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Abstract 

Most practical applications of solids in industry involve porous materials and 

adsorption processes. A correct assessment of the equilibrium and kinetics of adsorption 

is extremely important for the design and operation of adsorption based processes. In 

our previous studies we focused on the evaluation of the equilibrium of CO2/CH4 

adsorption on cherry stone-based carbons. In the present paper the kinetics of adsorption 

of CO2 on two cherry stone-based activated carbons (CS-H2O and CS-CO2), previously 

prepared in our laboratory, has been evaluated by means of transient breakthrough 

experiments at different CO2/CH4 feed concentrations, at atmospheric pressure and 

30 ˚C. A commercial activated carbon, Calgon BPL, has also been evaluated for 

reference purposes. Three models have been applied to estimate the rate parameters 

during the adsorption of CO2 on these carbons, pseudo-first, pseudo-second and 

Avrami´s fractional order kinetic models. Avrami´s model accurately predicted the 

dynamic CO2 adsorption performance of the carbons for the different feed gas 

compositions. To further investigate the mechanism of CO2 adsorption on CS-H2O, CS-

CO2 and Calgon BPL, intra-particle diffusion and Boyd´s film-diffusion models were 

also evaluated. It was established that mass transfer during the adsorption of CO2 from 

CO2/CH4 is a diffusion-based process and that the main diffusion mechanisms involved 
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are intra-particle and film diffusion. At the initial stages of adsorption, film diffusion 

resistance governed the adsorption rate, whereas intra-particle diffusion resistance was 

the predominant factor in the following stages of adsorption. 
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1. Introduction 

Pressure swing adsorption (PSA) has become very prominent in the purification 

of gases for multiple applications, namely air purification [1, 2], hydrogen separation 

and purification [3-6], and CO2 capture [7, 8]. Due to their ability to separate carbon 

dioxide from methane, PSA processes are currently being extended to areas like biogas 

and landfill gas upgrading. This separation technology might reduce  energy 

consumption without the need for using toxic and corrosive chemicals as in chemical 

absorption [9, 10].  

Many types of porous media have been developed for CO2/CH4 separation such 

as carbon molecular sieves [11], zeolites [12], metal-organic frameworks [13], and 

activated carbons [14]. The main PSA technology for enriching biogas in CH4 is based 

on zeolites, due to their high selectivity towards CO2. However, some interesting 

properties of activated carbons such as their high adsorption capacity at moderate 

pressure,  hydrophobic character, significantly low cost compared to zeolites and 
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amenability to pore structure modification and surface functionalization make them 

highly suitable materials for gas adsorption [15]. Moreover, they can be prepared from a 

large variety of low cost raw materials [16-18]. Previous research conducted in our 

laboratory has successfully demonstrated the great potential of cherry stone-based 

carbons for biogas upgrading. They were tested for their CO2 and CH4 equilibrium 

adsorption capacities at high pressures under static [19] and dynamic conditions in a 

purpose-built lab-scale fixed-bed unit [20]. 

For industrial application, a promising adsorbent must exhibit not only a high 

CO2 adsorption capacity and selectivity, but also a rapid adsorption rate.  Such 

requirements make it necessary to have an adequate understanding of adsorption 

kinetics [21].  

Currently, the literature provides a wide number of kinetic models [22, 23] 

which can generally be classified as adsorption reaction models and adsorption 

diffusion models. Because of the complexity involved in the prediction of kinetic 

parameters, a typical approach consists in fitting experimental data to a series of 

established models, and selecting the one that provides the best fit. These models lump 

the mass transfer resistances that can retard the adsorption process (i.e.; external 

diffusion in the film surrounding the particle, diffusion into the pore system, and surface 

diffusion) into a single overall mass transfer coefficient.  

To assess the suitability of our adsorbents for the separation of CO2/CH4 the current 

contribution investigates the kinetic performance of CS-H2O and CS-CO2, two cherry 

stone-based activated carbons, a detailed characterization of which is provided 

elsewhere [24] and of a commercially available activated carbon Calgon BPL.. 

Dynamic adsorption experiments were carried out in a purpose-built lab-scale fixed-bed 
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unit at different CO2/CH4 feed concentrations, at atmospheric pressure and at 30˚C. 

Three kinetic models were used to estimate the rate parameters during the adsorption of 

CO2 on these carbons: pseudo-first order, pseudo-second order and Avrami´s fractional 

order kinetic models. Finally, a fundamental analysis of the mass transfer mechanism 

controlling CO2 adsorption on these carbons was performed on the basis of the intra-

particle diffusion and the Boyd’s film-diffusion models.  

 

2. Materials and methods 

2.1. Materials 

Two biomass-based activated carbons (CS-H2O and CS-CO2) previously 

prepared in our laboratory from cherry stones, a low-cost biomass residue from the 

Spanish food industry, have been evaluated as adsorbent materials. Moreover, a 

commercial activated carbon, Calgon BPL (4x10), has been chosen as a reference for 

comparison purposes.  

CS-H2O and CS-CO2 were prepared following a single-step procedure using 

steam (CS-H2O) or CO2 (CS-CO2) as activating agents. A fully detailed chemical and 

textural characterization of these carbons has been reported elsewhere [24]. Calgon BPL 

is a bituminous coal-based carbon that is activated at high temperature with steam. It is 

therefore a microporous activated carbon with suitable characteristics for CO2 

adsorption. More details about its chemical and textural characteristics can be found 

elsewhere [20, 25]. Textural parameters of the cherry stone-based carbons and Calgon 

BPL that may be relevant for discussion are summarized in Table 1. 

 

2.2. Fixed bed adsorption-desorption experiments  
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In order to evaluate the dynamic performance of the studied adsorbents for 

separating CO2 from CO2/CH4 gas streams, breakthrough experiments with binary gas 

mixtures were conducted in a lab-scale fixed-bed reactor with a length of 13.3 cm and 

an internal diameter of 1.3 cm. A detailed description of the system can be found 

elsewhere [20, 25].  

The column was packed with the activated carbons (4.10, 4.80 and 7.00 g of 

CS-CO2, CS-H2O and BPL, respectively) in order to assess the dynamics of adsorption 

of CO2 and CH4 during the experiments. The breakthrough tests consisted of six 

consecutive two-step adsorption-desorption cycles in which the adsorbent reached 

saturation point (maximum adsorption capacity of the adsorbed components) during the 

adsorption step and was completely regenerated during the desorption step. Simulated 

biogas streams with different CO2/CH4 compositions (30/70, 50/50, and 65/35 vol. %, 

respectively) were fed into the adsorption unit and the adsorption performance of the 

samples was evaluated at a temperature of 30 ˚C and at atmospheric pressure.  

In a representative cyclic adsorption-desorption experiment the adsorbent was 

initially dried by flowing He (50 mL min−1 STP) for 60 min at 180 ˚C and at 

atmospheric pressure. After the drying step, the bed was cooled down to the adsorption 

temperature (30 ˚C) in a preconditioning step of 20 min, during which 50 mL min-1 STP 

of He was made to flow through the system. Adsorption was then begun by feeding the 

selected CO2/CH4 mixture into the pre-conditioned column for 60 min. A total feed gas 

flow rate of 30 mL min−1 STP was kept constant during the adsorption step. The CO2 

and CH4 concentrations in the gas stream exiting the adsorption column were 

continuously monitored as a function of time (breakthrough curve) by means of a micro 

gas chromatograph until the composition approached the inlet gas composition set 
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point, i.e., until saturation was reached. Afterwards, the adsorbed CO2 was completely 

desorbed by raising the temperature of the bed to 180 ˚C for 60 min at a He flow rate of 

50 mL min−1 STP. The equilibrium CO2 adsorption capacity and breakthrough time, tb, 

were calculated on the basis of an average of six consecutive cycles. The repeatability 

of the breakthrough curves was also assessed. The equilibrium adsorption capacities of 

CO2 and CH4 were determined by applying a mass balance to the bed as well as 

accounting for the gas accumulated in intraparticle voids and dead space. Detailed 

description can be found in Gil et al. [25] and in Appendix A. The breakthrough times 

were taken at a relative concentration (Ci,outlet/Ci,feed) of 0.05. 

Blank experiments were also conducted at 30 ˚C and at the different CO2 feed 

concentrations using a bed packed with glass beads of approximately 3 mm diameter. 

By means of these experiments it was possible to account for extra-column effects (e.g., 

gas holdup) during the breakthrough tests. The breakthrough curves of the carbons were 

also corrected with these blanks to determine the kinetic parameters.  

 

2.3. Kinetic studies 

2.3.1. Adsorption rate 

Among the properties expected of a good adsorbent, fast adsorption kinetics is 

one of the most critical since the residence time required for the completion of the 

adsorption process, adsorption bed size and, consequently, unit capital costs are all 

intrinsically associated with the rate of adsorption [26, 27]. Most kinetic studies are 

directed at predicting the rate-limiting step and obtaining a conceptual understanding of 

the mechanism associated with the adsorption [28]. Among the existing empirical 

kinetic models, we have considered two of the most extensively applied, namely, 
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Lagergen´s pseudo-first and pseudo-second order kinetic models. In addition, a 

fractional order kinetic model based on Avrami´s kinetic model of particle nucleation 

was also evaluated [29]. It is worth noting that this model has already been  applied to 

predict the adsorption kinetics of CO2 on amine-functionalized adsorbents [30], and is 

therefore relevant to our research.  

In these models, all the mass transfer resistances to adsorption such as external 

diffusion, pore diffusion and surface adhesion are lumped together [31]. These models 

are based on kinetic and diffusion observations at laboratory scale and have been 

strategically selected since all of them have been identified as suitable for describing the 

performance of fixed-bed adsorbers [32].  

2.3.1.1. Pseudo-first order model  

The earliest work reporting a kinetic study was carried out by Lagergren in 1898 

[33]. The model which is often applied to liquid phase adsorption is represented by 

Equation 1: ݀ݍ௧ ⁄ݐ݀ ൌ ݇௙ሺݍ௘ െ ௧ሻ Equation 1ݍ

where qe and qt (mol kg-1) represent the amount of CO2 adsorbed at equilibrium and at a 

given time, respectively and kf (min-1) is the first order rate constant. With the boundary 

conditions of t=0, qt=0 and t=∞, qt=qe, Equation 1 can be expressed as follows: ݍ௧ ൌ ௘ݍ ቀ1 െ exp ൫െ݇௙ݐ൯ቁ Equation 2

The pseudo-first order model represents a reversible interaction between 

adsorbent and adsorbate which is suitable for predicting the physical adsorption of CO2 

on solid sorbents [27, 34].  

2.3.1.2. Pseudo-second order model  
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Apart from the pseudo-first-order, the pseudo-second-order model is also often 

encountered in the literature [23]. The mathematical form of the pseudo-second order 

equation was first proposed by Blanchard et al. to describe the kinetics of heavy metal 

removal by natural zeolites [35]. 

The model can be expressed as: ݀ݍ௧ ⁄ݐ݀ ൌ ݇௦ሺݍ௘ െ ௧ሻଶ Equation 3ݍ

where, ks (kg mol-1 min-1) is the second order kinetic constant. With the boundary 

conditions of t=0, qt=0 and t=∞, qt=qe, the adsorption capacity at a given time can be 

expressed as follows:  

௧ݍ ൌ 1ݐ௘ଶ݇௦ݍ ൅ Equation 4 ݐ௘݇௦ݍ

The pseudo-second-order model assumes that the interaction between adsorbent 

and adsorbate is caused by the strong binding of gas molecules to the surface of the 

adsorbent and has been found suitable for predicting CO2 sorption behavior based on 

chemical interactions [36]. This model is also useful for describing solids diffusion rate 

controlled processes that cannot be properly described by the pseudo-first order model.  

2.3.1.3. Avrami´s fractional model 

Avrami´s fractional order kinetic model was originally developed to simulate 

phase transition and crystal growth of materials [29]. The general form of the model is 

written as follows: ݀ݍ௧ ⁄ݐ݀ ൌ ݇஺௡ಲݐ௡ಲିଵሺݍ௘ െ ௧ሻ Equation 5ݍ

where kA is the Avrami kinetic constant, and nA is the Avrami exponent reflecting 

mechanism changes that may take place during the adsorption process [37, 38]. It also 

represents the dimensionality of growth of adsoption sites: nA = 2 for one-dimensional 
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growth, nA = 3 for two-dimensional growth, and nA = 4 for three-dimensional growth 

[39]. In the case of homogeneous adsorption in which the probability of adsorption 

occurring is equal for any region for a given time interval, nA = 1 [40, 41]. An Avrami 

exponent of exactly 2 indicates perfect one-dimensional growth for adsorption sites 

which are forming continuously and at a constant rate [39]. The integrated form of 

Equation 5 is: ݍ௧ ൌ ௘൫1ݍ െ ሻ௡ಲሻ൯ Equation 6ݐሺെሺ݇஺݌ݔ݁

2.3.1.4. Validation of the kinetic model 

To quantitatively evaluate the goodness of fit of the three kinetic models two 

different error functions, the nonlinear coefficient of determination (R2) and the residual 

sum of squares between the experimental mass uptake and that given by the model (Δq), 

were evaluated. The coefficient of determination, which determines how well the data 

points fit the model, was calculated as follows [30]:  

ܴଶ ൌ 1 െ ൭∑ ൫ݍ௧ሺ௘௫௣ሻ െ ∑௧ሺ௠௢ௗ௘௟ሻ൯ଶ௡௜ୀଵݍ ൫ݍ௧ሺ௘௫௣ሻ െ ௧ሺ௘௫௣ሻതതതതതതതത൯ଶ௡௜ୀଵݍ ൱ ൬݊ െ 1݊ െ ൰ Equation 7݌

The residual sum of squares, which reflects the deviation between the 

experimental results and the values predicted by the kinetic models, can be calculated 

using the following equation: 

 

ሺ%ሻݍ∆ ൌ ඨ∑ ൫ݍ௧ሺୣ୶୮ሻ െ ௧ሺ௠௢ௗ௘௟ሻ൯௜ଶ௡௜ୀଵݍ ݊ െ 1 x 100 Equation 8

where the subscripts “exp” and “model” refer to the measured and model predicted 

values of the amount adsorbed, respectively;  ݍ௧ሺ௘௫௣ሻതതതതതതതത is the average value of the 

experimental data; n represents the number of experimental data points fitted for each 
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sample (from the beginning of the mass uptake up to equilibrium (q/qe=1)) and p is the 

number of parameters of the model [30]. Fitting of the models to the experimental data 

was conducted by means of the Solver Excel tool (Microsoft Office Excel 2010). 

Values of R2 close to 1 and a small error function indicate that the model is able to 

successfully describe the kinetics of the adsorption process.  

2.3.2. Adsorption mechanism 

The kinetic models described above are convenient for predicting the adsorption 

behavior of CS-H2O, CS-CO2, and Calgon BPL. However, because all the adsorption 

resistances are lumped together, it is difficult to distinguish the rate-limiting step 

occurring during the adsorption stages. For porous sorbents such as activated carbons, 

diffusion effects may be quite important and so the physical meaning of the evaluated 

rate constant must be determined in order to be able to know the mass transfer 

mechanism involved [42, 43]. Most commonly, the rate of adsorption is controlled by 

film diffusion or intra-particle diffusion or both [21, 44, 45]. 

2.3.2.1. Intra-particle diffusion model 

Weber and Morris [46] postulated the intra-particle diffusion model based on 

Fick´s second law, represented by Equation 9. This model can be used to identify 

consecutive stages of mass transfer during the adsorption process. ݍ௧ ൌ ݇௜ௗݐଵ ଶ⁄ ൅ Equation 9 ܥ

where qt is the amount adsorbed at any particular time (mol kg-1), kid is the intra-particle 

diffusion rate constant (mol kg-1 min-1/2) and C (mol kg-1) refers to the thickness of the 

boundary layer. According to the Weber-Morris model the plot of qt versus t1/2 should 

give a straight line if diffusion plays a role in the rate of adsorption and this line should 

pass through the origin if intra-particle diffusion is the sole rate-controlling step.  
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Nevertheless, it is common to see multi-linearity on the qt - t1/2 plot, which 

indicates that the adsorption mechanism consists of different stages. Most frequently, 

three steps in the intra-particle diffusion model can be identified, the first one 

corresponding to the external diffusion adsorption or boundary layer diffusion, the 

second one to the gradual stage of adsorption (i.e., intra-particle diffusion, strictly 

speaking) and the third one to the final equilibrium stage [27]. However, it is generally 

accepted that the third step is very rapid and does not represent the rate-determining step 

[47]. In general, the slope of the line in each stage is called the rate parameter kid,i 

(where i stands for the stage number) and the lowest slope corresponds to the rate-

controlling step [27].  

2.3.2.2. Boyd´s film-diffusion model 

Boyd’s model was originally proposed for intra-particle diffusion in a spherical 

particle, although it is better known as Boyd’s film-diffusion model. Given that the CO2 

molecule has to diffuse through the gas film before being adsorbed, the film-diffusion 

model may be useful for distinguishing whether this external mass transfer resistance is 

the rate-limiting step. Moreover, whenever two adsorbates are present in the gas 

mixture, there is the possibility of external resistance to mass transfer. 

Boyd´s film-diffusion model assumes that the gas film surrounding the 

adsorbent particle is the main resistance to adsorption of the adsorbate [48]. This model 

is expressed as follows:  

ܨ ൌ 1 െ ଶߨ6 ෍ 1݊ଶஶ
௡ୀଵ ሻ Equation 10ݐܤሺെ݊ଶ݌ݔ݁

where F is the fractional adsorption capacity at a given time (F=qt/qe). Bt is a 

mathematical function of F such that:  
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For F > 0.85,  ݐܤ ൌ ݂ሺܨሻ ൌ െ0.4977 െ ݈݊ሺ1 െ ሻ Equation 11ܨ

For F < 0.85,  ݐܤ ൌ ݂ ሺܨሻ ൌ ቆ√ߨ െ ටߨ െ ቀగమிଷ ቁቇଶ
 Equation 12

This model can be used to predict the mechanism involved in the adsorption 

process through the plot of Bt against time t. If the plot gives a straight line that passes 

through the origin, the adsorption rate will be controlled by intra-particle diffusion. 

However, if the plot is not a straight line or does not pass through the origin, it can be 

inferred that adsorption is also influenced by another mass transfer mechanism: film 

diffusion [49, 50]. 

 

3. Results and discussion 

3.1. Effect of feed composition 

Biogas, which is typically generated at atmospheric pressure, mainly comprises 

CH4 and CO2. The molar fraction of CO2 in biogas may range from 0.30 to 0.65 

depending on its source. The content of other contaminants such as H2S, O2, H2, sulfur, 

etc., in the water-saturated mixture is below 4% and highly dependent on the source [51, 

52]. Since the target gas stream from which CO2 has to be removed can have a variable 

CO2 content, the effect of the feed composition on the separation of CO2/CH4 needs to 

be investigated. We therefore evaluated three binary CO2/CH4 gas streams with the 

following compositions in the present study: 30/70, 50/50 and 65/35 vol.% CO2/CH4  

Figure 1 displays the breakthrough profiles of CO2 and CH4 at 30 ˚C and at 

atmospheric pressure for the tested activated carbons as a function of the feed 

composition. 

In general, three phases can be identified in the breakthrough curves: i) the 

breakthrough phase, where the weakest adsorbate quickly breaks through the fixed-bed 
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column; ii) the competition phase, where CH4 exhibits a so-called roll-up or roll-over 

due to the preferential adsorption of CO2 over CH4. At this point, the molar flow rate of 

CH4 in the effluent is temporarily higher than that fed to the adsorption bed. The CH4 

once adsorbed is displaced by CO2, whose concentration front advances more slowly 

through the column than that of CH4; and finally, iii) the saturation phase, where the 

adsorbents are completely saturated with adsorbate that can no longer be adsorbed [53]. 

The amplitude of the roll-up is a measure of the competition between CO2 and CH4 for 

adsorption sites: it is high when a large amount of CH4 is rapidly replaced by the 

incoming CO2. It is observed that at higher CO2 partial pressures in the feed the height 

of the roll-up increases but it becomes narrower [20].   

The time elapsed between the CH4 and the CO2 breakthrough is indicative of 

the separating capacity of the solids bed: the greater the difference in breakthrough 

times between both adsorbates, the greater the effectiveness of the separation. Visual 

inspection of the curves in Figure 1 shows that the quality of separation decreases in the 

order 30/70 > 50/50 > 65/35 vol.% CO2/CH4.   

Figure 2 compares the behavior of the different activated carbons at each CO2 

partial pressure tested is compared  

According to Figure 2, Calgon BPL shows longer breakthrough times of CO2 

and CH4 for feed compositions where CO2 accounts for more than 50 vol.%. However, 

when the CO2 concentration in the feed is 30 vol.% (Fig. 2a), CS-H2O gives a slightly 

longer breakthrough time for CO2 than the other carbon materials. 

If the shapes of the CO2 breakthrough curves are analyzed in more detail, it is 

observed that Calgon BPL displays a more distended mass transfer zone (between the 

breakthrough point and saturation) than the biomass-based activated carbons in the 
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whole range of CO2 partial pressures tested. Therefore, mass transfer of CO2 into the 

pores of CS-CO2 and CS-H2O may be more favored than the commercial activated 

carbon. In other words, the data reveal fast kinetics for the adsorption of CO2 on the 

cherry stone- based activated carbons. In the case of CH4, only very small differences 

are observed between the three carbons evaluated indicating that the kinetics of CH4 

adsorption may not be particularly relevant for the separation of CO2/CH4. 

The CO2 and CH4 adsorption capacities of the three carbon adsorbents at the 

feed compositions tested are presented in Table 2. These values stand for the average 

CO2 and CH4 uptakes over the six consecutive cycles conducted in each experiment.  

As one might expect the adsorption of CO2 and CH4 is enhanced with increasing 

CO2 and CH4 concentrations in the feed. For instance, with the increase in CO2 

concentration from 30 to 65 vol.%, CO2 adsorption on CS-H2O doubles and reaches 

2.12 mol CO2 kg-1. A similar behavior is observed for all the carbon adsorbents. This is 

certainly related to the enhancement of the concentration gradient that drives the 

adsorption process, leading an increase in mass transfer. 

 

3.2. Apparent kinetic model 

3.2.1. Comparison of kinetic models  

Throughout this section we will analyze the kinetics of CO2 adsorption 

associated to CO2/CH4 separation by means of adsorption on CS-CO2, CS-H2O and 

Calgon BPL. In the previous section it was suggested that the kinetics of CH4 

adsorption might not play a significant role in this specific CO2/CH4 separation.  

Three kinetic models were considered: pseudo-first order, pseudo-second order 

and Avrami´s fractional models. Theoretically, the adsorption of CO2 on the carbons 
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evaluated could be described with either one of these three models. However, not all 

models may be equally suitable for this adsorption process.  

Figure 3 presents the evolution with time of the amounts of CO2 adsorbed on the 

three carbons during the breakthrough experiments at 30˚C, at atmospheric pressure and 

for different feed compositions. The points represent the experimental values and the 

dashed lines the amounts predicted by fitting the experimental data to the kinetic 

models. Time t = 0 on these curves was selected as the inflection point (dqt/dt ≠ 0) of 

the experimental CO2 breakthrough curves (see Figures 1 and 2).  

The values of the kinetic parameters calculated for each model and the 

corresponding correlation coefficients (R2) and associated errors (Δq (%)) are listed in 

Table 3. 

It can be seen that the pseudo-first and pseudo-second order kinetic models have 

certain limitations for predicting CO2 adsorption on CS-H2O, CS-CO2, and Calgon 

BPL. For instance, the pseudo-first order model overestimates the uptake of CO2 in the 

initial stages of adsorption and underestimates the uptake when approaching the 

equilibrium. Nevertheless, during the final stages of adsorption the pseudo-first order 

prediction closely follows the trends of the experimental data and the equilibrium CO2 

adsorption capacities are in good agreement with the experimental values. On the other 

hand, the pseudo-second order model overestimates CO2 uptake in the initial stages and 

underestimates the uptake in the final stages since it predicts much lower equilibrium 

adsorption capacities than the experimental values. A comparison of the values of R2 

and Δq (%) tabulated in Table 3, reveals that the pseudo-second order model gives the 

worst fitting of the three models: the R2 values fall within the 0.680-0.915 range and 

those of Δq (%) between 10 and 38%. As already mentioned in section 2.3.1, the 
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pseudo-first order model might accurately represent reversible adsorption between the 

gas and the solid surface as equilibrium is established, while the pseudo-second order is 

based on the assumption that a strong adsorbate-adsorbent interaction is the rate-

controlling step. Consequently, it can be concluded that CO2 adsorption on CS-H2O, 

CS-CO2 and Calgon BPL does not strictly respond to any of these two mechanisms and 

follows an intermediate path.  

As can be seen in Table 3, Avrami’s fractional order model suitably fits the 

experimental data over the range of feed composition considered, presenting the lowest 

error function values (maximum Δq of 4.7%) and values of  R2 close to unity. Therefore, 

compared with the pseudo-first and pseudo-second order kinetic models, the Avrami 

equation seems the most accurate approach for describing CO2 adsorption kinetics on 

the carbon adsorbents studied. The excellent quality of the fit of the Avrami model to 

the experimental data at low and high surface coverage is most likely associated with its 

ability to account for complex reaction pathways [29, 34, 54]. A further advantage of 

Avrami´s equation is that the kinetic constant is independent of the initial concentration 

of the adsorbate [55]. Serna-Guerrero et al. [34] also found that the pseudo-first and 

pseudo-second order kinetic models showed certain limitations for describing CO2 

adsorption on amine-functionalized mesoporous silica and reported that the best kinetic 

model fit was provided by Avrami´s equation. This model has already been successfully 

employed to explain kinetic processes on a wide range of adsorbents and adsorbates 

[38, 54, 56]. 

For these reasons we chose Avrami’s model parameters for a more detailed 

analysis of the CO2 adsorption mechanism on CS-CO2, CS-H2O and Calgon BPL.  

3.2.2. Analysis of kinetic model parameters 
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The values of the kinetic parameters depicted in Table 3 indicate that for each 

carbon adsorbent, the adsorption rate constant kA increases with an increase in the CO2 

concentration. The increase in the mass transfer coefficient with the rise in the 

concentration of CO2 in the feed is reflected in the significantly steeper concentration 

profiles (depicted in Figures 1-3). The trend observed agrees well with the data reported 

in the literature [57].  

As we mentioned in section 2.3.1.3 the Avrami exponent (nA) is a fractional 

number that accounts for possible changes of the adsorption mechanism during the 

adsorption process. Instead of following a single integer-kinetic order the mechanism of 

adsorption might follow multiple kinetic orders that change during the contact of the 

adsorbate with the adsorbent. Therefore nA is the result of multiple kinetic orders 

occurring in the adsorption process. A progressive increase in the values of nA with feed 

concentration was observed for the carbon adsorbents. The increase in the Avrami 

exponent with the CO2 feed concentration indicates that the adsorption of CO2 seems to 

have more contact time dependence at elevated concentrations. The Avrami exponent, 

nA, as determined from our experimental data lies in the 1.529 - 2.334 range, confirming 

the co-existence of different adsorption mechanisms [54].  

Furthermore, consistent with the previous observation that our biomass-based 

activated carbons showed a more enhanced kinetic behavior than the commercial 

activated carbon (see Figure 4), the calculated values of the global mass transfer 

coefficient (kA) for CO2 adsorption on CS-H2O and CS-CO2 in the fixed bed are higher 

than those of Calgon BPL. As shown in Table 3, the values of kA are 0.441 and 0.410 

min-1 for CS-H2O and CS-CO2, respectively, when feeding CO2 at 30 vol.% whereas for 
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Calgon BPL the limit is 0.267 min-1. The same pattern was observed for the other two 

feed concentrations tested in this work.  

Moreover, the calculated values of the kinetic rate constants for the biomass 

based activated carbons (0.2 min-1 < kA < 0.6 min-1) are consistent with values reported 

in the literature for activated carbons [58].  

The estimated values for the parameter nA in the Avrami model for the 

commercial activated carbon were also found to be lower than those of the biomass-

based activated carbons. As previously mentioned, this parameter is related to changes 

in the mechanism occurring during the adsorption process so the difference between the 

biomass-based carbons and Calgon BPL may be indicative of different adsorption 

pathways.   

 

3.3. Rate-limiting adsorption stage 

For porous adsorbents, such as activated carbons, diffusion-based effects may be 

very important and so the physical significance of the evaluated rate constants needs to 

be properly ascertained to gain an accurate insight into mass transfer mechanisms 

involved.  

The possibility of intra-particle diffusion resistance controlling the adsorption of 

CO2 on the evaluated activated carbons was explored using Equation 9. Figure 4 shows 

the intra-particle diffusion plots at the CO2 feed concentrations tested for CS-H2O, CS-

CO2 and Calgon BPL. The intra-particle diffusion constant, kid (mol kg-1 min-1/2), can be 

estimated from the slope of the plot of qt (mol kg-1) versus the square root of time.  

When intra-particle diffusion occurs, the plot qt versus t1/2 is linear and if it 

passes through the origin, then the rate limiting process is only due to intra-particle 
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diffusion [59]. Figure 4 shows the intra-particle diffusion plot at different CO2 partial 

pressures for each adsorbent tested in this work.  

It is clearly observed in Figure 4 that the plots are not linear over the whole time 

range. They show multi-linearity for CO2 adsorption on CS-H2O, CS-CO2 and Calgon 

BPL. This means that intra-particle diffusion model is not the sole rate limiting 

mechanism in the adsorption process: more than one single kinetic stage is involved in 

the process of CO2 adsorption on these carbons and each stage can be attributed to each 

linear section of the plot. Two main stages can be identified in the plots, suggesting that 

the adsorption of CO2 concurrently occurs by diffusion of CO2 through the external 

surface of the adsorbent (first linear region) and by intra-particle diffusion (second 

linear region). However, at the highest CO2 partial pressure (65 vol.% CO2) only one 

linear region is observed for the biomass-based activated carbons (Figures 6a and 6b) 

but it does not pass through the origin. This might suggest that the intraparticle diffusion 

model is applicable but that it is not the only rate-controlling mechanism.  

The values of kid estimated from the slope of each linear region are tabulated in 

Table 4 and referred to as kid,1 and kid,2, respectively. The Ri
2-values (with i = 1, 2) 

obtained from fitting them to each rectilinear plot were found to be close to unity, 

confirming the applicability of this model.  

The values of kid,1 are larger than kid,2 at any CO2 partial pressure indicating that 

film diffusion of CO2 molecules towards the carbon surfaces was relatively fast [60]. 

The faster uptake of CO2 in the first region can be attributed to rapid diffusion of CO2 to 

the external surface. When the external surface area is saturated intra-particle diffusion 

will begin to take place and diffusion to the inner sites, (i.e., macropores, mesopores and 

micropores) will occur. The lower kid values in the second region, ascribed to intra-
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particle diffusion,  indicate  that this stage occurs at a slower pace thus being more 

relevant to the overall rate of adsorption [17].  

The calculated values of kid,2 (mol kg-1 min-1/2) are greater for the biomass-based 

activated carbons than for commercial Calgon BPL. In addition, the value of kid,2 

increases with the increase in inlet CO2 concentration. These results indicate that intra-

particle diffusion proceeds faster in CS-CO2 and CS-H2O than in Calgon BPL.  

As we demonstrated in our previous study [20], the bed of Calgon BPL shows 

less total porosity (0.79) than that of the biomass-based adsorbents (0.84 and 0.86 for 

CS-H2O and CS-CO2, respectively). To calculate the total porosity of the bed we took 

into account the packed bed porosity and the particle porosity [25]. It should also be 

pointed out that a similar bed height was established in all the breakthrough 

experiments. Moreover, the particle size of Calgon BPL (2-4.75 mm) is greater than that 

of the biomass carbons (1-3 mm). Therefore, these two differential features might 

explain the faster kinetics of CO2 adsorption on the cherry stone-based carbons.  

In order to confirm our interpretations of the intra-particle diffusion model 

analysis about the rate-controlling step during the adsorption process, the experimental 

data were further analyzed by applying Boyd’s film model represented by Equation 10. 

Figure 5 shows the plots of f(F) versus time under different CO2 partial 

pressures. All the plots exhibit a linear pattern but do not pass through the origin, 

indicating that the adsorption process is not solely influenced by intra-particle diffusion. 

This is in good agreement with our results from the intra-particle diffusion model. The 

values of the kinetic parameter B are summarized in the Table 5. They follow the same 

trend as that observed in the fitting of the intra-particle diffusion model: the rate 
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constants are higher for the biomass-based activated carbons than for commercial 

Calgon BPL and they increase with the increase in the inlet CO2 concentration.  

From the above results it can be concluded that two main mechanisms are 

involved in mass transfer during the overall process of adsorption of CO2 on CS-H2O, 

CS-CO2 and Calgon BPL in the range of the CO2 partial pressures evaluated. However, 

only one mechanism governs the adsorption process at a given time: during the initial 

stages, film diffusion of CO2 is the main resistance to mass transfer and controls the 

adsorption rate; once CO2 has diffused through the gas film, the network of pores in the 

adsorbent bed make intra-particle diffusion the rate-limiting step that controls 

adsorption until equilibrium is attained.  

 

4. Conclusions 

This study presents for the first time a kinetic analysis of CO2 adsorption on 

biomass-based activated carbon for biogas upgrading.  

The kinetics of CO2 adsorption on CS-H2O, CS-CO2 and Calgon BPL were 

evaluated by means of three adsorption reaction models (pseudo-first order, pseudo-

second order, and Avrami´s kinetic models) and two adsorption diffusion models (intra-

particle and Boyd’s film diffusion). The best fit of the experimental data for all 

adsorbents over the wide range of feed compositions tested was obtained by applying 

Avrami´s kinetic model and the adsorption rate constants, kA, were found to increase 

with increasing CO2 concentration. Adsorption diffusion models were applied to 

identify the CO2 adsorption mechanism on these carbons. It was found that mass 

transfer during the adsorption of CO2 on these carbons proceeds through a diffusion-

based process involving film diffusion and intra-particle diffusion. At the initial stage of 
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adsorption, diffusion through the film is dominant. When the amount of CO2 in the 

external film reaches a certain point, intra-particle diffusion takes over.  

In addition, the faster kinetics of CO2 adsorption on the cherry stone- based 

carbons was confirmed, lending support to our previous conclusions drawn from the 

equilibrium of adsorption results on the suitability of these biomass-based carbons for 

CO2/CH4 separation. 
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Figure captions 

Figure 1. CO2 (solid lines) and CH4 (dashed lines) breakthrough curves for CS-H2O (a), 

CS-CO2 (b), and Calgon BPL (c) with 30/70 vol.% CO2/CH4 (blue color), 50/50 vol.% 

CO2/CH4 (red color), and 65/35 vol.% CO2/CH4 (green color).  

Figure 2. CO2 (solid lines) and CH4 (dashed lines) breakthrough curves for CS-H2O 

(green color), CS-CO2 (red color), and Calgon BPL (blue color) with 30/70 vol.% 

CO2/CH4 (a), 50/50 vol.% CO2/CH4 (b), and 65/35 vol.% CO2/CH4 (c).  

Figure 3. Evolved amounts of CO2 adsorbed. Comparison of predicted and experimental 

CO2 uptakes on CS-H2O (a), CS-CO2 (b), and Calgon BPL (c) at 30˚C and at 

atmospheric pressure as a function of the feed concentration. 

Figure 4. Amount of CO2 adsorbed versus t1/2 (intra-particle diffusion model plot): CS-

H2O (a), CS-CO2 (b), and Calgon BPL (c). Colors refer to CO2 partial pressures in the 

feed stream: 30/70 vol.% CO2/CH4 (blue color), 50/50 vol.% CO2/CH4 (red color), and 

65/35 vol.% CO2/CH4 (green color).  

Figure 5. Plots of Boyd´s film model for CO2 adsorption on CS-H2O (a), CS-CO2 (b), 

and Calgon BPL (c) at different CO2 partial pressures at 30˚C and atmospheric pressure. 

Colors refer to CO2 partial pressures in the feed stream: 30/70 vol.% CO2/CH4 (blue 

color), 50/50 vol.% CO2/CH4 (red color), and 65/35 vol.% CO2/CH4 (green color).  
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Table 1. Textural characteristics of the activated carbons. 

Sample SBET 
(m2 g-1) 

Vp 
(cm3 g-1) 

W0,N2 
(cm3 g-1) 

W0,CO2 
(cm3 g-1) 

CS-CO2
 1045 0.48 0.40 0.35 

CS-H2O 998 0.53 0.38 0.33 
Calgon BPL 1129 0.50 0.46 0.22 

SBET: BET surface area; Vp: total pore volume; W0,N2: micropore volume; W0,CO2: narrow 

micropore volume 
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Table 2. Adsorbed amounts of CO2 and CH4 on CS-CO2, CS-H2O, and Calgon BPL for 

the CO2/CH4 separations at 30˚C and at atmospheric pressure. 

Adsorbent 
CO2 adsorption capacity 

(mol kg-1) 
CH4 adsorption capacity 

(mol kg-1) 

 30% CO2 - 70% CH4 
CS-H2O 1.04 0.68 
CS-CO2 1.18 0.71 
Calgon BPL 0.73 0.42 

 50% CO2 - 50% CH4 
CS-H2O 1.49 0.37 
CS-CO2 1.63 0.47 
Calgon BPL 1.17 0.32 

 65% CO2 - 35% CH4 
CS-H2O 2.12 0.31 
CS-CO2 1.98 0.39 
Calgon BPL 1.33 0.23 
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Table 3. Kinetic model parameters for adsorption on CS-CO2, CS-H2O and Calgon BPL 

at 30˚C and at atmospheric pressure for different CO2 concentrations in the feed.  

CO2 
(vol.%) 

Sample 
Pseudo-first order Pseudo-second order Avrami 

kf Δq R2 ks Δq R2 kA nA Δq R2 

 

30 

 

CS-H2O 0.465 7.622 0.960 0.829 14.737 0.849 0.441 1.556 0.444 1.000

CS-CO2 0.433 9.243 0.976 0.703 17.579 0.915 0.410 1.643 1.333 0.999

BPL 0.280 5.239 0.966 0.660 10.334 0.869 0.267 1.529 0.833 0.999

            

 

50 

  

CS-H2O 0.511 17.034 0.919 0.618 27.172 0.795 0.489 2.049 3.621 0.995

CS-CO2 0.548 18.980 0.920 0.547 30.738 0.790 0.540 1.894 3.840 0.995

BPL 0.314 10.649 0.943 0.464 19.208 0.814 0.301 1.663 2.847 0.995

            

65 

CS-H2O 0.499 32.872 0.843 0.408 37.732 0.680 0.505 2.334 0.443 1.000

CS-CO2 0.542 22.768 0.871 0.412 31.959 0.746 0.556 1.957 0.000 1.000

BPL 0.425 16.069 0.902 0.521 24.484 0.773 0.421 1.929 4.725 0.987

kf [=] min-1, ks [=] kg mol-1 min-1, kA [=] min-1, Δq [=] % 
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Table 4. Parameters from linear fitting of the intra-particle diffusion model.  

CO2 (vol %) Sample kid,1 R1
2 kid,2 R2

2 

30 

CS-H2O 0.713 0.984 0.188 0.929 

CS-CO2 0.865 0.993 0.178 0.993 

BPL 0.410 0.991 0.140 0.996 

50 

CS-H2O 1.696 1 0.405 0.950 

CS-CO2 1.437 0.985 0.319 1 

BPL 0.816 0.986 0.224 0.986 

65 

CS-H2O 1.958* 0.996* — — 

CS-CO2 2.132* 1* — — 

BPL 1.413 1 0.544 0.942 

kid,1, kid,2 [=] mol kg -1 min-1/2, *kid and R2 for the single rectilinear plot. 
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Table 5. Kinetic parameter B estimated from the fitting of Boyd´s film-diffusion model. 

CO2 (vol %) Sample B (min-1) R2 

30 

CS-H2O 0.793 0.971 

CS-CO2 0.691 0.988 

BPL 0.402 0.974 

50 

CS-H2O 0.850 0.999 

CS-CO2 0.833 0.983 

BPL 0.410 0.991 

65 

CS-H2O 1.032 0.902 

CS-CO2 0.977 1 

BPL 0.618 0.974 
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