notion, recent studies have introduced the peroxisome proliferator-activated 

receptor α (PPARα)-FGF21 hormone axis as a target for hepatic JNK-mediated IR. This study 

also demonstrates how hepatic ablation of both genes (Jnk1 and Jnk2) and not hepatic JNK1 

deficiency protects against HFD-induced IR (Vernia, 2014).  

The specific role of phosphatases that switch off the insulin signalling pathway has also been 

investigated in the liver. In this regard, reducing PTP1B levels increase hepatic insulin 

signalling, decrease expression of gluconeogenic genes, enhancing insulin-induced 

suppression of hepatic glucose production, and improves glucose tolerance (Klaman, 2000). 

Accordingly, PTP1B antisense oligonucleotides that specifically downregulate PTP1B levels 

in liver and fat enhance insulin signalling and decrease adiposity in ob/ob and db/db mice in 

parallel with a reduced expression of lipogenic genes in these tissues (Waring, 2003, Zinker, 

2002). Liver-specific PTP1B knockout led to improved systemic glucose and lipid 

homeostasis and diminished expression of lipogenic genes, also protecting against HFD-

induced ER stress response in the liver (Delibegovic, 2009). Moreover, recent studies using 

inducible liver-specific PTP1B knockdown mice have shown that PTP1B downregulation 
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reverses glucose intolerance and improves lipid homeostasis decreasing lipid deposition in the 

liver in HFD-fed obese and insulin-resistant adult mice (Owen, 2013).  

Also, a liver-specific deletion of PTEN led to increased insulin sensitivity in this tissue, 

increased skeletal muscle insulin signalling and glucose uptake and improved overall glucose 

tolerance (Stiles, 2004). Moreover, WAT depots were reduced and had characteristics of 

browning in these mice (Peyrou, 2015). This systemic insulin-sensitizing effect of a liver-

specific deletion of PTEN has been explained through the modulation of the expression of 

liver-derived circulating factors that regulate muscle insulin sensitivity and WAT 

homeostasis, such as FGF21 (Peyrou, 2015). However, PTEN expression has been reported to 

be downregulated in steatotic rat and human livers (Vinciguerra, 2008), and PTEN liver-

specific KO mice develop fatty liver through increased FA uptake and de novo lipogenesis, 

together with decreased VLDL export (Qiu, 2008), whereas transgenic mice overexpressing 

PTEN are protected against HFD-induced steatosis (Ortega-Molina, 2012). Accordingly, 

studies in hepatocytes showed that unsaturated fatty acids down-regulate PTEN levels via 

activation of a complex formed by mTOR and NFκB (Vinciguerra, 2008). The paradoxical 

results found in the liver of PTEN liver-specific KO mice suggest a bifurcation in the effects 

of PTEN on insulin signalling cascade within the liver, producing on the one hand insulin 

hypersensitivity and in the other hand inducing the accumulation of lipids in this tissue. One 

possible explanation is based on the fact that mTORC1 is required for insulin-induced 

stimulation of lipogenesis, but not for other insulin-mediated hepatic effects (Li, 2010).  

Notably, our group has shown that GRK2 levels were increased in the liver of mice fed a 

HFD (Garcia-Guerra, 2010), and decreasing GRK2 protected against HFD-induced hepatic 

insulin resistance and impaired lipid accumulation in tamoxifen-induced GRK2
-/-

 mice (Vila-

Bedmar, 2015). Along the same lines, Sprague-Dawley rats fed a HFD for two weeks 
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presented increased hepatic plasma membrane GRK2 (Charbonneau, 2007). Moreover, strong 

insulin-mediated AKT phosphorylation was detected in the liver of GRK2
+/-

 mice under 

different IR-inducing conditions (Garcia-Guerra, 2010). In vitro results in mouse liver FL83B 

cells demonstrated that GRK2 negatively regulates basal and insulin-stimulated glycogen 

synthesis via a post-IR signalling mechanism, and that GRK2 may contribute to reduced IR 

expression and function during chronic insulin exposure. Mechanistically, GRK2 seems to 

affect phosphorylation of Ser307 on IRS1, reducing insulin receptor-IRS1 interaction and thus 

insulin receptor-mediated phosphorylation of Tyr612 on IRS1 (Shahid and Hussain, 2007). A 

similar increase of IRS1 phosphorylation at Tyr612 after IGF-1 treatment was found in 

HepG2 cells with reduced GRK2 protein levels (Wei, 2013). Preliminary results from our 

laboratory also reveal a role for GRK2 in the regulation of steatohepatitis (Cruces-Sande M, 

unpublished observation), what warrants further investigation on the control of hepatic 

glucose and lipid metabolism by this kinase. 

 

Muscle 

Skeletal muscle is a critical tissue for glycaemic control since it is the quantitatively major 

site of insulin-stimulated glucose clearance in the postprandial state, accounting for 

approximately 80% of glucose disposal under insulin-stimulated conditions (DeFronzo and 

Tripathy, 2009), and it also represents the largest glycogen storage organ (almost quadrupling 

the capacity of the liver). Thus, IR and metabolic dysfunction in skeletal muscle play a major 

role in the development of the metabolic syndrome and T2D (DeFronzo and Tripathy, 2009). 

The multiple alterations in adipose tissue homeostasis occurring during obesity, including an 

altered secretion profile of adipokines as well as increased lipolysis, lead to the redistribution 
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of FFA to non-adipose tissues such as skeletal muscle (DeFronzo, 2004). As a consequence, 

increased amounts of ectopic lipid stores are found in muscle from obese patients, which have 

been reported to induce IR in skeletal muscle by directly inhibiting insulin-stimulated glucose 

transport (reviewed in (Erion and Shulman, 2010)). However, some studies suggest that the 

connection between the amount of intra-myocellular lipids and IR might not be 

straightforward, since other factors, such as lipid droplet size or training status, may also play 

a role (Eckardt, 2011). Intra-myocellular lipids provide a source for the generation of 

metabolites including DAGs and ceramides, which have been widely described to impair 

insulin signalling. Abnormal accumulation of these metabolites activates different isoforms of 

PKC, including PKCθ, as well as IKKβ and JNK kinases, reducing or even abrogating 

insulin-mediated glucose uptake. Lipid infusion studies in humans have confirmed these 

findings, although PKCβII and PKCδ, rather than PKCθ, were found to be the relevant PKC 

isoforms implicated. Additional studies with different mouse models have provided further 

insight into the mechanisms that links intracellular DAG accumulation to IR (reviewed in 

(Erion and Shulman, 2010)). Furthermore, IKKβ is able to activate NFκB, which in turn 

regulates the production of pro-inflammatory cytokines such as IL-6 (Shoelson, 2003) which 

has been reported to have a dual effect on IR in muscle: stimulating insulin actions after an 

acute IL-6 challenge, but precluding insulin signalling upon a chronic exposure (Nieto-

Vazquez, 2008).  

The accumulation of lipid metabolites may be due to an imbalance between FFA delivery and 

intracellular fatty acid oxidation and storage. Accordingly, several studies have reported that 

fatty acid oxidation is reduced in both T2D and obese insulin-resistant individuals (reviewed 

in (Kelley, 2005)), suggesting that muscular mitochondrial oxidative capacity is impaired in 

these disorders and putting forward a role for mitochondrial dysfunction as a cause of muscle 

IR. In addition, several studies performed in obese humans and rats have revealed an increase 
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in the FFA transporter CD36 at the plasma membrane of skeletal muscle cells as well as an 

enhanced transport of FFA into this tissue (Eckardt, 2011), together with a reduction in 

intracellular lipid content after specific inhibition of this transporter in myotubes obtained 

from obese patients (Aguer, 2010). Nevertheless, it is still unclear whether it is mitochondrial 

dysfunction that leads to increased intra-myocellular lipid content and IR or rather if an 

increased muscle lipid content secondary to elevated plasma FFA levels is what leads to 

mitochondrial dysfunction and IR. Despite discrepancies in the exact mechanisms, it is clear 

that an acute exposure to FFAs and excess dietary lipid intake may lead to lipid-induced IR, 

which is a major trigger for IR in muscle in obesity. Notably, recent studies have reported 

impaired regenerative capacity of skeletal muscle following injury in obese mice, pointing to 

the possibility that muscle satellite cell function is also compromised under conditions of lipid 

overload. In fact, toxic lipid metabolites would also contribute to decreased regenerative 

capacity of skeletal muscle in obese animals impairing the potential for satellite cell-mediated 

repair (reviewed in (Akhmedov and Berdeaux, 2013)). 

On the other hand, nowadays, skeletal muscle is also recognized as an endocrine organ, and 

proteins released from this tissue have been termed myokines, in analogy to adipokines 

secreted by adipose tissue. Similarly to adipokines, these recently discovered myokines are 

likewise able to mediate metabolic homeostasis, contributing to the regulation of glucose and 

fatty acid metabolism as well as modulating inflammation (reviewed in (Eckardt, 2014)). 

Molecular keys in muscle 

In morbid obesity, the expression and/or activation of some components of the insulin 

signalling cascade is altered in skeletal muscle, including IRS1 phosphorylation as well as 

PI3K activity (Goodyear, 1995), although no alterations have been reported in GLUT4 

expression levels in skeletal muscle of obese and diabetic humans (reviewed in (Shepherd and 
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Kahn, 1999)). In fact, defective glucose transport has been suggested to be due to impaired 

translocation, docking, or fusion of GLUT4-containg vesicles with the plasma membrane 

(Bogan, 2012). However, inactivation of GLUT4 in skeletal muscle leads to IR (Kim, 2001b) 

and muscle-specific overexpression of GLUT4 improves glucose disposal in animal models 

of IR (Leturque, 1996). These reports suggest that maintaining high levels of GLUT4 in 

skeletal muscle might be a potential strategy for treatment of IR. In contrast, transgenic 

overexpression of PTP1B in muscle decreased glucose uptake (Zabolotny, 2004), whereas, 

ablation of PTP1B specifically in this tissue improved systemic insulin sensitivity in mice fed 

a HFD (Delibegovic, 2007). Furthermore, PTP1B is upregulated by the proinflammatory 

cytokine TNF-α and myocytes lacking PTP1B are protected against TNF-α-induced IR 

(Nieto-Vazquez, 2007), and the lack of PTP1B has also been reported to confer protection 

against long term IL-6 treatment-induced IR in skeletal muscle in vitro and in vivo (Nieto-

Vazquez, 2008). Moreover, despite the fact that JNK1 deficiency does not enhance muscle 

glucose metabolism in lean mice (Witczak, 2006), the saturated fatty acid palmitate has been 

reported to induce PTP1B expression in skeletal muscle cells through a mechanism involving 

the activation of ceramide, JNK and NFκB pathways (MohammadTaghvaei, 2012).  

Interestingly, many chronic diseases, including obesity and IR, have been associated with 

reduced muscle mass and strength, so enhancing skeletal muscle may also offer great benefit 

in improving glucose homeostasis. In this regard, GRK2
+/-

 mice contained hypertrophied 

skeletal muscle fibres than WT littermates (Garcia-Guerra, 2014), but whether this fact 

contributes to the improved glucose homeostasis observed in hemizygous GRK2 mice is still 

unknown. In any case, tamoxifen-induced GRK2
-/-

 mice display enhanced insulin signalling 

in muscle (Vila-Bedmar, 2015), according to the suggested negative role for GRK2 in the 

regulation of insulin signalling in skeletal muscle both in cultured myocytes and in vivo in 

GRK2
+/-

 mice (Garcia-Guerra, 2010), most probably by mechanisms independent of kinase 
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activity and involving the formation of dynamic GRK2/IRS1 complexes (Garcia-Guerra, 

2010). In addition, overexpression of GRK2 in C2C12 myoblasts impairs cell differentiation, 

a process known to depend on different protein kinases including AKT (Garcia-Guerra, 

2014). 

 

Heart 

Although the heart is not a canonical metabolism-regulatory organ, IR and associated 

reductions in cardiac insulin signalling is emerging as a major factor for the development of 

heart failure. The insulin cascade is crucial to maintaining cardiac functionality since the heart 

is a constitutive energy-demanding organ. Glucose and long chain FFA are major substrates 

in cardiac tissue although it is highly flexible and able to use other substrates when available, 

this metabolic plasticity being key to normal cardiac physiology. Notably, increased long 

chain FFA supply to cardiomyocytes, as found during obesity, will evoke persistent 

localization of its transporter CD36 in the sarcolemma, thus leading to chronically elevated 

long chain FFA uptake and lipid accumulation what finally results in IR (Muoio, 2014). This 

IR further prevents the cardiac metabolic flexibility required to supply the vast amounts of 

ATP needed for continuous cardiac contraction. Moreover, abundant evidence shows that 

obesity-related disorders are associated with structural and functional changes in the heart 

both in humans and in animal models. In fact, heart failure and overt cardiovascular disease is 

the leading cause of death worldwide  and obesity and its related comorbidities are well-

established risk factors considered to dramatically increase their incidence (Dzau, 2006). 

Under unhealthy lifestyle habits, the heart undergoes initially compensatory changes that, 

when maintained, finally initiate heart failure. The main features of obesity-related cardiac 

remodelling are an increase in total blood volume and thus increased cardiac output, left 
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ventricular hypertrophy, left ventricular systolic and diastolic dysfunction, and fat 

accumulation (Abel, 2008). The aetiology of cardiac hypertrophy is complex and may have as 

underlying triggers the expansion of plasma volume and the activation of the sympathetic 

nervous system. While left ventricular hypertrophy is regarded as the main characteristic of 

obesity-induced cardiac remodelling both in humans and animal models (Abel, 2008), other 

emerging features such as accumulation of intramyocelullar triglycerides in the heart also 

appear to be important. Intra-myocyte fat accumulation has been reported in ob/ob and db/db 

mice (Buchanan, 2005), Zucker obese rats (Olsen, 2013) and following HFD (Torre-

Villalvazo, 2009). This cardiac steatosis has been related with increased levels of ceramides 

and cardiomyocyte apoptosis (Zhou, 2000, van de Weijer, 2011) leading to lipotoxic 

cardiomyopathy. However, lipid accumulation in the myocardium is not necessary damaging 

as it could be a marker of the adaptation of the heart upon disproportionate dietary fat and/or 

cardiac IR thereby helping avoid an excessive flux towards mitochondrial oxidative 

phosphorylation and ROS production. In any case, this intramyocardial lipid accumulation 

has been reported to alter cardiac functionality in obese animal models, with mild impaired 

diastolic function in adult animals in the absence or presence of mild systolic dysfunction 

(Christoffersen, 2003). Moreover in some cases interstitial (Zhou, 2000) or perivascular 

fibrosis (Zaman, 2004) have been reported in some animal models of obesity.  

Molecular keys in the heart 

At a molecular level, the mechanisms that contribute to structural and functional changes in 

the heart of obese animals are: impaired insulin signalling and changes in cardiac metabolism 

(characteristic of diabetic cardiomyopathy), mitochondrial dysfunction and oxidative stress, 

neurohumoral activation and volume/pressure overload, inflammation, fibrosis and apoptosis 

(Abel, 2008). Two main signalling pathways are involved in cardiac remodelling and 
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dysfunction: the insulin and the renin-angiotensin systems. In fact, inhibition of negative 

modulators of the insulin signalling pathway such as PTP1B (Kandadi, 2014) or the use of 

inhibitors of the angiotensin-converting enzyme (Duarte, 1999, Nevelsteen, 2013) or the use 

of antagonists of the angiotensin II receptor (Oliveira Junior, 2013) restore, at least in part, 

obesity-induced alterations in cardiac tissue.  

Interestingly, GRK2 is a negative modulator of both insulin and angiotensin II pathways 

(Mayor, 2011, Lucas, 2014b, Avendano, 2014). In fact, GRK2 is a key player in the crosstalk 

between insulin receptor signalling and other GPCRs critical for cardiac contractility and 

physiology, such as the β-adrenergic receptors (β-AR). Indeed, its inhibition or genetic 

deletion in several animal models of HF has shown that GRK2 targeting improves different 

parameters of the failing heart (reviewed in (Sato, 2015, Cannavo, 2013). Along the same 

line, paroxetine, which selectively inhibits GRK2 (Homan and Tesmer, 2015), has been 

recently reported to block or even reverse heart damage after myocardial infarction in a 

mouse model (Schumacher, 2015). In addition, non-βAR properties of GRK2 appear to also 

contribute to its pathological effects. In this regard, GRK2 also desensitizes adiponectin 

receptor 1 in failing cardiomyocytes, contributing to and HF progression (Wang, 2015). Thus, 

its inhibition will likely complement existing therapies such as βAR blockade.  

At the molecular level, it has been suggested that increased GRK2 levels upon chronic β-AR 

stimulation can directly interact and phosphorylate IRS1 and underlie the excessive 

sympathetic nervous system activity-triggered IR in HEK-293 cells (Cipolletta, 2009). A 

similar mechanism occurs in cardiomyocytes and has been related to the pathogenesis of the 

injured heart (Ciccarelli, 2011). On the other hand, it was shown that insulin can promote β2-

AR phosphorylation directly impairing β-AR-regulated cardiac contractility. The insulin-

induced phosphorylation of the β-AR seems to be dependent on IRS1 and IRS2 and involve 
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PKA and GRK2 activity (Fu, 2014). So, GRK2 would link cardiac remodelling and IR to 

impaired contractility and cardiac dysfunction, features that are present in obese individuals 

and may lead to heart failure. In fact, our group has recently described that the levels of 

GRK2 are increased in the cardiac tissue of ob/ob mice and after HFD feeding (Lucas, 

2014b). On the contrary, exercise, which is critical for the prevention and treatment of obesity 

and has been described to reduce IR in cardiac muscle of HFD-fed rats (Medeiros, 2011), is 

able to decrease myocardial GRK2 levels (MacDonnell, 2005) highlighting the 

cardioprotective role of lowering GRK2 levels for the obese heart.  Moreover, unpublished 

results from our and other groups suggest that lower levels of GRK2 protect the heart from 

obesity-induced cardiac remodelling (Lucas E, in preparation). Altogether, our findings 

suggest that pathological inputs of different aetiology such as increased catecholamine levels 

or high dietary fat converge in common important nodes. One such key connecting hub is 

GRK2 whose enhanced cardiac expression would be responsible for fuelling dysfunctionality 

both in the GPCR and insulin signalling cascades, thus allowing progression towards 

maladaptive remodelling  (Lucas, 2014a).  

 

Vasculature 

Obesity also has a key impact on vascular function, structure and on the mechanical 

properties of the vessels by several important means: it decreases endothelium-dependent 

vasodilation, increases intima-media ratio and vascular media thickness and enhances vessel 

stiffness (Briones, 2014, Prieto, 2014). These vascular alterations might impair tissue 

perfusion and contribute to the damage in different target organs observed in this pathology 

(Briones, 2014, Prieto, 2014). Mechanisms responsible for the vascular alterations associated 

to obesity include indirect phenomena associated to IR and also the presence of concomitant 
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risk factors such as hypertension, diabetes or dyslipidaemia as well as direct mechanisms 

associated with effects of adipokines, FFA and inflammation on the vascular wall (Briones, 

2014, Prieto, 2014).  

Molecular keys in the vasculature 

Particularly important mediators in the vascular dysfunction associated to obesity are 

effectors of the renin-angiotensin-aldosterone system such as AngII and aldosterone, but also 

endothelin and prostanoids that can signal through specific GPCRs (Briones, 2014, Prieto, 

2014, Even, 2014). These mediators stimulate vascular smooth muscle cells (VSMC) 

proliferation or migration, change extracellular matrix deposition, and counteract the 

vasodilator actions of nitric oxide (NO) through different mechanisms including increased 

ROS that reduce NO bioavailability. NO deficiency during obesity can also be ascribed to 

altered expression/activity of the endothelial NO synthase (eNOS) or eNOS uncoupling due to 

substrate or cofactor deficiency (Briones, 2014, Prieto, 2014, Miao and Li, 2012, Iantorno, 

2014, Paneni, 2013). In addition, recent evidences demonstrate that the diminished NO 

production in obesity is triggered by alterations in eNOS activation through the 

phosphorylation at Ser1177 by different kinases (Mount, 2007, Prieto, 2014). More 

specifically, defective eNOS phosphorylation and NO production by the PI3K/AKT pathway 

have been described in obesity in response to different stimuli including insulin (reviewed in 

(Prieto, 2014)). In this regard, IR in endothelial cells impairs the production of NO, favours 

the production of endothelin-1 though the MAPK axis and thus the vasoconstrictive and 

mitogenic responses on the vascular wall (Muniyappa and Quon, 2007) leading to endothelial 

dysfunction.  

Earlier studies demonstrated that AKT physically interacts with GRK2 and this interaction 

inhibits AKT activity and NO production (Liu, 2005). In addition, different mediators 
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involved in vascular damage in obesity/diabetes upregulate GRK2 expression. Thus, the 

increased GRK2 expression observed in vessels from diabetic mice (Taguchi, 2011a, Taguchi, 

2011b, Taguchi, 2012a, Taguchi, 2012b) is abolished by AngII type I receptor blockade 

(Taguchi, 2011b) suggesting that AngII increases GRK2 expression as confirmed recently by 

our group (Avendano, 2014). Moreover, in cultured endothelial cells high glucose/high 

insulin milieu upregulates GRK2 by an still unknown mechanism leading to inhibition of the 

insulin/AKT/eNOS pathway (Taguchi, 2014). In diabetes, the increased levels of GRK2 seem 

to prevent the translocation of β-arrestin2 to the membrane which acts as a scaffold molecule 

for AKT to the insulin receptor (Luan, 2009), thereby contributing to impaired 

AKT/eNOS/NO production in response to insulin and other agonists (Taguchi, 2011a, 

Taguchi, 2012a, Taguchi, 2012b, Taguchi, 2014). More importantly, GRK2 inhibition or 

partial GRK2 deletion improved the endothelial dysfunction observed in obese/diabetic 

(Taguchi, 2011b, Taguchi, 2012b, Taguchi, 2013) or hypertensive (Avendano, 2014) animal 

models by restoring the impaired AKT/eNOS pathway and NO availability.  

Vessels from obese patients or animal models of obesity generally display hypertrophic 

remodelling  with particular differences depending of the vascular bed (Briones, 2014). This 

vascular remodelling  seems to be influenced by hemodynamic factors such as hypertension 

and also by metabolic factors such as insulin or adipokines and it is partially reversed by 

pharmacological blockade of different components of the renin- angiotensin-aldosterone or 

endothelin systems (Briones, 2014). To date, the role of GRK2 in the structural and 

mechanical alterations observed in obesity is unknown, however, partial GRK2 deletion 

prevented vascular hypertrophy and increased vessel stiffness induced by AngII (Avendano, 

2014), suggesting that GRK2 might have a key role in vascular alterations in obesity-

associated hypertension. The mechanisms responsible of these vascular effects of GRK2 in 

vivo are unknown, and in vitro studies have revealed conflicting results. Thus, GRK2 and 
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arrestin seem to be essential for agonist-stimulated VSMC migration through different 

mechanisms including activation of proliferative and promigratory MAPK such as ERK1/2 

(Morris, 2012). However, a protective role for GRK2 in VSMC proliferation has also been 

shown (Peppel, 2000, Guo, 2009). In sum the results presented in this section suggest that 

GRK2 is a newly identified key contributor of the endothelial dysfunction and other vascular 

alterations observed during obesity. 

 

CONCLUSIONS AND FUTURE DIRECTIONS 

Given the multi-organ effects of insulin and the key role for the integration of these tissue-

specific effects, it becomes crucial to understand how this physiopathological network 

operates in order to globally explain the outcomes of obesity and IR (Figure 1). 

In this review we put together the different outcomes of fat accumulation and IR in the main 

insulin-responsive tissues, highlighting the role of the most important molecular routes that 

participate in the control of disease progression both in an organ-specific and also in a more 

systemic manner (Figure 2). We believe that a multi-organ approach to the study of the onset 

and progression of the insulin-resistant and obese condition is, currently, the most valid 

approximation if we aim to understand in depth the different pathophysiological outcomes 

and the distinct molecular basis of the disease. In particular, this type of approach becomes 

essential if we intend to interpret the consequences of our experimental findings in a 

particular cell type in a more global whole body context. From the analysis of cell line and 

tissue-specific studies, important molecular mechanisms are identified and its cellular 

consequences can be described, but they will only be validated if introduced into a more 
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complex picture including a network of inter-organ communication and regulatory activities 

that help explain the final outcomes observed in the obese condition.  

We believe that certain signalling nodes, in particular those having specific roles in different 

organs and cell types such as PTP1B, PTEN or GRK2 among others (Figure 2), are bound to 

emerge as key pharmacological targets given the fact that they can more actively help 

integrate the response of different tissues and efficiently fight the pathological consequences 

of obesity and insulin resistance in a multi-organ manner. 
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FIGURE LEGENDS 

Figure 1. Physiological roles of the different insulin-target tissues and integration of the 

multi-organ effects of obesity in the physiopathology of insulin resistance. In healthy 

individuals, insulin-target tissues function coordinately in order to finely tune metabolism and 

energy homeostasis. During obesity, the specific deregulation of each tissue contributes to the 

progress of the complex pathological scenario observed in the obese, including the 

development of a low grade chronic inflammatory state and the appearance of insulin 

resistance in a systemic manner. Moreover, when the fat storage capacity in the adipose tissue 

is surpassed, fat is accumulated in other organs, boosting tissue inflammation, shifting 

substrate utilization and altering endocrine function, further contributing to the systemic 

insulin resistance and subsequent metabolic deregulation. 

Figure 2. Key molecular nodes regulating insulin signalling and resistance. Insulin 

activates the insulin receptor (IR), which phosphorylates and recruits different substrate 

adaptors such as the IRS protein family. Tyrosine-phosphorylated IRS proteins act then as 

scaffolds coupling IR stimulation to the activation of the phosphatidylinositol 3-kinase 

(PI3K), which has a major role in insulin function, mainly via the activation of AKT, which 

phosphorylates many cellular proteins, thus regulating several processes that lead to the 

control of physiopathological effects in different organs and tissues. Insulin signalling is 

controlled by negative modulators that tightly control the biological response to this hormone 

and act at different stages of the transduction cascade. Pathological alterations in any of these 

modulators, as observed during obesity or inflammation, may lead to the development of IR. 

These signalling nodes, in particular those having specific roles in different organs and at 

various levels, such as JNK and IKK as well as mTORC1, PTP1B, PTEN or GRK2 emerge as 

key potential pharmacological targets. 
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