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Nonclassical phase of the electromagnetic field in a nonstationary dielectric
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The quantum state of the electromagnetic field propagating in a nonstationary dielectric can acquire a phase
shift that arises from modifications in the quantum fluctuations of the field. The shift could be observed, even
for quite weak modifications, as a fringe displacement in an interference experiment.
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There has been recently an increased interest in quan
phenomena in nonstationary media. Most of the recent w
addresses the possibility of photon generation in sim
models of dielectrics and a dielectric cavity with a tim
varying index of refraction@1#. In this context methods fo
producing an appropriately large rate of change of the ref
tive index have also been anticipated, e.g., in a rapidly gr
ing plasma produced by short optical pulses@2# or by pulse-
induced photoconductivity in the transparent region o
semiconductor@3#.

The phase of a quantized electromagnetic field, on
other hand, is a subject of continued interest. Much of
work has dealt with finding a phase operator@4#, or a specific
phase measurement@5#, that is consistent with the phas
properties of the corresponding classical field. The elec
magnetic field also exhibits various topological phases@6#
that only depend on the path followed by the system in so
parameter space and various experimental realizations
been implemented@7#.

In this paper we are concerned with another type of n
classical phase phenomenon associated with a redistribu
of the quantum fluctuations of the electromagnetic field i
time-dependent dielectric. The quantum state of the field
quires a time-dependent phase factor as the refractive in
of the medium varies in time. We show that this phase fac
includes, besides a well-known always present contribut
an additional term that is exhibited only for specific mod
lation parameters of the medium and specific quantum st
of the field. This extra contribution originates from the tra
sient nonlinear excitation of two-photon processes in the
dium and it is nonclassical in nature. Conditions for its o
currence and measurability are discussed within a simpli
model of a uniform, lossless, nondispersive and nonstat
ary dielectric.

The electromagnetic field in such a medium can be
scribed by Maxwell’s equations in the absence of sourc
The first-order Maxwell’s equations can be replaced by
second-order wave equation for the vector potential,
¹2A(r ,t)2c22] t@«(t)] tA(r ,t)#50, where «(t) is the di-
electric permittivity of the medium. For a uniform an
bounded medium whose boundaries are held fixed, the ve
potentialA(r ,t) can be decomposed in terms of a discrete
$l% of mode functions having independent spaceAl(r ) and
time ql(t) dependencies@1#. In the following we will con-
sider a dielectric cavity where the presence of the cavity o
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serves the purpose of providing good frequency and spa
discrimination. The wave equation forA(r ,t) coincides with
the Euler equations obtained from a Lagrangi
L@ql(t),] tql(t),t#; in the adiabatic limit the relative rate o
change of the dielectric permittivity is smaller than the fr
quency of the dielectric cavity modes, i.e.,«21(t)] t«(t)
,Vl(t) and the Lagrangian can be written as@1#

Lad@ql~ t !,] tql~ t !,t#5 1
2 (

l
@„] tql~ t !…22Vl

2~ t !ql
2~ t !#.

~1!

HereVl(t)5vl /A«(t) and thevl’s are the cavity vacuum-
frequencies. From Eq.~1! a HamiltonianHad@ql(t),pl(t),t#
can be derived which permits a straightforward quantizat
of the field,

Ĥ~ t !5 1
2 (

l
@ p̂l

21Vl
2~ t !q̂l

2#, ~2!

so that the radiation field in our model of nonstationary
electric is described by an infinite set of uncoupled harmo
oscillators with time-dependent frequencies. Theq̂l’s and
p̂l’s are hermitian~Heisenberg! operators with the usual al
gebra@ q̂l ,p̂l8#5 i\dl,l8 .

We proceed to representĤ(t) as an element of a time
dependent SO~2,1! Lie algebra that enables us to disclose t
intrinsic time-dependent nonlinearity of this Hamiltonia
This is done, for a single mode, by introducing the explici
time-dependent Bose annihilation and creation operators

â~ t !5
1

A2\
F 1

r~ t !
2 i ṙ~ t !G q̂1 i

r~ t !

A2\
p̂

5
r21~ t !1V~ t0!r~ t !2 i ṙ~ t !

2V~ t0!1/2 â~ t0!

1
r21~ t !2V~ t0!r~ t !2 i ṙ~ t !

2V~ t0!1/2 â†~ t0!

[m~ t !â~ t0!1n~ t !â†~ t0!, ~3!

and its Hermitian conjugate forâ†(t), where â†(t0) and
â(t0) are the unperturbed field operators. The Hamiltonian
Eq. ~2! then turns into thebi-quadratic form@8#,
3345 © 1998 The American Physical Society
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Ĥ~ t !5\w1~ t !@ â†~ t !â~ t !1 1
2 #1

\

2
@w2* ~ t !â†2

~ t !1H.c.#. ~4!

The time-dependent frequenciesw1,2(t) can be derived di-
rectly from Eqs.~2!, ~3!, and~4!, while r(t) is an auxiliary
real function. The significance ofr(t) is discussed within the
theory of the exact invariants for time-dependent harmo
oscillators as it is reviewed, e.g., in@9#. From the Heisenberg
invariance condition,@ â†(t)â(t)1 1

2 # is an invariant forĤ(t)
whenr(t) satisfies the nonlinear differential equation,

r̈~ t !1V2~ t !r~ t !5r23~ t !. ~5!

With the initial conditions ṙ(t0)50 and r(t0)5V0
21/2

5«0
1/4/v1/2, the invariant represents the initial Hamiltonia

of the system. Here«0[«(t0) and V0[V(t0) denote, re-
spectively, the unperturbed values of the permittivity a
cavity frequency. From the new representation~4!, it is clear
that a change in the permittivity of the medium originat
time-dependent two-photon processes characterized by
term â†2

(t) and dependent on nonvanishing values ofn(t).
These processes are responsible for distortions of the
quantum fluctuations.

The Bogolubov transformation with time-dependent co
ficients in Eq. ~3! leaves the commutator invariant sinc
um(t)u22un(t)u251. Under this condition such a transform
tion can be implemented by the unitary operator

Û†~ t,t0!5eiwm~ t !â†~ t0!â~ t0! exp@e2 idw~ t !/2

3cosh21um~ t !uâ†2
~ t0!2H.c.#, ~6!

which transforms unperturbed energy eigenstatesun,t0& into
time-dependent ones with the same eigenvalues accordin
un,t&5Û(t,t0)un,t0& ~Von Neumann theorem!. The coeffi-
cientsm(t)[um(t)ueiwm(t) andn(t)[un(t)ueiwn(t) have been
separated into their time-dependent magnitudes and ph
with dw(t)5wm(t)2wn(t).

We shall now adopt the Lewis and Riesenfeld approac
construct the exact time-dependent photon states for our
cific system. According to their pioneering work@9#, for a
radiation field characterized by the explicit time-depend
Hamiltonian~2! and a Hermitian invariant, the general sta
of the field at timet can be expanded in terms of the inva
ant eigenfunctionsun,t& as

uc,t&5(
n

cneian~ t !un,t&,

where

an~ t !52~n1 1
2 !E

t0

t

dt8r22~ t8! ~7!

is theLewis phase, and thecn’s, are arbitrary complex con
stants fixed by the initial conditions on the field. We will b
interested, in particular, in the evolution of the phase of
state of the field: the overall change of phase acquired du
the evolution ofuc,t0& onto uc,t& is obtained from the over
lap between these two states. For a cavity field initially in
number stateun0 ,t0& (cn5dn,n0

) this overlap can be evalu
ated with the help of Eqs.~6 and 7! to yield
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^c,tuc,t0&n0

5An0
~ t !e2 ian0

~ t !1 in0wm~ t !

[An0
~ t !e2 ixn0

~ t ! ~number state!. ~8!

Using this result and a generating function technique we
then derive the overlap for an initial coherent state (cn

5bn exp@2ubu2/2#/An!), i.e., as well

b^c,tuc,t0&b5Ab~ t !exp@2 ia0~ t !2 i ubu2sin 2a0~ t !#

3expS 1 i
ubu2un~ t !u
2um~ t !u $sin dw~ t !

1sin@4a0~ t !1dw~ t !#% D
[Ab~ t !exp$2 i @xb

C~ t !1xb
NC~n,t !#%

[Ab~ t !e2 ixb~ t ! ~coherent state!. ~9!

The complex amplitudeb5ubueifb contains the initial phase
fb of the field, which is taken to be equal top, and the
initial average number of photonsubu2 proportional to the
field intensity. The explicit expression for the real amplitud
An0

(t) andAb(t) will not be given here. When no change o

permittivity takes place@«(t)[«0# Eqs.~8! and~9! reduce to
known results@10#. When a change occurs, instead, the fi
two terms of the phase mismatch for a coherent state,
xb

C(t), describe an always present standard contribution a
ing from the evolution of the field in a nonstationary m
dium. This classical contribution to the mismatchxb(t) only
depends on the Lewis phase for a fixed field intensity. Th
is, in addition, the termxb

NC(n,t) proportional ton, which
becomes important for suitable modulation parameters of
dielectric cavity as we will demonstrate later. Physically, th
last term arises from distortions of the quantum fluctuatio
due to the transient excitation of a two-photon state of
field @cf. Eq. ~3!#. In this sense, we regardxb

NC(n,t) as a
nonclassical contribution to the mismatchxb(t). An analo-
gous term does not appear inxn0

(t) since in the adiabatic

limit wm(t) is very very small and the Lewis phase is esse
tially the only significant contribution to the mismatch for
number state. The most interesting feature is that the n
classical componentxb

NC(n,t) can be separated out from th
rest, and this will be illustrated with the following exampl

Consider a time variation of the permittivity in the form
~Fig. 1 inset!

«~ t !5«0H 12scosh22F2pS t

t
2

1

2D G J S s[12
«m

«0
D ,

~10!

where S[12(«m/«0). Here t denotes the length of a ful
modulation of the dielectric, whiles denotes the maximum
relative change of its permittivity between the initial an
minimum value«0 and «m , respectively. The phase differ
encexb(t) accumulated by a coherent state at some timet is
completely determined by the form ofr(t): In the adiabatic
limit, from Eq. ~5!, one hasrad(t)5V21/2(t)5«1/4(t)/v1/2.
With the help of Eqs.~3! and ~7! the coefficients of the
Bogolubov transformation and the Lewis phasea0 are
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un~ t !u5
1

2 H @«0
1/22«1/2~ t !#2

«0
1/2«1/2~ t !

1S ps

V0t D 2

3
«0

«3/2~ t !

sinh2F2pS t

t
2

1

2D G
cosh6F2pS t

t
2

1

2D GJ
1/2

5Aum~ t !u221, ~11!

Hwm~ t !
wn~ t ! J 52arctanH ps

V0t

«0«21/2~ t !

@«0
1/26«1/2~ t !#

3

sinhF2pS t

t
2

1

2D G
cosh3F2pS t

t
2

1

2D GJ , ~12!

and

a0~ t !52
V0t

4p
lnFz21A«m

«0
1z2

2Y z11A«m

«0
1z1

2G ,
~13!

wherez15sinh@2p t0t
212p# andz25sinh@2p tt212p#. With

the help of these results an analytical expression forxb(t) in
Eq. ~9! is obtained that is most conveniently plotted in Fig.
The black curve in the upper frame represents the whole s
xb(t) over an interval of timet while the gray curve repre
sents itsclassical componentxb

C(t). The curveA in the
lower frame, given by the difference of the previous tw
curves, represents insteadxb

NC(n,t). It is important to ob-
serve that thisnonclassicalcontribution is substantial fo
time scalest of the order of those associated with the phot
cavity frequency and for large relative changes of the die
tric permittivity. For slower time modulations and not as b
changes in the permittivity,xb

NC(n,t) becomes smaller an
smaller and this is illustrated by the examples (B-C-D) in
the lower frame of Fig. 1. Steep enough modulation dep
and fast enough modulation speeds of the refractive in
can boost quantum fluctuations into real photons whose
fect is memorized through an additional~quantum! contribu-
tion to the characteristic~classical! phase associated with th
evolution of the field in a nonstationary dielectric.

The nonclassical component ofxb(t) could, in principle,
be detected by an interference experiment that would p
duce at timet a superposition between a coherent state of
field propagating through the modulated dielectric of t
cavity and a reference state. One could, e.g., split a cohe
light beam in two, pass one of them through free space~out!
and the other through the medium~in! while this is being
modulated, and combine them again. One possible arra
ment is sketched in the inset of Fig. 2. The out-part of
incident beam propagates in the free space outside the c
while the in-part propagates through the resonant ca
.
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filled with a linear and lossless dielectric that has an ex
nally prescribed time-varying permittivity.

There are a number of intriguing suggestions by wh
sufficiently large rates of change of the refractive ind
could be achieved, namely, in a rapidly growing plasma p
duced by sudden gas ionization@2# or in the transparent re
gion of a semiconductor slab in a regime of virtual pho
conductivity @3#. Indeed the photoionization of gas by sho
optical pulses may turn the gas in a cell into a plasma wit
substantial sudden drop of the index of refraction below u
@11,12#. Likewise in a semiconductor slab, the excitation
electron-hole pairs by subpicosecond optical pulses
make its refractive index drop far below its static value in
very brief period of time@3,12#. Newly developed technique
for the ultrafast optical excitation of solids are also prom
ing. These allow for the generation of coherent phonon
cillations that modulate the dielectric function of variou
types of semiconductors on THz time scales suggestin
sound scheme for attaining rapid changes of the refrac
index in dielectric materials@13#. Current far-infrared cavity
technology and the latest developments in subpicosec
semiconductor pumping could well provide the dielect
modulation depths and speeds required to observe an ap
ciable effect.

The relative phase differenceDF(t) between the phase
xb

in(t) and xb
out(t) accumulated by the states of the electr

magnetic field in the two portions of the incident beam b
tweent0 andt can be retrieved from the beating signal at t

FIG. 1. Phase shiftxb ~solid curve! acquired by a coherent stat
of the field as it propagates through a nonstationary dielectric ca
~upper frame!. The cavity unperturbed frequencyV0 and the dura-
tion t of the modulation of the dielectric are such thatV0t51. The
average number of photons in the field isubu2525 with a maximum
5% decrease of the permittivity from an initial nominal value«0

51 ~inset!. The shiftxb comprises aclassical~gray curve! and a
nonclassicalcomponentxb

NC , which is plotted separately in the
lower frame for (A) D«/«055%, V0t51; (B) D«/«052%,
V0t51; (C) D«/«055%, V0t510; and (D) D«/«052%, V0t
510.
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output port of the cavity where the two portions of the be
recombine. The shift can be expressed as

DF~ t !>a0
in~ t !2a0

out~ t !12ubu2 cos@a0
in~ t !1a0

out~ t !#

3sin@a0
in~ t !2a0

out~ t !#1un~ t !u
ubu2

2

3$sin wn~ t !1sin@wn~ t !24a0
in~ t !#%

[DFC~ t !1xb
NC~n,t !, ~14!

where the initial and final timest0 and t are determined by
the synchronous modulation of the material inside the cav

FIG. 2. Interference shiftDF @Eq. ~14!# ~solid curve! and its
classical componentDFC ~gray curve! when the field average num
ber of photons is (A) ubu2550 and (B) ubu2525. All curves cor-
respond to D«/«051% and V0t51. No modulation @«(t)
[«0→1# would result into an identically vanishing shift. Sch
matic interferometric setup~inset! for the measurement of the shi
DF. The in andout parts of the coherent laser pump beam~LP! are
divided and then brought together by the two beam splitters~BS!
placed at both side ends of the dielectric cavity. The synchron
modulation of the material inside the cavity is realized by an ex
nal pump~MP! impinging on the open side end of the cavity.
.

f

y.

One attempt to retrieve the nonclassical termxb
NC(n,t) con-

sists of focusing on the dispersion that it induces on
evolution ofDF(t) when the intensity is held fixed@14#. For
a suitable modulation speedt of the refractive index, a serie
of measurements ofDF(t) at various timest could resolve
its dispersive shape even when the modulation depths is
quite small. This is shown in Fig. 2: each point on the bla
curves corresponds to a single measurement. The disper
produced by a sign flip ofDF(t) aboutt/2, is a signature of
the nonclassical component ofxb(t). In fact, for the system
parameters used herea0

out(t).a0
in(t) and DFC(t) ~gray

curves! is negative and essentially monotonic@15#; yet,
DF(t) ~black curves! undergoes a substantial jump abo
t/2 because in this case the magnitude ofn(t), i.e., that of
xb

NC(n,t), is non-negligible and the phase ofn(t) is anti-
symmetric around this point. The asymmetry ofwn(t) origi-
nates from the change in the slope of the permittivity ab
its minimum point. More importantly, it is crucial to observ
that for appropriate intensities the phasexb

NC(n,t) could be
made large enough to be measurable. Figure 2 shows
enhancement of this nonclassical shift with increasing int
sities, even for the rather small modulation depth of the p
mittivity considered in this case.

The realization of large and fast changes in the refrac
index of a material able to produce sizeable distortions in
quantum fluctuations of the electromagnetic field is still
open problem and a major challenge@12#. We show that a
suitable modulation of the refractive index can produce d
tortions of the field quantum fluctuations, the effects
which are memorized through a nonclassical contribution
the phase of a light beam passing through the medium.
suggest an interference scheme for the measurement of
nonclassical shift which we anticipate to be appreciable e
for rather modest changes of the refractive index.
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