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Abstract 

High yield of H2 of high purity from acetic acid, a model compound of bio-oil from the biomass fast pyrolysis, 

was produced by sorption enhanced steam reforming (SESR). An oxygen carrier was introduced into a 

chemical loop (CL) coupled to the cyclical SESR process to supply heat in situ for the endothermic sorbent 

regeneration, in order to increase the energy efficiency of the process. A new multifunctional 1%Pd/20%Ni-

20%Co catalyst was developed for use both as oxygen carrier in the CL and as reforming catalyst in the SESR, 

while a CaO-based material was used as CO2 sorbent. In the sorbent air-regeneration step, the Ni-Co atoms in 

the catalyst undergo strong exothermic oxidation reactions which provide heat for the CaO decarbonation. The 

addition of Pd to the Ni-Co catalyst makes the catalyst active throughout the whole SESR-CL cycle. Pd 

significantly promotes the reduction of Ni-Co oxides to metallic Ni-Co during the reforming stage, which avoids 

the need for a reduction step after regeneration. H2 yield above 90% and H2 purity above 99.2 vol.% were 

obtained. 

Introduction 

 

Fossil fuels are currently the most important source of hydrogen production (96%). Production of pure 

hydrogen from the steam methane reforming (SMR) of natural gas is still the most commonly used process, 

representing 48% of the total production of hydrogen. However, it requires a multi-unit process configuration 

involving a high temperature and high pressure catalytic steam reformer, high and low temperature water-gas 

shift (WGS) reactors and a multi-column pressure swing adsorption (PSA) process to purify the H2 produced. 

Over the next few decades, the demand for hydrogen is expected to grow exponentially, not only for 

conventional industrial uses but also for clean energy generation, particularly in fuel cell applications[1]. The 

generation of clean and efficient energy by fuel cells will require the production of very high-purity H2 on a 

massive scale for use in transportation and stationary power systems[2]. Nevertheless, the full environmental 

benefit of applying hydrogen as a clean energy carrier can only be achieved if hydrogen is produced from 

renewable sources. There is growing interest in developing new technologies to produce hydrogen from 

renewable sources, such as biomass and water, by high-energy efficient, cost-competitive and 

environmentally-friendly means. The production of hydrogen from biomass could provide not only the hydrogen 

required in biomass refineries but also green hydrogen for use in oil refineries, which would offer a greener use 

of the conventional fossil fuels. 
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Several processes are currently being investigated for producing hydrogen from biomass-based 

compounds. Hydrogen can be generated from biomass by biological processes[3] and direct thermochemical 

processes, such as gasification[4], as well as by the reforming of biomass-derived oxygenates resulting from 

hydrolysis, fermentation, flash pyrolysis or gasification[5]. Fast or flash pyrolysis represents an attractive 

platform for producing pyrolysis oil (bio-oil) as a resource for hydrogen production through catalytic reforming[6]. 

It provides an interesting option for converting large-volume solid biomass materials to bio-oils, thereby 

reducing transportation costs. Bio-oil is a complex mixture of a large number of compounds, including 

aldehydes, alcohols, ketones and acids, as well as more complex carbohydrate- and lignin-derived oligomeric 

materials emulsified with water[7]. The aqueous phase contains some organic compounds such as acids, 

alcohols, aldehydes, ketones and sugars. Intensive research studies on the steam reforming of model 

compounds of bio-oil can be found in the literature, with the main focus on the development of efficient and 

stable catalysts[6a, 8]. Acetic acid is frequently chosen as a model compound[8-9] because it is one of the main 

constituents of the water soluble fraction of bio-oil[10]. A number of studies on the conventional steam reforming 

process of bio-oil compounds have been previously reported[6a, 8-9, 11]. However, the sorption enhanced 

reforming of bio-oil compounds for the production of highly pure hydrogen has not been explored. 

Hydrogen production by sorption enhanced steam reforming (SESR) involves the introduction of a solid 

CO2 sorbent, such as CaO, which is incorporated into the catalyst bed for the in situ removal of carbon dioxide 

from the gas phase. Thus, the equilibrium of steam reforming and WGS reactions is shifted towards hydrogen 

production, which increases the H2 concentration in the gas produced while complete conversion can be 

almost achieved. One of the major challenges of the SESR process for improving energy efficiency is the high-

temperature sorbent regeneration step, which is a highly endothermic reaction and requires a high heat input. 

Operating the sorption enhanced reforming process in a continuous mode can be achieved by using two 

interconnected circulating fluidized-bed reactors, a reformer/carbonator and a calciner, where the process 

involves the transport of solids (CO2 sorbent and reforming catalyst) between them. The direct combustion of 

additional hydrocarbons such as methane or the oxidation of transition metals such as Ni, Co and Fe in the 

calciner reactor seems to be the most practical option for providing the necessary heat when a high 

temperature is needed in the process. The use of air to regenerate the sorbent presents certain advantages, 

such as its low cost in comparison with inert gases or steam. In addition, any coke that may form on the 

catalyst surface can be in turn burned off during the sorbent regeneration, which would regenerate the catalyst 

and partially provide heat for the endothermic decarbonation reaction. It is well known that rapid catalyst 

deactivation is one of the major obstacles in the SESR of bio-oil for hydrogen production. The presence of 

oxygen during the sorbent regeneration stage would cause oxidation of the reforming catalyst if a conventional 

nickel-based catalyst were used. The oxidized state of the metallic catalysts is known to be much less active 

than the reduced state. A thorough reduction treatment is therefore required between the regeneration step 

and the sorption enhanced steam reforming stage of the whole cycle. 

Some novel reforming systems that use metal chemical loops (CL) have been proposed in the literature to 

solve the problem of the energy supply to perform the endothermic regeneration of the CO2 sorbent in the 

SESR process[12]. In these processes, the heat generated by the exothermic metal oxidation reaction during 

the regeneration of the sorbent with air is supplied to the endothermic reaction of CaCO3 decomposition. 

Fixed-bed reactors with alternating feedstreams of fuel/steam and air have also been considered to carry out 
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the SESR-CL process, where the bed consists of a mixture of the metal-based oxygen carrier and the CO2 

sorbent. These dynamically operated packed bed reactors take advantage of the high efficiency with which the 

heat is transferred from the metal particles oxidized with air to the CaCO3 particles inside the same bed[13]. 

This represents a promising technology for the production of hydrogen by sorption enhanced reforming 

processes. However, the challenges involved in the development of multifunctional catalyst materials for 

obtaining high-purity H2 by the SESR process have still not been addressed in the literature. 

Furthermore, two features of the SESR process that are essential for obtaining high-purity hydrogen, 

namely low temperature (400-600 ºC) and high conversion, and in turn, a very low reactant concentration, 

require the use of very active reforming catalysts. The main requirements of the catalyst are a high activity and 

selectivity towards H2 and CO formation, through the cleavage of C-C and C-H bonds, as well as a high 

catalytic activity for the high-temperature WGS reaction. The catalyst will also need to maintain a strong 

resistance to deactivation from sintering or coke formation. In addition, it will need to function efficiently as an 

oxygen carrier if a chemical loop is to be coupled to the SESR process. High reduction ability by the metals 

within the catalysts will also be required. Our previous studies have shown that a Ni-Co catalyst derived from 

hydrotalcite-like material (HT) is highly effective in the SESR process with several biomass-derived 

compounds, such as syngas[14], glycerol[5b, 15], ethanol[16] and glucose[17]. Nickel-based catalysts are generally 

used in hydrocarbon steam reforming due to their high catalytic activity. However, noble metals, such as Ru 

and Pd, can be introduced into the catalyst because of their higher resistance to carbon deposition[18]. In 

addition, Pd is expected to be less sensitive to oxidative treatments at high temperatures. Moreover, Pd has a 

high catalytic activity for the WGS reaction, which could enhance the production of H2 by converting CO to CO2, 

as another important criterion to be considered when selecting catalysts for sorption enhanced reforming 

processes[19]. 

In the present study, a new multifunctional Pd/Ni-Co catalyst derived from hydrotalcite-like materials (HT) 

has been developed as both oxygen carrier and reforming catalyst in the SESR of acetic acid coupled to a 

chemical looping process. The promotion of the Ni-Co catalyst with Pd was carried out for the purpose of 

eliminating the catalyst reduction after the air regeneration step in the SESR cyclic process, and in turn for 

enhancing the WGS reaction. 

Hydrogen production by chemical looping coupled sorption enhanced reforming 

During the steam reforming process with acetic acid [Eq. (1)], apart from H2 and CO2, CO and CH4 are also 

expected to be generated in large quantities due to thermodynamic equilibrium limitations and complex 

reaction pathways, including thermal decomposition, which might also lead to the formation of intermediates 

and coke. 

 

C2H4O2 + 2H2O → 4H2 + 2CO2; ∆Hr
0 = +183.7 kJ mol-1 (1) 

 

The incorporation of a CO2 sorbent, such as CaO, in the catalyst bed removes CO2 in situ from the gas 

phase, as illustrated in Equation (2). 
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Figure 1 shows a general scheme of the assembled SESR-CL process used in the present study. It 

consists of two steps: sorption-enhanced steam reforming (SESR) and sorbent regeneration (REG), where 

Pd/Ni-Co HT is used as both the reforming catalyst and oxygen carrier and CaO is employed as CO2 sorbent. 

During the SESR stage, a H2-rich stream is produced by the sorption enhanced steam reforming of acetic acid, 

with the simultaneous carbonation of CaO by the CO2 produced from the reforming reaction. 

In the REG stage, the calcination of the CaCO3 formed in the previous step takes place while at the same 

time the oxidation of the Ni and Co metals by oxygen occurs according to Equations (6) and (7) to form oxides. 

These reactions provide in situ heat which can be used for regenerating the sorbent [reverse of Eq. (2)]. 

 

Ni(s) + 1/2O2 → NiO(s); ∆Hr
0 = −244.3 kJ mol-1 (6) 

Co(s) + 2/3O2 → 1/3Co3O4(s); ∆Hr
0 = −292.88 kJ mol-1 (7) 

 

The reduction of the metal oxides will proceed during the subsequent SESR stage via the consumption of 

part of the H2 produced. Ni and Co metallic phases are again formed as shown in Equations (8) and (9). 

 

NiO(s) + H2 → Ni(s) + H2O; ∆Hr
0 = +2.51 kJ mol-1 (8) 

Co3O4(s) + 4H2 → 3Co(s) + 4H2O; ∆Hr
0 = −88.70 kJ mol-1 (9) 

 

The oxidation and reduction steps of the Ni and Co metals comprise a chemical loop, which is coupled to 

the SESR process. The exothermic oxidation of the metals would be used to obtain part of the heat needed for 

the decarbonization of the previously formed CaCO3. The in-situ heat supply thereby reducing the energy 

consumption of the overall process by reducing the energy loss using external heat supply. Energy efficiency 

estimation for the studied SESR-CL process lies outside the scope of this paper, but it has been demonstrated 

in similar chemical looping processes[12b] that there is a great potential for achieving a high degree of energy 

efficiency with this type of process. A brief energy balance of the whole process has been carried out on a 

base of 1 mole of C2H4O2, as it is shown in Figure 1. Following the reaction stoichiometry Equation (5), 374.4 g 

(2 mole of CaO) uncalcined dolomite (98.5% CaMg(CO3)2) are needed in the process. For an autothermal 

regeneration process, 195.2 g of reduced catalyst (0.665 mole of Ni and 0.662 mole of Co) per mole of C2H4O2 

would be required. However, during the reforming stage, the reduction of the catalyst metals will consume a 

part of the produced H2 and 2.45 mole of H2 will be produced per mole of C2H4O2 (Figure 1). 

In the present work, the effect of promotion of Pd to the Ni-Co HT catalyst was investigated in a 

comparative study of the SESR of acetic acid carried out using both reduced and oxidized Pd/Ni-Co catalysts, 

as well as reduced and oxidized Ni-Co catalysts, upon catalyst activity and hydrogen purity. The production of 

high-purity hydrogen by the sorption enhanced reforming of acetic acid when coupled to a chemical loop was 

tested experimentally. The effects of the operation conditions on hydrogen production were also studied. 
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maximum H2 concentration and H2 yield values was detected. The short period of hydrogen breakthrough 

suggests that the rapid reduction of Pd/Ni-Co oxides occurred in the initial stage, where no formation of 

methane or CO was detected. During the oxidation process at 770 ºC, metallic Ni and Co can be expected to 

undergo oxidation[30], but metallic Pd possibly does not suffer oxidation. It has been demonstrated that PdO 

could be decomposed to Pd at 680-810 ºC and reformed at much lower temperatures, 470-730 ºC, depending 

on the support material[31]. In the present work, it can be expected therefore that metallic Pd would not be 

oxidized during air regeneration at 770 ºC. The results in Figures 5 and 6 suggest that the unreduced Pd/Ni-Co 

catalyst, or Pd, is active in the reforming of acetic acid for producing hydrogen. The produced hydrogen then 

reduces the Ni-Co oxides to the active metal phases with only a short delay in the establishment of the steady-

state SESR process. It can be concluded that the effects of the addition of Pd to the Ni-Co HT catalyst are two-

fold in that it provides the initial reforming activity and enhances the reduction of Ni-Co oxides. This is borne 

out by the results of the TPR experiments (Figure 3). Dupont et al.[12c] in their experiments on the reforming of 

methane, first assumed that the reduction of the metal oxide (NiO) occurred via the reaction of the fuel with the 

metal oxide, i.e., by the combustion of the fuel without any direct contact with an oxygen-containing stream. 

However, they found that the metal oxide reduction reaction occurred preferentially via H2 over CH4. In the 

present study it can therefore be deduced that the in situ produced H2 would reduce the oxidized Ni-Co phases 

in the catalyst. 

According to the results of the present work, after the sorbent regeneration stage under an air atmosphere, 

it may be possible to eliminate the pre-reduction step before SESR process from the multi-step operation, and 

still achieve high H2 purity and considerable H2 yield values, by using Pd-promotion of the catalysts. In addition, 

the dolomite sorbent can be regenerated at 770 ºC in air, where the oxidation of Ni and Co can be expected to 

supply in situ heat for its regeneration. This suggests that a chemical loop between the metal and oxide forms 

of the Ni and Co in the unreduced catalyst is viable to occur during the cyclic SESR process. The 

multifunctional Pd/Ni-Co HT catalyst is shown as a promising material for use in the assembled SESR-CL 

cyclic process both as reforming catalyst and oxygen carrier, allowing a continuous cycling operation in fixed-

bed reactors or solid circulating fluidized-bed reactors without the need for a catalyst reduction step between 

the air-regeneration and reforming stages. 

Finally, if the results from the reduced Ni-Co HT and the reduced Pd/Ni-Co HT catalysts are compared, no 

significant differences in the gas composition during the steady-state SESR experiment are observed (Figure 

5). However, there is a significantly higher H2 yield in the case of the reduced Pd-promoted HT catalyst 

compared to the reduced Ni-Co HT, 96.24% and 90.84%, respectively (Figure 6). This highlights the beneficial 

effect of adding Pd to the catalyst on the H2 yield, even in the case of the unreduced Pd-promoted HT catalyst 

(H2 yield = 92.20%). However, it should be mentioned that the Pd/Ni-Co HT catalyst used in the present work 

has not been optimized. The Pd loading needs to be evaluated and optimized in future studies. The present 

work has focused on elucidating the role of Pd in the novel hydrogen production process that is proposed. 

Additional studies on the stability of the catalyst are currently being carried out using the Pd catalyst developed 

in the present study. Thus, the Pd-promoted catalyst is being applied with success to produce hydrogen using 

glycerol as feedstock in a similar process and preliminary results seem to indicate that the catalyst can be able 

to remain stable over 20 cycles of SESR. 
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Effect of space velocity on SESR activity 

The study of the space velocity (WHSV) effect on the SESR of acetic acid was carried out at values of 0.89-

17.86 h-1 (liquid flow rate of 2.5-50 g h-1) in order to elucidate the effects of Pd on catalyst activity. The 

experiments were performed at 575 ºC, 1 atm and at a steam/C ratio of 3, following the experimental 

procedure described in the Experimental Section. The H2 yield and the dry gas composition after the SESR 

process were evaluated using reduced Pd/Ni-Co HT, unreduced Pd/Ni-Co HT and reduced Ni-Co HT catalysts. 

Figure 7 shows the gas composition (N2 free and dry basis) as a function of the WHSV during the SESR 

experiments with acetic acid. The effect of the space velocity on H2 yield is shown in Figure 8. Hydrogen 

production by SESR involves several reactions, such as the reforming of acetic acid, a side reaction leading to 

methane formation and its reforming, as well as the water gas shift reaction. The catalyst activity on these 

reactions was evaluated at a high WHSV of 17.86 h-1, where the H2 yield and H2 purity were much lower and 

the CO, CH4 and CO2 contents were much higher than at smaller WHSV values. The H2 yield and purity values 

followed the following order: reduced Pd/Ni-Co HT > unreduced Pd/Ni-Co HT > reduced Ni-Co HT catalysts, 

while the CO and CH4 contents followed the opposite order. This confirms that the unreduced Pd/Ni-Co HT 

catalyst is active in the reforming reaction. Although its activity is slightly lower than that of the reduced Pd/Ni-

Co HT, it is higher than that of the reduced Ni-Co HT catalyst. When WHSVs of less than 3 h-1 were used, the 

gas compositions were rather close to the equilibrium values. However, whereas the H2 yield and H2 purity 

decreased, the CO, CH4 and CO2 contents increased slightly with increasing WHSV (Figure 7). 

It can therefore be concluded that a low WHSV value of 0.89 h-1 is the most favorable for the SESR process 

of acetic acid under the conditions studied. Moreover, the effect of the space velocity on H2 yield was much 

more significant than on the gas composition. The H2 yield decreased from 96.24% to 83.00% when the 

WHSV increased from 0.89 h-1 to 2.68 h-1 for the reduced Pd/Ni-Co HT catalyst (Figure 8). The same trend in 

relation to the space velocity was observed for the unreduced Pd/Ni-Co HT, although the maximum values 

obtained were slightly lower than for the reduced Pd-promoted catalyst. The SESR of acetic acid at 575 ºC, 1 

atm, steam/C of 3 and WHSV of 0.89 h-1 using the unreduced Pd/Ni-Co HT catalyst produced a H2 yield equal 

to 92.20% and a H2 purity of 99.15 vol.%. 
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Effect of temperature on SESR activity 

The study of the effect of temperature on the SESR of acetic acid was carried out between 475-625 ºC. The 

experiments were performed at 1 atm, a steam/C of 3 and a WHSV of 0.89 h-1 (liquid flow rate of 2.5 g h-1), 

following the experimental procedure described in the Experimental Section. The H2 yield and the dry gas 

composition after the SESR process were evaluated using reduced Pd/Ni-Co HT, unreduced Pd/Ni-Co HT and 

reduced Ni-Co HT catalysts. Figure 9 shows the gas composition (N2 free and dry basis) as a function of the 

reaction temperature during the SESR experiments with acetic acid. The effect of the temperature on the H2 

yield is shown in Figure 10. The results indicate that as the temperature increased, the H2 yield, and the CO 

and CO2 contents also increased, whereas H2 purity and CH4 content decreased. A temperature of 650 ºC 

during the SESR process with acetic acid caused a significant decrease in H2 purity, as well as a significant 

increase in the CO and CO2 contents. The highest H2 purity (99.81 vol.%) was obtained at 475 ºC for the 

reduced Pd/Ni-Co HT catalyst, but values higher than 99 vol.% were obtained for all the catalysts at 

temperatures below 575 ºC, as can be seen in Figure 9 a. The hydrogen content at temperatures below 575 ºC 

was very close to the thermodynamic equilibrium value for all the catalysts, but especially in the case of the 

reduced Pd/Ni-Co HT catalyst. The same trend was observed for the CO and CO2 contents. With the 

unreduced Pd/Ni-Co HT catalyst, the SESR of acetic acid at 475 ºC also produced a high H2 purity (99.70 

vol.%). 

As can be seen in Figure 9 b, the CO concentration decreased with decreasing temperature due to the 

favorable thermodynamics of the WGS reaction at low temperatures. The CO2 concentration also decreased 

with decreasing temperature (Figure 9 d) because of the favorable thermodynamics of the carbonation reaction 

at low temperature. This led to a very weak sorption enhancement at 625 ºC, reflected in a very high CO2 

concentration under these conditions. Furthermore, since the CO2 sorption led to an enhanced H2 production 

by shifting the equilibrium of the steam reforming and water-gas shift reactions, a very low H2 purity (Figure 

9 a) and high CO concentration (Figure 9 b) were observed at high temperature conditions. In relation to the 

CH4 content (Figure 9 c), it should be noted that the highest values were obtained at low temperatures (475 

and 525 ºC) with the reduced Ni-Co HT catalyst, followed by the unreduced Pd-promoted catalyst and then by 

the reduced Pd-promoted one, showing the beneficial effect of the addition of Pd on the suppression of CH4. 

High CH4 contents are undesirable for hydrogen production because the CH4 formation reactions consume 

hydrogen in the system, which makes it necessary to use a highly selective catalyst to suppress the 

methanation reaction during the SESR process. With increasing temperature, the shift of the methanation 

reaction to steam methane reforming produced very low CH4 concentrations, indicating that the catalysts used 

effectively catalyzed the methane steam reforming reaction.  
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In summary, the SESR of acetic acid at 525 ºC, steam/C of 3 and WHSV of 0.89 h-1 using the unreduced 

Pd/Ni-Co HT catalyst produced a H2 yield of 90% and a gas which contained 99.5 vol.% of H2, 0.04 vol.% of 

CO, 0.23 vol.% of CH4 and 0.20 vol.% of CO2. A lower temperature would increase the H2 content while 

decreasing the CO and CO2 concentrations, but a considerable increase in the CH4 content would be 

produced, which would reduce the H2 yield. It has been shown by Fermoso et al.[4b] that an increase in the 

steam/C ratio used in the SESR process leads to a decrease in the CO and CH4 concentrations without 

causing a decrease in the H2 content and H2 yield, due to the enhancement of the WGS reaction at high 

steam/C ratios. These authors also found that a high steam/C ratio favors the conversion of tar and 

emphasized its importance in SESR processes for obtaining a high H2 yield. Although a high steam/C ratio 

may cause the sintering of the catalyst and involves the consumption of larger amounts of energy, this 

parameter should be analyzed for the present process in future works in order to study the possibility of 

obtaining higher H2 yields with a higher degree of H2 purity. From the thermodynamic analysis of the sorption 

enhanced steam reforming of acetic acid, Zin et al.[32] showed that operating at a higher steam/C ratio (up to 

4.0) resulted in higher H2 yield and purity at the cost of lower temperature requirements. 

Demonstration of SESR coupling with chemical looping and stability of materials 

Hydrogen production by SESR of acetic acid coupling with chemical looping was demonstrated by cyclic 

operation using air for regeneration. The reforming experiments were carried out at 575º C using the 

unreduced Pd/Ni-Co HT catalyst, while the regeneration in air was done at 770º C. The cycle stability of the 

catalyst and the CO2 sorbent in the SESR process was tested in six carbonation/ decarbonation cycles.  Figure 

11 a shows the H2 yield, H2 selectivity and the gas composition (N2 free and dry basis) during six cycles of 

SESR with acetic acid. Their values remained quite constant during the six cycles, which indicates no 

significant deactivation of the catalyst. However, a decrease in the time of the pre-breakthrough stage (Figure 

11 b) was observed as the number of cycles proceeded, suggesting a certain change in the kinetics and the 

CO2 capture capacity. The CO2 breakthrough time decreases slightly with increasing cycle number as a result 

of a loss of the CO2 capacity of the sorbents. The amount of CO2 captured was calculated as the difference of 

the flow rate of CO2 (g min-1) between the SR and SESR regimes, multiplied by the breakthrough time (min). 

The CO2 capture capacity of the dolomite was found to be 0.317 and 0.301 g CO2/g sorbent during the first 

and second cycles of reaction, respectively. Dolomite is known to lose its CO2 capture capacity during multiple 

cycle operation. Thus, the CO2 capture capacities, defined as the mass of CO2 captured per 100 g of calcined 

dolomite, calculated in these experiments ranged from 31.7 to 22.1% for the cycles one to six. It indicates that 

the stability of the sorbent material can be considered one of the key challenges in the development of the 

SESR technology. 

In order to understand the mechanisms of the observed deactivation of the sorbent, the characterization of 

both fresh dolomite and spent catalyst/dolomite mixture were performed. After completion of six cycles of 

SESR, it was very difficult to separate the catalyst and the sorbent from the catalyst/sorbent mixture. 

Therefore, XRD and BET surface area measurements of the sorbent/catalyst (5/1 g/g) mixture were obtained. 

The XRD spectra of both fresh calcined sorbent and spent calcined bed after six cycles of SESR with acetic 

acid are shown in Figure 12. The XRD patterns both of the fresh sorbent and the spent bed clearly indicate the 
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Conclusions 

The sorption enhanced steam reforming (SESR) of acetic acid for H2 production has been performed by using 

a CaO/CaCO3 cycle for CO2 capture coupled to a chemical loop of Ni/NiO and Co/Co3O4 by means of the use 

of a novel multifunctional 1%Pd/20%Ni-20%Co HT catalyst. Multifunctional catalysts make it possible to supply 

heat for sorbent regeneration by oxidizing Ni and Co, and to eliminate the catalyst reduction step between the 

regeneration and reforming stages in the cycles. The results showed the high activity of the Pd/Ni-Co catalyst 

in breaking the C-C bond in the SESR of acetic acid. Because of the unique properties of Pd, multifunctional 

catalysts containing this element make it possible to generate hydrogen after an air regeneration step, which 

rapidly reduces the Ni and Co oxides. It has been demonstrated that a chemical loop between metal and oxide 

forms of Ni and Co can occur during the cyclic SESR process, which would make the chemical looping 

coupled to the sorption enhanced steam reforming process viable. Moreover, the addition of Pd to the catalyst 

significantly improved the H2 yield, especially at low space velocities and low temperatures, even when the Pd-

promoted catalyst was unreduced, due to a noticeable lower CH4 content in the produced gas. Nevertheless, 

H2 purity was only slightly improved with the addition of Pd. An increase in space velocity and temperature 

caused a decrease in H2 purity and an increase in the CO and CO2 concentrations. The CH4 content 

decreased with an increase in temperature or a decrease in the space velocity. The H2 yield decreased 

significantly with the space velocity, but it was favored by a rise in temperature. Hydrogen of a high purity (99.5 

vol.%) and a high yield (90%) can be obtained from the SESR of acetic acid at 525 ºC, steam/C of 3 and 

WHSV of 0.89 h-1 by using the unreduced 1%Pd/20%Ni-20%Co HT catalyst and calcined dolomite as CO2 

sorbent. The results indicate that the ability of Pd to perform an early reduction of the metal oxide phases 

contained in the catalyst makes the proposed multifunctional Pd/Ni-Co HT catalyst a promising material for use 

both as a reforming catalyst and as an oxygen carrier in the assembled SESR-CL cyclic process with acetic 

acid, allowing a continuous cycling operation in parallel fixed-bed reactors or solid circulating fluidized-bed 

reactors and contributing to an increase in the energy efficiency of the overall process. 

Experimental Section 

Feedstock and CO2 sorbent 

Acetic acid was selected as an oxygenated model compound of organic acids contained in the aqueous phase 

of bio-oils produced by the fast pyrolysis of biomass. Glacial acetic acid was supplied by PANREAC (100% 

purity). An aqueous solution of acetic acid was prepared with a water-to-acetic acid molar ratio of 6 (steam/C 

molar ratio of 3). Arctic dolomite, used as a precursor of CaO for the capture of CO2, was supplied by 

Franefoss Miljøkalk As, Norway. This has a purity of 98.5 wt.% CaMg(CO3)2 and no sulfur according to X-ray 

fluorescence analysis. The dolomite sample was calcined in an air flow at 750 ºC for 4 h prior to its application 

as CO2 sorbent. The initial maximum capacity for CO2 capture was estimated to be 46 wt.%. 

Catalyst preparation 

The 20%Ni-20%Co hydrotalcite-like material (HT) used as catalyst precursor in the present work (Ni-Co HT) 

was prepared by co-precipitation of Ni(NO3)2·6H2O, Co(NO3)3·6H2O, Mg(NO3)3·6H2O and Al(NO3)3·9H2O. A 

stoichiometric ratio of cations was chosen so as to yield a 40 wt.% total metal loading of Ni and Co, yielding a 
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material with the nominal composition of 20%Ni-20%Co. The precipitate obtained was filtered, washed, dried 

overnight and then calcined at 600 ºC for 6 h. A detailed description of its preparation has been reported 

elsewhere[24]. The novel 1%Pd/20%Ni-20%Co HT catalyst (Pd/Ni-Co HT) was prepared by the incipient 

wetness impregnation method. After calcination, the Ni-Co HT precursor was impregnated with a 1% (w/w) 

loading of Pd. The Pd solution was prepared by dissolving PdCl2 into two equivalents of HCl and diluting them 

in ethanol to the desired concentration. The sample was then dried for 14 h at 100 ºC and calcined in an air 

flow at 500 ºC (heating rate of 5 ºC min-1) for 1 h in a muffle oven. The calcined catalyst was pelletized, ground 

and sieved to the desired particle size (250-500 μm). 

The Pd/Ni-Co HT catalyst was reduced and passivated before being characterized by scanning electron 

microscopy (SEM). The schematic diagram of the experimental setup used to carry out the reduction-

passivation process is shown in Figure 13. A catalyst sample was placed in a stainless steel fixed-bed reactor 

(i.d. 9 mm) and heated at a heating rate of 2 ºC min-1 in a mixed flow of H2 (50 NmL min-1) and N2 (50 NmL 

min-1) and then kept at 670 ºC for 10 h. After being cooled down to room temperature under a N2 atmosphere, 

the sample was passivated by flowing 1 vol.% of O2 in N2 for 1.5 h. 

Catalyst characterization 

The crystalline structure of the materials was characterized by powder X-ray diffraction (XRD) analysis on a 

Siemens IFFRACplus-D5005 diffractometer. 

Nitrogen physisorption measurements were performed on a Micromeritics Tristar 3000 at -196 ºC. All samples 

were outgassed overnight under vacuum at 100 ºC before adsorption. The surface area was calculated using 

the BET equation in the relative pressure interval of 0.01 to 0.30. The adsorption average pore width (4 V/A) 

was estimated by the Barret-Joyner-Halenda (BJH) method provided by Micromeritics Tristar 3000 built-in 

software. 

Hydrogen chemisorption isotherms were measured on a Micromeritics ASAP 2010C unit at 35 ºC in order to 

estimate metal dispersion. Samples of freshly calcined catalyst were firstly reduced in 5 vol.% H2 in a He flow 

at 670 ºC for 10 h (heating rate 2 ºC min-1) and then evacuated for 0.5 h at 670 ºC and for 1 h at 35 ºC. Then, 

an adsorption isotherm was recorded at 35 ºC, as in previous studies on Ni-Co bimetallic catalysts[24]. The total 

hydrogen uptake was used to calculate the dispersion and particle size, given that the HT-derived support 

material is generally considered unreduced under ambient conditions and the physical adsorption of hydrogen 

on the support is ignored[33]. The monolayer adsorption capacity was determined by extrapolating the straight-

line portion of the total adsorption isotherm to zero pressure. The dispersion (D) of the Pd, Ni and Co metals 

was calculated, assuming that two metal sites are covered by one hydrogen molecule. Assuming spherical 

particles, the particle sizes, d(Pd), d(Ni) and d(Co), were calculated from D using the following formulas: 

d(Pd)(nm) = 116/D(%), d(Ni)(nm) = 101/D(%) and d(Co)(nm) = 96/D(%). For the mixture of Ni and Co, the 

particle size was averaged by: d(Ni-Co)(nm) = [101/D(Ni)] · (Ni%/100) + [96/D(Co)] · (Co%/100). In the case of 

the trimetallic catalyst, the particle size was averaged by: d(Pd-Ni-Co)(nm) = [116/D(Pd)] · (Pd%/100) + 

[101/D(Ni)] · (Ni%/100) + [96/D(Co)] · (Co%/100). 

Temperature-programmed reduction (TPR) was performed on a Quantachrome CHEMBET-3000 unit. The 

experiments were conducted in 7 vol.% of H2 in Ar (total flow rate of 50 NmL min-1) and at a heating rate of 
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Catalyst testing 

The schematic diagram of the experimental setup used for the SESR experiments with acetic acid is shown in 

Figure 13. It consists of a stainless steel fixed-bed reactor (i.d. 9 mm), which was loaded with a 6 g mixture of 

calcined dolomite (as CO2 sorbent) and Ni-Co HT or Pd/Ni-Co HT catalyst, at a sorbent-to-catalyst ratio of 5 g/g. 

The gases were delivered by Bronkhorst® mass flow controllers, and the aqueous solution of acetic acid was fed 

in by a Gilson® high-performance liquid chromatography (HPLC) pump. All the experiments were carried out at 

isothermal (475-625 ºC) conditions and atmospheric pressure. A typical operation procedure was as follows. 

Fresh catalyst and calcined sorbent materials were used in all the experiments. Since the calcined dolomite was 

carbonated during its storage, the catalyst and carbonated sorbent mixture were subjected to a regeneration step 

before the SESR process at 770 ºC in an air flow (200 NmL min-1) until the CO2 levels dropped to less than 0.5 

vol.%. During this process, the catalyst has experienced a thermal treatment at the identical temperatrure of the 

regeneration. The temperature of 770 ºC was selected from preliminary experiments, taking into account the 

thermodynamic limitations of the decarbonation reaction and the kinetics of the decarbonation of dolomites[16]. 

The mixture of regenerated catalyst and sorbent was used directly in the SESR experiments. The regenerated (or 

oxidized) catalyst is referred to as ‘unreduced catalyst’ throughout the text. However, in the case of the ‘reduced 

catalyst’, the oxidized catalyst was activated by a reduction step after regeneration and before the SESR 

reactions. The reduction was performed at 670 ºC (heating rate of 2 ºC min-1) under a flowing gas mixture of 

50 vol.% H2/N2 (total flow rate of 200 NmL min-1) for 10 h. After reduction, the reactor was purged with N2 and 

cooled down to the desired reaction temperature. The reaction temperature was measured by a thermocouple 

inserted into the catalyst/sorbent bed. The liquid reactant mixture (steam/C = 3) was swept by a 50 NmL min-1 N2 

flow (used as internal standard), evaporated in an evaporator and then introduced downdraft through the 

catalyst/sorbent bed at different space velocities (liquid flow rates of 2.5-50 g h-1). The SESR of acetic acid 

proceeded until the CO2 sorbent, i.e., calcined dolomite, became saturated and lost its capacity for CO2 removal. 

This was followed by conventional steam reforming (SR) and WGS reactions if feeding was maintained. 

The effluent gas from the reactor was cooled down by a cooling tank. Moisture was removed by means of a 

membrane drier. The exiting gas was analyzed using an on-line Agilent® 3000 dual channel Micro GC, equipped 

with Molsieve and Plot U columns and a TCD detector. The GC was calibrated employing a standard gas mixture 

at periodic intervals. The detection limit of this equipment for gas analysis was 0.001 vol.%. The species detected 

were H2, CH4, CO and CO2. The product distribution was calculated on the basis of the dry composition of the 

gas effluent. The flow rates of the species generated during the experiment were calculated from a nitrogen 

balance, since the amount of nitrogen fed in and the composition of the nitrogen evolved were known. 

In this work, the H2 yield and H2 purity were calculated from Equations (10) and (11), respectively: 

H2 yield (%) = 100·(FH2/4·Facetic acid) (10) 

H2 purity (vol.%) = 100·(yH2/Σi yi) (11) 

where FH2 is the molar flow rate of H2 produced (mol min-1), Facetic acid is the molar flow rate of acetic acid fed in 

(mol min-1), and yi is the molar content (N2 free and dry basis) of each species i (H2, CO, CH4 and CO2). The 

weight hourly space velocity (WHSV) is defined as the ratio of the mass flow rate of the inlet acetic acid to the 

mass of catalyst (gacetic acid gcatalyst
-1 h-1). 

 



  24 

Thermodynamic equilibrium calculations 

Thermodynamic analysis of the SESR process was conducted under the reaction conditions used in the 

experimental study. The equilibrium composition was estimated by minimizing the Gibbs free energy. Aspen Plus 

7.2 software (Aspentech) was used for the calculations. The RGibbs reactor was specified as the reaction 

system. The Peng-Robinson property method was used to predict the thermodynamic behaviour of the system. 

According to the results obtained from the equilibrium prediction under sorption enhanced conditions, the species 

produced in concentrations higher than 10-4 mol% were H2, CO, CO2, CH4, H2O, CaO and CaCO3. C2H6, C2H4, 

C2H2 and C (graphite as solid carbon) were also included in the product pool, but their concentrations in the 

equilibrium stream were null or not high enough to be considered as significant products, as was indicated in 

previous works[16]. The product mole fractions were calculated on a dry basis. 
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