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Nonclassical phase of the electromagnetic field in a nonstationary dielectric
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The quantum state of the electromagnetic field propagating in a nonstationary dielectric can acquire a phase
shift that arises from modifications in the quantum fluctuations of the field. The shift could be observed, even
for quite weak modifications, as a fringe displacement in an interference experiment.
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There has been recently an increased interest in quantuserves the purpose of providing good frequency and spatial
phenomena in nonstationary media. Most of the recent workliscrimination. The wave equation fé(r,t) coincides with
addresses the possibility of photon generation in simpléhe Euler equations obtained from a Lagrangian
models of dielectrics and a dielectric cavity with a time- L[Q,(t),dq,(t),t]; in the adiabatic limit the relative rate of
varying index of refractiorf1]. In this context methods for change of the dielectric permittivity is smaller than the fre-
producing an appropriately large rate of change of the refracquency of the dielectric cavity modes, i.es; *(t)de(t)
tive index have also been anticipated, e.g., in a rapidly grow=<{2,(t) and the Lagrangian can be written [d3
ing plasma produced by short optical pul§sor by pulse-
ingurz:ed phgtoconductii//ity in tr?e tragsparent r)égion of a Lac[%(t)'&t%(t)'t]:%; [@an(1)*= QXD ai(D)].
semiconductof3]. (1)

The phase of a quantized electromagnetic field, on the

other hand, is a subject of continued interest. Much of thq—lereﬂx(t)zwxl\/mand thew, s are the cavity vacuum-
work has dealt with finding a phase operdi}; or a specific frequencies. From Eq1) a HamiltonianH . g, (), py (t).t]

phase measuremef], that is consistent with the phase 4, he derived which permits a straightforward quantization
properties of the corresponding classical field. The electrogs e field

magnetic field also exhibits various topological phaggs

that only depend on the path followed by the system in some - R .

parameter space and various experimental realizations have H(=32 [pi+Q3(1a3], ()

been implementefi7]. A
In this paper we are concerned with another type of non- L . ) )

classical phase phenomenon associated with a redistributicif’ that the radiation field in our model of nonstationary di-

of the quantum fluctuations of the electromagnetic field in Llectric is described by an infinite set of uncoupled harmonic

time-dependent dielectric. The quantum state of the field ac(;)s,cnlators with time-dependent frequencies. Tdés and
quires a time-dependent phase factor as the refractive inddk S &ré hermitian(Heisenberg operators with the usual al-
of the medium varies in time. We show that this phase factoP€Pralax ,Px/]=i# 6y x- -

includes, besides a well-known always present contribution, We proceed to represeht(t) as an element of a time-
an additional term that is exhibited only for specific modu-dependent S@,1) Lie algebra that enables us to disclose the
lation parameters of the medium and specific quantum statdtrinsic time-dependent nonlinearity of this Hamiltonian.
of the field. This extra contribution originates from the tran- This is done, for a single mode, by introducing the explicitly
sient nonlinear excitation of two-photon processes in the metime-dependent Bose annihilation and creation operators,
dium and it is nonclassical in nature. Conditions for its oc-

currence and measurability are discussed within a simplified a1 1 . . p(t)
model of a uniform, lossless, nondispersive and nonstation- a(t)= 2k m_'p(t) g+ N P
ary dielectric.
The electromagnetic field in such a medium can be de- p Y+ Q(ty)p(t)—ip(t) .
scribed by Maxwell’'s equations in the absence of sources. - 20(ty) 2 a(to)
The first-order Maxwell's equations can be replaced by the .
second-order wave equation for the vector potential, i.e., p ()= Q(te)p() —ip(t) .,
V2A(r,t)— ¢~ 23 s(t) dA(r,)]=0, wheres(t) is the di- + 20(tg) 72 a'(to)
electric permittivity of the medium. For a uniform and . R
bounded medium whose boundaries are held fixed, the vector = p(t)a(to) + v(t)a'(to), )

potentialA(r,t) can be decomposed in terms of a discrete set

{\} of mode functions having independent sp#gdr) and and its Hermitian conjugate foa'(t), wherea'(ty) and
time q, (t) dependenciefl]. In the following we will con-  a(ty) are the unperturbed field operators. The Hamiltonian in
sider a dielectric cavity where the presence of the cavity onlyEQ. (2) then turns into théi-quadratic form(8],
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I‘l0< ¢:t| l//,to>nO: Ano(t)e_iano(t)-'-ino‘PM(t)

H(t)=Aw,(t)[aT(Da(t)+ 3]+ g [w3(H)a(t)+H.cl. (@)
EAnO(t)e‘ano“) (number state (8)

The time-dependent frequenciag (t) can be derived di-

rectly from Egs.(2), (3), and(4), while p(t) is an auxiliary  Using this result and a generating function technique we can

real function. The significance @f(t) is discussed within the then derive the overlap for an initial coherent statg (

theory of the exact invariants for time-dependent harmonic= 8" exd —|8%/2]/\/n!), i.e., as well

oscillators as it is reviewed, e.g., il]. From the Heisenberg

At _ . o ol2e:
invariance conditionja(t)a(t) + 3] is an invariant foH (t) (.t to) p= Ag(t)exi —i ao(t) —i[ B|*sin 2u(1)]
whenp(t) satisfies the nonlinear differential equation, B2 w(1)]
. 2 3 X p( +i ——— {sin do(t)
p(t)+Q()p(t)=p~>(1). 5 2| ()]
i it it - — —-12 .
Wltrl1/4 thia/2 |n|t|al_ cor_1d|t|0ns p(ty)=0 an_d _R(to)—ﬂ_o _ +siM4ag(t) + 5¢(t)]})
=g; /™% the invariant represents the initial Hamiltonian

of the system. Herey=¢(tg) and Qy=(ty) denote, re- _ _ir.C NC
spectively, the unperturbed values of the permittivity and =Ag(Dexp =ilxp(t) T (v 0}

cavity frequency. From the new representatid) it is clear EAﬁ(t)e—ixﬂ(U (coherent state (9)
that a change in the permittivity of the medium originates

time-dependent two-photon processes characterized by thgye complex amplitud@= | 8|e'%# contains the initial phase

term éTz(t) and dependent on nonvanishing values/t). ¢ of the field, which is taken to be equal to, and the
These processes are responsible for distortions of the fielditial average number of photorig|? proportional to the
guantum fluctuations. field intensity. The explicit expression for the real amplitudes

The Bogolubov transformation with time-dependent coef-Ano(t) andAg(t) will not be given here. When no change of

ficientzs in Eq.2(3) leaves the commutator invariant since permittivity takes place (t)=e,] Egs.(8) and(9) reduce to
| w(t)[“=[#(t)[*=1. Under this condition such a transforma- gnown resultd10]. When a change occurs, instead, the first

tion can be implemented by the unitary operator two terms of the phase mismatch for a coherent state, i.e.,
l]T(t ty)—¢ ¢, (0l (tp)a(ty) exg e 19012 ?(g(t), describe an qlways presgnt s.tandard cont.ribution aris-
' ing from the evolution of the field in a nonstationary me-
><cosh*1|,u(t)|éT2(t0)—H.c.], (6) dium. This classical contribution to the mismatg(t) only

depends on the Lewis phase for a fixed field intensity. There
which transforms unperturbed energy eigensttes) into S, in addition, the termy;°(»,t) proportional tow, which
time-dependent ones with the same eigenvalues according B¢comes important for suitable modulation parameters of the
In,ty=U(t,to)|n,te) (Von Neumann theorem The coeffi-  dielectric cavity as we will demonstrate later. Physically, this
cients (1) =|u(t)|€'“«® and v(t)=|»(t)|e'*® have been last term arises from d|s'Fort_|ons of the quantum fluctuations
separated into their time-dependent magnitudes and phasg¥€ {0 the transient excitation of a two-ph%tgn state of the
with Se(t) =@ ,(t) = ¢,(t). field [cf. 'Eq. 3] .In thls sense, we regargd; (v,t) as a
We shall now adopt the Lewis and Riesenfeld approach t&ionclassical contribution to the mismatgh(t). An analo-
construct the exact time-dependent photon states for our spg0Us term does not appear jf, () since in the adiabatic
cific system. According to their pioneering wofR], for a  limit ¢,(t) is very very small and the Lewis phase is essen-
radiation field characterized by the explicit time-dependentially the only significant contribution to the mismatch for a
Hamiltonian(2) and a Hermitian invariant, the general statenumber state. The most interesting feature is that the non-
of the field at timet can be expanded in terms of the invari- classical componer)@gc(v,t) can be separated out from the
ant eigenfunctionsn,t) as rest, and this will be illustrated with the following example.
Consider a time variation of the permittivity in the form

|ty =>, c,et®n®|n,t), (Fig. 1 inset
’ 5 t 1
™2

an(t>=—(n+%>fdt’p‘z(t'> (7) (10
0

where S=1—(e/e). Here 7 denotes the length of a full
is the Lewis phasgand thec,’s, are arbitrary complex con- modulation of the dielectric, whils denotes the maximum
stants fixed by the initial conditions on the field. We will be relative change of its permittivity between the initial and
interested, in particular, in the evolution of the phase of theninimum valuee, and s, respectively. The phase differ-
state of the field: the overall change of phase acquired duringncexﬁ(t) accumulated by a coherent state at some tirise
the evolution off,to) onto|4,t) is obtained from the over- completely determined by the form p{t): In the adiabatic
lap between these two states. For a cavity field initially in thejimit, from Eq. (5), one hasp,((t) =Q ~Y4(t) = e V4(t)/ w2
number staténg,to) (Co=3Jyn) this overlap can be evalu- with the help of Egs.(3) and (7) the coefficients of the
ated with the help of Eqg¢6 and 7 to yield Bogolubov transformation and the Lewis phaggare

where

s(t)=so[ 1—scosh 2
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FIG. 1. Phase shify; (solid curve acquired by a coherent state
and of the field as it propagates through a nonstationary dielectric cavity

(upper framg The cavity unperturbed frequen€y, and the dura-

tion 7 of the modulation of the dielectric are such tls§7=1. The
d average number of photons in the field 2= 25 with a maximum
(13) 5% decrease of the permittivity from an initial nominal valgig
=1 (insed. The shift y, comprises alassical(gray curvg and a
nonclassicalcomponentxgc, which is plotted separately in the
lower frame for @) Aeleq=5%, Qgr=1; (B) Aeleg=2%,
Qo7=1; (C) Aeleg=5%, Qq7=10; and D) Aeleg=2%, Qg7

& &
2+ \/—m+z§/ i+ \—+72
€o €o

wherez, =sint{ 27tyr 1— 7] andz,=sini 27t 1— 7). With
the help of these results an analytical expressionyfgt) in
Eq. (9) is obtained that is most conveniently plotted in Fig. 1. _10
The black curve in the upper frame represents the whole shift =

x(t) over an interval of timer while the gray curve repre- filled with a linear and lossless dielectric that has an exter-
sents itsclassical component)(g(t). The curveA in the nally prescribed time-varying permittivity.

lower frame, given by the difference of the previous two There are a number of intriguing suggestions by which
curves, represents instea&%c(v,t). It is important to ob- sufficiently Ia_\rge rates of qhange _of the r_efractive index
serve that thisnonclassicalcontribution is substantial for could be achieved, namely, in a rapidly growing plasma pro-
time scalesr of the order of those associated with the photondUced by sudden gas ionizatig2] or in the transparent re-
cavity frequency and for large relative changes of the dielec

gion of a semiconductor slab in a regime of virtual photo-
tric permittivity. For slower time modulations and not as big conductivity[3]. Indeed the photoionization of gas by short
changes in the permittivityy);“(v,t) becomes smaller and

optical pulses may turn the gas in a cell into a plasma with a
A : substantial sudden drop of the index of refraction below unit
smaller and this is illustrated by the exampl& €-D) in 171 19 |ikewise in a semiconductor slab, the excitation of
the lower frame of Fig. 1. Steep enough modulation depthgjeciron-hole pairs by subpicosecond optical pulses can
and fast enough modulation speeds of the refractive indey,ake its refractive index drop far below its static value in a
can boost quantum fluctuations into real photons whose efery brief period of timd3,12]. Newly developed techniques
fect is memorized through an additiortigantum contribu-  for the ultrafast optical excitation of solids are also promis-
tion to the characteristitclassical phase associated with the ing. These allow for the generation of coherent phonon os-
evolution of the field in a nonstationary dielectric. cillations that modulate the dielectric function of various
The nonclassical component gf;(t) could, in principle, types of semiconductors on THz time scales suggesting a
be detected by an interference experiment that would prosound scheme for attaining rapid changes of the refractive
duce at timet a superposition between a coherent state of théndex in dielectric materialf13]. Current far-infrared cavity
field propagating through the modulated dielectric of thetechnology and the latest developments in subpicosecond
cavity and a reference state. One could, e.g., split a cohereaemiconductor pumping could well provide the dielectric
light beam in two, pass one of them through free sgac® modulation depths and speeds required to observe an appre-
and the other through the mediu@m) while this is being ciable effect.
modulated, and combine them again. One possible arrange- The relative phase differenck®(t) between the phase
ment is sketched in the inset of Fig. 2. The out-part of thex(t) and X%”t(t) accumulated by the states of the electro-
incident beam propagates in the free space outside the cavityagnetic field in the two portions of the incident beam be-
while the in-part propagates through the resonant cavityweent, andt can be retrieved from the beating signal at the

QoT
ag(t)=— . In
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FIG. 2. Interference shifA® [Eq. (14)] (solid curve and its
classical componemt ®€ (gray curvé when the field average num-
ber of photons isA&) |8|?=50 and @) |B|?=25. All curves cor-
respond to Ae/eg=1% and Qyr=1. No modulation [&(t)
=gg—1] would result into an identically vanishing shift. Sche-
matic interferometric setufinsey for the measurement of the shift
A®. Thein andout parts of the coherent laser pump beéR) are
divided and then brought together by the two beam splittB&
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One attempt to retrieve the nonclassical terﬁ?(v,t) con-

sists of focusing on the dispersion that it induces on the
evolution of A®(t) when the intensity is held fixd4]. For

a suitable modulation speedf the refractive index, a series

of measurements A ®(t) at various timesg could resolve

its dispersive shape even when the modulation depib
quite small. This is shown in Fig. 2: each point on the black
curves corresponds to a single measurement. The dispersion,
produced by a sign flip cA®(t) aboutr/2, is a sighature of

the nonclassical component gf(t). In fact, for the system
parameters used hered"(t)>ag(t) and ADC(t) (gray
curveg is negative and essentially monotonit5]; yet,
Ad(t) (black curvey undergoes a substantial jump about
712 because in this case the magnitudev(t), i.e., that of
ch(v,t), is non-negligible and the phase oft) is anti-
symmetric around this point. The asymmetrygf(t) origi-
nates from the change in the slope of the permittivity about
its minimum point. More importantly, it is crucial to observe
that for appropriate intensities the phagg™(v,t) could be
made large enough to be measurable. Figure 2 shows the

placed at both side ends of the dielectric cavity. The synchronougnhancement of this nonclassical shift with increasing inten-
modulation of the material inside the cavity is realized by an exterSities, even for the rather small modulation depth of the per-

nal pump(MP) impinging on the open side end of the cavity.

mittivity considered in this case.
The realization of large and fast changes in the refractive

output port of the cavity where the two portions of the beamindex of a material able to produce sizeable distortions in the

recombine. The shift can be expressed as
AD(t)=ag(t) — af'(t) + 2| BI* cod ap(t) + af'(1)]

- o |BI?
Xsinf ag(t)— ad"(t) ]+ v(1)| -

X{sin ¢, (t)+sir ¢, () —4al(t)]}
=ADC(t) + xFA(w.1), (14)

where the initial and final timek, andt are determined by

guantum fluctuations of the electromagnetic field is still an
open problem and a major challenpE?]. We show that a
suitable modulation of the refractive index can produce dis-
tortions of the field quantum fluctuations, the effects of
which are memorized through a nonclassical contribution to
the phase of a light beam passing through the medium. We
suggest an interference scheme for the measurement of this
nonclassical shift which we anticipate to be appreciable even
for rather modest changes of the refractive index.
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