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Abstract 

In recent years, the growing interest for well-being and healthy lifestyle together with an 

increasing awareness of the close relationship between food and health have boosted the 

production of an increasing number of novel goods to be placed in both gluten-containing and 

gluten-free products market. The objective of this study was to provide a realistic and detailed 

overview of the current bread-market supply, in order to evaluate the overall quality of the 

available offer in this prioritised food industry area. Twenty commercial breads consisting of gluten 

(n=10) and gluten-free (n=10) samples currently available in the European market, have been 

assessed by physical-chemical, technological, nutritional, and sensory determinations. The 

quality parameters obtained were related to each other by using Pearson correlations, while 

sample classification was achieved by applying factor analysis. Although the main distinction was 

between gluten and gluten-free samples as it was expected, classification of breads allowed 

differentiating samples with different formulations in terms of presence/absence of alternative, 

innovative and nutrient-dense raw materials. 
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Introduction 

Bread has been one of the staple foods most widely used and consumed around the world and 

one of the major constituents of the human diet since ancient times. Although the simplicity of the 

basic recipe (flour, water, salt and leavening agent) the long-term success of bread is ascribed to 

its typical flavour, taste, and its high nutritional value. Bread is a good source of energy mainly 

due to the high content of starch, besides protein, lipids rich in essential fatty acids, dietary fibre, 

antioxidants, and micronutrients (Rubel et al., 2015). Nowadays, despite some differences 

between countries depending on bread type or region, the level of bread consumption in the 

world has been declining (Cauvain, 2015). This trend does not apply to the gluten-free market 

that is experiencing a double-digit growth, as one of the most prosperous market niche in the 

immediate and near future (Miranda et al., 2014). Even in Europe, bread market has been 

showing contrasting patterns within countries (Collar, 2015). A study for European Commission in 

2010 (made through 27 European Union states) reported that bread consumption patterns differ 

widely within the European Union but most countries have an average consumption of 50 kg of 

bread per capita per year (Federation of Bakers, 2013). This slight decline can be caused by 

several factors including the changes in consumers’ food preferences (increasing consumption of 

alternative and energy-dense foods often rich in fat) and evolution of eating habits (growth of out-

of-home meals), often associated with a lack of physical activity. Over the past decades these 

changes in people’s lifestyles have also resulted in a dramatic increase of several non-

communicable diseases including obesity, type 2 diabetes, cardiovascular diseases, and certain 

forms of cancer. However, consumer’s demands in the field of food production have changed in 

depth (Betoret et al., 2011). In recent years, the increasing awareness of the relationship between 

food and health, the growing demand for healthy, natural and innovative foods as well as the 

increasing prevalence of food intolerances (in particular coeliac disease) led both scientific 
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research and bakery industry to make considerable efforts in order to meet the needs of 

consumers, and to improve the variety, quality and taste of bakery products available in the 

market. Thus, breads made from grains, grain flours, and bran alternative to wheat or containing 

other functional ingredients are acquiring a privileged position in the bakery market. The use of 

whole grains as partial substitutes of wheat flour in bread formulations is of nutritional interest 

because of their lower glycaemic index and health-related composition including dietary fibre, 

minerals, vitamins and antioxidants. The intake of whole-grain bread, which provides more health 

benefits than refined-grain bread, is generally associated with a reduced risk of coronary heart 

disease and type-2 diabetes (Blandino et al., 2013). Bread products enriched/fortified with 

functional components such as -3 fatty acids (Gökmen, 2011), prebiotic oligosaccharides 

(Angioloni and Collar 2011a), inulin (Rubel et al., 2015), and calcium (Salinas and Puppo, 2015) 

as well as multigrain breads obtained by the addition of minor cereals, pseudocereals, and grain 

legumes flours (Collar et al., 2014a), are also in good agreement with the current nutritional and 

nutraceutical dietary trends. Conversely, in case of allergies and food intolerances such as 

coeliac disease, the production of bread products made with gluten-free alternative raw materials 

becomes a necessity. Furthermore, in gluten-free breadmaking, a consumer-satisfying structure, 

an adequate nutritive value and a good taste of bread can only be achieved using a combination 

of different ingredients (Houben et al., 2012). Apart from most basic gluten-free ingredients such 

as rice and corn flour blended with structuring agents (hydrocolloids) and dairy proteins 

(Lazaridou et al., 2007), also different gluten-free flours (corn, teff, buckwheat, quinoa, sorghum) 

(Hager et al., 2012) and starches (corn, cassava, potato) (Collar et al., 2014b) as well as 

enzymes (transglutaminase, proteases) (Hamada et al., 2013), and other non-gluten proteins 

(from both animal and plant origin, e.g. milk protein, egg albumins and soy protein) (Ziobro et al., 
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2013) are being used in order to mimic the viscoelastic properties of gluten and to improve the 

overall quality of gluten-free bakery products. 

In this context, the objective of the present study was to provide a comprehensive, realistic and 

detailed overview of the current bread-market supply through the physical-chemical, 

technological, nutritional, and sensory characterization of 20 European commercial breads, in 

order to obtain an overall quality picture of the available offer in this prioritised food industry area. 

[insert Figure 1.] 

 

Materials and Methods 

Materials 

Twenty commercial breads (10 gluten-containing and 10 gluten-free samples) from major brands 

were selected and purchased from the European market (Figure 1). The chemical and nutrition 

facts of breads were retrieved from the labels provided by the manufacturers, with the only 

exception of both moisture and ash contents. Moisture determination was performed according to 

the AACC method 44-15.02 (AACC, 2005), while the ash content was estimated by difference. 

The ingredient composition of breads is compiled in Table 1. A four digit bread sample code was 

defined for commercial breads according to their crumb colour (1st digit), absence/presence of 

seeds (2nd digit), and sample number (3rd and 4th digits). The first digit of the code was set 

referring to white bread (1), mixed bread (2), and dark bread (3), the second digit to absence (1) 

or presence (2) of seeds, and the third digit to sample number (from 1 to 10 for gluten breads and 

from 11 to 20 for gluten-free breads), as it follows: 1101, 2202, 1103, 3104, 1105, 1206, 1107, 

3208, 3209, 3210, 1211, 1112, 2213, 1114, 1115, 2116, 1117, 1118, 1119, 3220 (Figure 1). 

[insert Table 1] 
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Methods 

Bread measurements 

Physical-chemical properties. The volume of bread samples was measured according to the 

AACC 10-05.01 method of rapeseed displacement (AACC, 2005). The specific volume was 

calculated as bread volume (ml) / bread weight (g). Aspect ratio was calculated as width/height 

ratio of central slices. 

Colour measurements were determined on both crumb and crust using a Photoshop system in 

accordance with the method previously described by Angioloni and Collar (2009) and the results 

were expressed in accordance to the Hunter Lab colour space. The Photoshop (PS Adobe 

Photoshop CS5 extended) system (L, a, b colour coordinates) was calibrated using colour sheets 

from PantoneFormula Guide (Pantone, Inc., USA). Pantone colour sheets and bread slices 

(three slices per sample) were used for calibration and for colour measurement, respectively. 

Images were acquired at 300 pixel resolution with a ScanJet II cx flatbed scanner (Hewlett-

Packard, USA). Parameters determined were L (L = 0 [black] and L = 100[white]), a (−a = 

greenness and +a = redness), b (−b = blueness and +b = yellowness), WI - whiteness index 

(crumb), and BI - Browning Index (crust), as described earlier (Collar and Angioloni, 2014). 

Hunter Lab colour space parameters from Minolta colorimeter were calculated from the 

calibration linear equation Colorimeter vs Photoshop (Angioloni and Collar, 2009).  

Crumb grain characteristics were assessed in bread slices using a digital image analysis system. 

Images were previously acquired with a ScanJet II cx flatbed scanner (Hewlett-Packard, USA). 

The analysis was performed on 40×40 mm or 60x60 mm squares (depending on the size of 

breads) taken from the centre of the images and data were processed using SigmaScan Pro 5 

(Jandel Corporation, USA).  The crumb grain parameters determined were: cell area, cell density 

(cell/cm2), cell/total area ratio, and wall to total area ratio (Collar et al., 2005). According to the 
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pre-selected cell size range (<0.4 mm2, 0.4-1.0 mm2, 1-10 mm2, 10-80 mm2, and >80 mm2), cell 

area distribution and cell number distribution were also determined. 

Bread primary and secondary mechanical characteristics (Texture Profile Analysis, TPA, using a 

double compression cycle) of breads were recorded in a TA-XT2 texture analyser (Stable Micro 

System, Surrey, UK) using a 25 mm diameter probe, a 30 Kg load cell, 50% penetration depth 

and a 30 s gap between compressions on slices of 25 mm width (Collar et al., 2005). 

For stress relaxation (SR) measurements, samples from the centre of the crumb slices were cut 

into cubes (2x2x2 cm) and compressed using a TA-XT plus texture analyser (Stable Micro 

System, Surrey, UK). Samples were compressed using a cylindrical upper die of 50 mm diameter 

at a cross speed 0.5 mm/sec. The strain used was 20% and the whole relaxation experiment 

lasted 10 min. The obtained stress relaxation curves were normalized and converted to linear 

form according to the Peleg and Pollak (1982) model, previously applied by Angioloni and Collar 

(2009) for bread: 

 

	

	
	         (1) 

 

where F0 is the initial force, F(t) the momentary force at time (t) and k1 (s), k2 are constants 

related to the initial rate of relaxation (intercept) and to the extent of relaxation (slope), 

respectively. Relaxation time (RT) was calculated as the time required for the maximum force to 

drop to 60% of its value. All measurements were made in triplicate. 

 

Enzymatic/Biochemical determinations. Bioaccessible polyphenols were determined in 

commercial breads using an in vitro digestive enzymatic mild extraction that mimics the 

conditions in the gastrointestinal tract according to the procedure of Glahn et al. (1998) and 
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adapted by Angioloni and Collar (2011b) for breads. The enzymes used to simulate the gastric 

and intestinal digestion were pepsin and bile/pancreatin solution, respectively. The obtained 

digestive extracts were used for the determination of bioavailable polyphenols after removing the 

proteins by addition of trichloroacetic acid (20% w/w), precipitation and centrifugation. The same 

extracts were used to determine the radical scavenging capacity of breads using the DPPH (2,2-

diphenyl-1-picrylhydrazyl) method (Brand-Williams et al., 1995), modified by Sánchez-Moreno et 

al. (1998) and adapted by Collar et al. (2014a). In brief, aliquots of 0.1 mL were taken, and 3.9 ml 

of a solution of DPPH 0.025 g/L (equivalent to 0.0634 mol/mL) was added. Tubes were gently 

shaken, and 4 mL of each tube were added to 4 mL cuvettes, and A515 nm was read at 1 min 

and every 5–10 min until the plateau was reached. A cuvette containing 4 mL of DPPH 0.247 

mol in methanol was read at the same periods. A blank of methanol was used. Lectures were 

taken in duplicated samples. Plots of mol DPPH vs time (min) were drawn, and calculations 

were made to know the antiradical activity (AR). AR = [([DPPH] INITIAL− [DPPH] PLATEAU) × 

100]/[DPPH ]INITIAL. 

In vitro starch hydrolysis kinetics and relevant starch nutritional fractions were determined in 

accordance with the AACC (2005) method 32-40 with the modification reported by Angioloni and 

Collar (2011a). As stated by Englyst et al. (2003) different fractions of starch were determined:  

rapidly digestible starch (RDS) and slowly digestible starch (SDS) were measured after 

incubation for 20 and 120 min; total digestible starch (DS) was determined after 16 h of 

incubation while resistant starch (RS) was determined in the pellet as the starch remaining after 

16 h incubation.  

The starch hydrolysis kinetics and expected glycaemic index (eGI) of breads were calculated in 

accordance with the procedure followed by Chung et al. (2008) based on the method established 

by Goñi et al. (1997), and applied previously (Angioloni and Collar, 2011a). A first order kinetic 
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equation [C = C∞ (1 − e−kt)] was applied to describe the kinetics of starch hydrolysis, where C was 

the hydrolysis degree at each time, C∞ the equilibrium concentration or maximum hydrolysis 

extent, and k the kinetic constant. The hydrolysis index (HI) was calculated as the relation 

between the area under the hydrolysis curve (0–16 h) of breads and the area of a standard 

material (white bread) (Chung et al., 2008). The eGI was calculated using the equation proposed 

by Granfeldt et al. (1992): eGI = 8.198 + 0.862HI. 

 

Sensory evaluation 

Sensory analysis of fresh breads was performed with a panel of eight trained judges (four males 

and four females aged 24–57) using a semi-structured scale, scored 1–10 in which extremes 

(lowest: 1; highest: 10) were described for each sensory attribute according to Setser (1996). 

Evaluated attributes were grouped into visual, textural and organoleptic characteristics (Collar et 

al., 2005). 

 

Statistical analysis 

Statistical analysis of the results was performed using Statgraphics V.7.7 program (Bitstream, 

Cambridge, MN).  Pearson correlation analysis for relationship between bread properties and 

factor analysis for breads classification were used. 

 

Results and Discussion  

Relationships between biochemical, physical and sensory parameters of breads 

Associations between the evaluated bread quality parameters were analysed by using Pearson 

correlations. Biochemical vs physical properties (Table 2) and biochemical vs sensory ratings 

(Table 3) explicited major significant relationships. [insert Table 2 and 3] 
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Values of correlation coefficients (r) revealed significant relationships (0.01<p<0.05) between 

biochemical and physical properties of breads (r= 0.46 - 0.77), especially for starch hydrolysis 

parameters, protein and bio-accessible polyphenol contents with mechanical characteristics of 

breads, respectively (Table 2). C∞ and eGI as well as H90 and HI positively affected all bread 

primary and secondary mechanical characteristics (0.50 < r < 0.76), while only a few correlations 

were found for the starch nutritional fractions. DS negatively correlated with springiness (r= -0.51) 

and RS positively correlated with kinetic parameters for stress relaxation k1 (r= 0.73), k2 (r= 0.65), 

and RT (r= 0.77) (Table 2). Protein and bio-accessible polyphenol contents negatively correlated 

with hardness (r = -0.53, -0.54, p<0.05) and positively correlated with springiness (r = 0.55, 

p<0.05) and cohesiveness (r = 0.61, 0.68, p<0.01), respectively.  

Crumb texture is an important attribute of bread quality, and the protein fraction plays a key role 

in the formation of the structure, gas retention and volume of breads (Scanlon and Zghan, 2001). 

In this study, commercial breads analysed showed wide variation, with gluten-free breads 

exhibiting inferior crumb texture profile compared to wheat-based breads (softer and springier 

crumb with high cohesiveness). In fact, hardness, springiness, and cohesiveness values for 

gluten breads ranged from 4.5 to 9.7 (N), from 0.8 to 1 and from 0.59 to 0.68, respectively (except 

for sample 3210, which showed the highest hardness (96 N) and the lowest cohesiveness (0.18) 

values, respectively); while in gluten-free breads the following intervals were found: 8.5-47.1 for 

hardness, 0.7-0-9 for springiness, and 0.38-0.6 for cohesiveness. This is certainly due to the lack 

of a coherent and continuous protein matrix that, in gluten-free breadmaking, led to a low dough 

development important in determining the crumb structure and, consequently, the mechanical 

properties of bread. Also, changes in the structure can be linked to changes in starch digestibility. 

Bread can be considered as a composite material in which the protein network does not 

represent an isolate system but interacts with other constituents like starch granules (Guerrieri et 
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al., 1997). Depending on the kind of protein, starch and lipid interactions may block enzyme 

active sites with a consequent reduction of starch hydrolysis rate and expected glycaemic index.   

Moreover, significant correlations were found between protein and polyphenols content and cell 

to total area ratio (r = 0.76, p<0.01), as well as between eGI and cell to total area ratio (r= -0.47, 

p<005) (Table 2).  

Sensory attributes grouped into visual, textural (tactil and biting) and organoleptic characteristics 

were correlated with biochemical properties of breads, and, although r values were discreet, 

significant (0.01<p<0.05) correlations (from 0.46 to 0.77) were found (Table 3). Relationships 

between these properties evidenced that the digestible carbohydrates and dietary fibre content 

were the bread nutritional fractions that most influenced visual and taste and aroma properties.  

It is a common agreement that sensory visual and tactile perception of breads play a key role in 

the consumers’ acceptability (Angioloni and Collar, 2009); besides, several authors (Scanlon and 

Zghan, 2001; Angioloni and Collar, 2009; Hager and Arendt, 2013) pointed out how the crumb 

feels to the touch or in the mouth is greatly influenced by the grain or cell structure of the crumb 

(cell size, cell uniformity and thin-walled cells).   

In this work, higher content of dietary fibre corresponded to low cell uniformity (r = -0.54) high cell 

size (r = 0.50), thickness (r = 0.70), aroma and taste intensity (r =0.46, 0.48), and saltiness 

(r=0.69); instead, the opposite was observed for digestible carbohydrate content (0.50 < r < 0.63) 

(Table 3). The effect of dietary fibre addition (using ingredients with high-fibre content or adding 

functional fibre) on crumb grain characteristics have been studied in several works with no 

conclusive results. Angioloni and Collar (2011a) reported heterogeneity in the values related to 

crumb grain structure for unsupplemented and fibre-supplemented breads; but, the authors, also 

pointed out that overall acceptability ratings seem to depend more on organoleptic and textural 

than on tactile and visual characteristics.     



  12

Protein and bio-accessible polyphenols content influenced the organoleptic properties but, unlike 

fibre and carbohydrates, these fractions were in good accordance with aroma (for both r= 0.49, 

p<0.05) and taste (r= 0.69, 0.79, p<0.01) quality and aftertaste (r= -0.51, -0.72) (Table 3). 

In bread, sensory texture parameters are often connected and well predicted by instrumental 

measurement such as TPA (Bollaín et al., 2005). Consistent with this and in accordance with the 

correlations previously reported (biochemical vs texture properties) good correlations between 

starch hydrolysis parameters, protein and polyphenols content and sensory texture 

characteristics were also found. The higher C∞, eGI, H90 and HI, the lower sensory cohesiveness 

(-0.46< r <-0.57) and elasticity (-0.48< r <-0.55); while, the higher protein and polyphenols 

content, the higher sensory cohesiveness (r=0.58, 0.66 p<0.01) and gumminess (r=0.64, 0.74 

p<0.01) (Table 3). 

 

Classification of breads 

Classification of 20 European commercial breads (10 gluten containing and 10 gluten-free) on the 

basis of their distinctive and significant responses in terms of crumb and crust colour features, 

rheological behaviour, relevant nutritional fractions, bioactive components, and sensory ratings 

was achieved by means of multivariate data handling. 

From more than 70 functional variables analysed in the different commercial breads, 17 

independent variables were selected to perform sample classification using factor analysis (FA). 

FA grouped techno-functional and nutritional bread parameters into five different factors that 

explained 78.22% of the cumulative variance (VE), with the first three factors explaining 59.83% 

of the variability of the results (Table 4). [insert Table 4 and Figure 2] 

Factor 1, which makes the highest contribution accounting for 31.87% of the total variation, 

grouped bioactive components and taste and aroma sensory features, factor 2 (16.53%) grouped 
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mechanical properties and starch hydrolysis parameters, while factor 3 (11.43%) included biting 

and tactil sensory attributes (Figure 2). Factor 1 correlated positively with protein content, bio-

accessible polyphenols, aroma and taste quality. Factor 2 correlated positively with hardness, C∞ 

and eGI. Factor 3 showed negative relationships with softness and smoothness sensory 

characteristics. Plots of scores of Factor 1 vs Factor 2 and Factor 1 vs Factor 3 illustrating 

variable and sample location in the scatterplots are respectively depicted in Figure 3. In both 

plots, the separation between gluten and gluten-free breads was observed clearly according to 

the factor 1, located along the x-axis. Gluten breads were located in the positive zone (side) of 

the x-axis in both of plots; while, gluten-free breads were located in the negative zone (side).   

The plot 1 (Figure 3) allowed identifying three different groups of samples as described below. In 

the positive side of the x-axis is located the group I that included all gluten breads with the 

exception of sample 3210, which general behaviour appeared closer to that of gluten-free breads. 

The samples of this group exhibited higher values for protein and bio-accessible polyphenols 

content, and aroma and taste quality. The group II (2213, 1114, 2116, 1117, 1118, 3220 samples) 

that showed intermediate and low (2116, 1117, 1118) values of the above-mentioned 

characteristics (especially in terms of protein and polyphenols content), and group III (1211, 1112, 

1115, 1119 and 3210) in which the values for variables in factor 1 are always very low, were 

instead located in the left side of the x-axis.  [insert Figure 3] 

Most of gluten bread formulations were based primarily on common wheat flour except for 

samples 3104, 1105 and 1107 based on whole wheat flour, durum wheat remilled semolina and 

Khorosan kamut wheat flour, respectively (Table 1); but, it is noticeable that the protein content of 

breads of group I, which ranged from 8.5 to 12.5  (g/100 g bread, as is), was found to be highest 

in bread 1206 (12.5 g/100g) closely followed by bread 3209 (12g/100g). This highest level of 

protein content is probably due to the presence of soybean grain/seeds, which are an excellent 
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source of high-quality protein and isoflavones in bread formulation. These values are consistent 

with the significant increase in protein content for soy-supplemented wheat breads previously 

observed by Dhingra and Jood (2001). Moreover, the presence of flaxseeds and flaxseed oil, as 

ingredients, in bread 3208 closely followed by these same samples 1206 and 3209 could be 

responsible for the high content of both protein (Marpalle et al., 2014) and polyphenols (Meral et 

al., 2013). Among the samples grouped in the other two populations, it should be noticed the 

prominent level of both protein and polyphenols provided by the gluten-free sample 1112 (8.5 

g/100g; 1474 mg of gallic acid/100g of fresh bread) (group III), but also the relevant polyphenol 

content observed in gluten-free bread 2213 (1444 mg of gallic acid/100 g) (group II). Sample 

1112 includes eggs and soy protein isolate (ingredients normally used as source of protein in 

gluten-free bread), while sample 2213 includes flaxseeds. With regard to the sensory parameters, 

breads of group I were scored higher for taste and aroma quality than those of group II and group 

III. In the group I values ranged between 5.6-7.1 for aroma quality and between 5.1-6.6 for taste 

quality highlighting the clear preference given to these breads; in group II and III, instead, the only 

samples to be awarded a score higher than 5 for both of parameters were samples 2213 (5.7-

5.5), 3220 (5.3-5.4) (group II), and 3210 (6.4-6.3) (group III). This result showed that, among the 

gluten-free breads, the judges gave high acceptability to those samples that, in their formulations, 

included either flours of minor cereals and pseudocereals or seeds in significant percentages 

(Table 1).  

Furthermore, considering Factor 2, it is possible to clearly identify three groups of breads also in 

terms of mechanical properties and starch hydrolysis parameters (Figure 3). From the top along 

the y-axis, the groups were characterized by gradually decreasing values of eGI, C∞, and 

hardness: once again, group I and group III exhibited the best and the poorest behaviour, 
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respectively. All samples of group I showed low and moderate eGI with values ranging from 52.2 

(1105) to 72.52 (3209), with the only exception of sample 1101 (91.20) (Table 5). [insert Table 5] 

 The reason for this results is probably due to the poorer formulation of this bread that includes 

only refined wheat flour in its recipe and that, therefore, showed a glycaemic response very close 

to that of white bread (GI=100) generally used as a reference food. All breads belonging to the 

other two groups can be classified as high glycaemic index (GI) showing values of eGI higher 

than 70 (group II) and 86 (group III), with the only exception of sample 1114 (65.22) in group II 

(Table 5). This extreme variability shown by commercial breads in eGI values is directly related to 

the degree and rate of carbohydrate digestion. In fact, the starch digestion of cereal products is a 

complex process and the rate of digestion of the starch seems to be influenced by several factors 

such as characteristics of the starch, food processing, and the presence of fibre, protein, lipids 

and their interactions (Singh et al., 2010; Annor et al., 2013). As above, group I showed a low 

extent of starch hydrolysis with the lowest values for C∞ and eGI (Table 5). It seems that the high 

protein content of these breads may account for the reduced digestibility of the starch and for the 

low eGI. In several cereal products, starch-protein interactions lead to the formation of protein 

network that surrounds the starch granules reducing the availability to enzyme attack. Therefore, 

it should be noticed the rather low eGI (55.2) reported of sample 1105 made from durum wheat 

semolina, which is characterized by stronger starch-protein interactions. This fact, probably, may 

contribute to a further reduction in the degree of starch digestion. 

Despite Factor 3 explained less than 12% of the cumulative variance, it is useful to further classify 

the samples in terms of sensory textural parameters such as smoothness (tactil parameter) and 

softness (biting parameter). Thus, considering the plot of Factor 1 vs Factor 3 (Figure 3) three 

groups can be defined: a first group (A) in which, along with most of the gluten-free bread 

(1211,1112,2213,1115,1117,1119,3220) were grouped some of the gluten breads (1103, 3104 
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and 3210); a second group (B) formed by the most of gluten breads (1101, 2202, 1105, 1206, 

1107, 3208, 3209); and a third group (C) that showed the highest values (data not shown) for 

sensory smoothness and softness, composed of 1114, 2116 and 1118 gluten-free breads.  It 

should be noticed the higher values showed by the three gluten-free breads when compared to all 

other samples, including gluten-breads. 

 

Conclusions 

In conclusion, characterization of different commercial breads evidenced that the main distinction, 

as it was expected, was between gluten and gluten-free breads, although the latter have shown a 

great variability in terms of overall quality. Classification of breads also allowed differentiating 

samples with different formulations. The highest values for the most significant variables were 

observed for breads characterized by rich formulations in terms of the presence of other and 

alternative flours (rye, buckwheat, quinoa, millet, durum wheat semolina, and whole wheat), 

grains (soybean) and seeds (flaxseed, sunflower, and sesame). Among these samples, the best 

overall behaviour was observed in gluten breads (1206, 3209, 2202 and 3208 particularly) but, 

intermediate values were also found in gluten-free samples 1112, 3220 and 2213. Conversely, 

the lowest values were found in gluten-free breads characterized by poorer formulations in terms 

of the absence or the presence of low percentages of the above-mentioned ingredients (1211, 

1115, and 1119). Although the efforts of research and bakery industry are moving in the right 

direction to develop and produce high-quality gluten and gluten-free products, data obtained in 

this study confirm that, from a nutritional point of view, there is still substantial room for 

improvement on both of areas.  
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Figure 1. Crust and crumb slice digitalized images of gluten (a) and gluten-free (b) commercial 
breads. A four digit bread sample code refers to white (1), mixed (2), and dark (3) crumb colour 
(1st digit); absence (1) or presence (2) of seeds (2nd digit), and sample number (3rd and 4th digits) 
from 1 to 10 for gluten breads and from 11 to 20 for gluten-free breads. 
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Figure  2.  Scatterplots of technofunctional, nutritional and sensory parameters of commercial breads from 
factor analysis scores. 
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Figure 3. Scatterplots of scores of factor 1 vs factor 2 (a) and factor 1 vs factor 3 (b) of commercial breads.  
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Table 1. Ingredients of gluten and gluten-free breads. A four digit bread sample code refers to white (1), mixed (2), 
and dark (3) crumb color (1st digit); absence (1) or presence (2) of seeds (2nd digit), and sample number (3rd and 4th 
digits) from 1 to 10 for gluten breads and from 11 to 20 for gluten-free breads.  

 

 

 

 

 

 

 



  26

Table 2. Significant Pearson correlations (* p<0.05, ** p <0.01) between biochemical and physical properties of commercial breads. 

  Moisture Protein Dietary 
Fibre 

C∞ k H90 HI eGI DS RS TS Bioaccessible 
Polyphenols 

Soluble 
Polyphenols 

Insoluble 
Polyphenols 

Antiradical 
activity 

Whiteness Index 
        

0.6046** 
 

0.5603* -0.4649* 
 

-0.4773* 
 

Cell to total area ratio -0.5241* 0.7566** 
    

-0.4699* -0.4699* 
   

0.7647** 
 

0.5898** 
 

Hardness  0.5027* -0.5296* 
 

0.6345** 0.5206* 0.5552* 0.6446** 0.6446** 
   

-0.5372* 
   

Springiness  -0.6687** 0.5511* 
 

-0.6908** 
 

-0.6824** -0.7607** -0.7606** -0.5149* 
 

-0.5536* 0.553* 
 

0.6395** 
 

Cohesiveness  -0.7385** 0.6105** 
 

-0.6706** 
 

-0.5409* -0.7127** -0.7127** 
   

0.6771** 0.5062* 0.4721* 
 

Chewiness  
  

0.4718* 0.5479* 0.4907* 0.4983* 0.5201* 0.5201* 
       

Resilience  -0.6625** 
  

-0.6219** 
 

-0.5486* -0.6782** -0.6782** 
   

0.5076* 0.4668* 
  

F0   0.6285** 
  

0.5183* 
 

0.5135* 0.5572* 0.5571* 
       

k1  
         

0.7303* 
    

0.5512* 

k2  
 

-0.6013** 
       

0.6516** 
 

-0.6605** 
   

RT   
 

-0.5911** 
       

0.7726** 
 

-0.6425** 
 

-0.4567* 
 

C∞: equilibrium concentration; k: kinetic constant; H90: total starch hydrolysis at 90 min; HI: hydrolysis index; eGI: expected glycemic index; DS: digestible starch; RS: resistant starch; TS: total 
starch; F0: initial force; k1: stress decay rate; k2: residual stress; RT: relaxation time. 
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Table 3. Significant Pearson correlations (* p<0.05, ** p <0.01) between biochemical properties and sensory parameters of breads.  

  Moisture Protein 
Digestible 
carbohydrates 

Dietary 
Fibre Ash C∞ k H90 HI eGI RS TS 

Bioaccessible 
Polyphenols 

Cell Uniformity     0.5771** -0.5433*                   
Cell Size     -0.5048* 0.5022*                   
Thickness 0.4678*   -0.5576* 0.6986**   0.4934* 0.6657**       0.4838*   -0.494* 
Moistness 0.47*       -0.4628*                 
Elasticity -0.4752*         -0.487*   -0.5169* -0.5461* -0.546*       
Softness         -0.6159**                 
Coarseness       0.5251*     0.533*             
Cohesiveness -0.5713* 0.5825**       -0.5664* -0.4763* -0.4628* -0.5507* -0.5506*     0.6636** 
Gumminess   0.6428**                   -0.4703* 0.7445** 
Mouth Dryness       0.4769*                   
Aroma Intensity 0.506*   -0.5087* 0.4659*             0.4741*   -0.4934* 
Aroma Quality 

 
0.4929*                     0.4936* 

Taste Intensity     -0.5074* 0.482*                   
Taste Quality   0.6924**         -0.4994*         -0.4807* 0.7931** 
Saltiness     -0.6274** 0.6943**                   
Aftertaste 0.68** -0.5102*         0.6155**           -0.7242* 

        C∞: equilibrium concentration; k: kinetic constant; H90: total starch hydrolysis at 90 min; HI: hydrolysis index; eGI: expected glycemic index; RS: resistant starch; TS: total starch. 
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Table 4. Loading Matrix After Varimax Rotation in Factor Analysis. 1 

  Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

  (31,87%VE)  (16,53%VE)  (11,43%VE)  (10,42%VE)  (7,96%VE)  

Protein 0,7936 -0,3507 -0,0866 0,2366 -0,0771 
Dietary Fibre -0,1094 0,2613 0,6121 0,4758 0,1232 
Whiteness Index -0,2417 0,2927 -0,2245 -0,7495 -0,2201 
Browning Index 0,0636 0,0950 -0,2123 0,7734 -0,0792 
Hardness -0,0188 0,7767 0,1689 0,3922 -0,0873 
C∞ -0,2348 0,8939 0,0937 -0,0934 0,0967 
k -0,6198 0,2631 0,6117 0,0558 0,0031 
eGI -0,2222 0,9066 0,0765 -0,1256 0,0782 
RDS -0,0849 0,0492 0,0531 -0,2954 -0,8372 
SDS -0,1837 0,5407 -0,0024 -0,2606 0,6930 
RS -0,5215 -0,0032 0,5213 -0,2754 0,3216 
Bioaccessible Polyphenols 0,8154 -0,3875 0,0010 0,2058 -0,1695 
Antiradical activity -0,3663 0,0279 -0,1678 -0,0997 0,4971 
Aroma Quality 0,8424 0,1960 0,1465 -0,2081 -0,0291 
Smoothness -0,1202 0,0937 -0,8387 0,1749 0,1280 
Softness -0,2433 -0,3026 -0,7280 -0,0723 0,2525 
Taste Quality 0,8786 -0,2498 0,1073 0,1387 -0,0208 
VE: variance explained. 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 
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Table 5. Starch hydrolysis kinetics parameters and expected glycemic index values of gluten and gluten-free 17 
commercial breads. 18 

Bread samples a,b 
Characteristics         
C∞ k H90 HI eGI 

Gluten Breads      
1101 80±0.9p 0.010±0.003a 71±1n 96±1l 91±2i 
2202 49±0.7b 0.010±0.010a 47±0b 58±2b 58±1b 
1103 60±1.1f 0.100±0.010b 53±1e 67±2d 66±1d 
3104 55±0.5d 0.100±0.006b 50±1cd 65±2cd 65±1cd 
1105 42±0.6a 0.010±0.009a 36±1a 51±0a 52±0a 
1206 53±0.6c 0.010±0.004a 51±1d 63±3c 63±3c 
1107 64±1h 0.010±0.003a 59±1i 73±4fg 71±1ef 
3208 59±0.5e 0.010±0.010a 55±1g 68±1de 66±2d 
3209 66±1.1i 0.010±0.006a 71±1n 75±1g 73±2g 
3210 80±0.7p 0.100±0.006b 73±1o 95±4l 90±1i 

Gluten-free Breads 
     

1211 82±0.5q 0.100±0.003b 69±0m 97±1lm 92±3il 
1112 90±0.4s 0.100±0.005b 79±0p 100m 94±0l 
2213 62±1.3g 0.100±0.008b 57±1h 74±0fg 72±0f 
1114 56±0.5d 0.100±0.005b 53±1ef 66±4cd 65±1cd 
1115 86±1.2r 0.100±0.007b 80±1p 100±0m 94±0l 
2116 73±0.5n 0.100±0.005b 58±0h 80±1h 78±1g 
1117 68±0.1l 0.100±0.009b 62±1l 80±0h 77±0g 
1118 71±0.5m 0.010±0.001a 49±1c 82±3h 79±3h 
1119 78±1.2o 0.100±0.002b 71±0n 90±1i 86±2i 
3220 64±0.5h 0.100±0.002b 50±1d 71±3ef 70±3e 

a Mean values ± standard deviation. Within rows, values (mean of three replicates) with the same following letter do 19 
not differ significantly from each other (p > 0.05). 20 
b A four digit bread sample code refers to white (1), mixed (2), and dark (3) crumb color (1st digit); absence (1) or 21 
presence (2) of seeds (2nd digit), and sample number (3rd and 4th digits) from 1 to 10 for gluten breads and from 11 to 22 
20 for gluten-free breads.  23 
C∞: equilibrium concentration; k: kinetic constant; H90: total starch hydrolysis at 90 min; HI: hydrolysis index; eGI: 24 
expected glycemic index. 25 
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