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Abstract 

The objective of this work was to determine the kinetic parameters for reduction and 

oxidation reactions of a highly reactive Fe-based oxygen carrier for use in chemical 

looping combustion (CLC) of gaseous fuels containing CH4, CO and/or H2, e.g. natural 

gas, syngas and PSA-off gas. The oxygen carrier was prepared by impregnation of iron 

on alumina. The effect of both the temperature and gas concentration was analysed in a 

thermogravimetric analyser (TGA). 

The grain model with uniform conversion in the particle and reaction in grains 

following the shrinking core model (SCM) was used for kinetics determination. It was 
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assumed that the reduction reactions were controlled by two different resistances: the 

reaction rate was controlled by chemical reaction in a first step, whereas the mechanism 

that controlled the reactions at higher conversion values was diffusion through the 

product layer around the grains. Furthermore, it was found that the reduction reaction 

mechanism was based on the interaction of Fe2O3 with Al2O3 in presence of the reacting 

gases to form FeAl2O4 as the only stable Fe-based phase. The reaction order values 

found for the reducing gases were 0.25, 0.3 and 0.6 for CH4, H2 and CO, respectively, 

and the activation energy took values of between 8 kJ mol-1 (for H2) and 66 kJ mol-1 (for 

CH4). With regard to oxidation kinetics, the reacting model assumed a reaction rate that 

was only controlled by chemical reaction. Values of 0.9 and 23 kJ mol-1 were found for 

reaction order and activation energy, respectively. 

Finally, the solids inventory needed in a CLC system was also estimated by considering 

kinetic parameters. The total solids inventory in the CLC unit took a minimum value of 

150 kg MW-1 for CH4 combustion, which is a low value when compared to those of 

other Fe-based materials found in the literature. 
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1. Introduction 

The Intergovernmental Panel on Climate Change [1] concluded in 2013 that climate 

change is unequivocal and that its main cause is human activity. In order to avoid an 

excessive increase in the average temperature in the Earth, which could lead to 
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unpredictable consequences, it is necessary to apply mitigation measures to reduce 

worldwide greenhouse gas emissions. Carbon Capture and Storage (CCS) technologies 

have been proposed as a transitory measure until other competitive CO2 emission-free 

technologies are demonstrated. CCS is a process consisting of the separation of CO2 

from industrial and energy-related sources, transport to a storage location and long-term 

isolation from the atmosphere [2]. According to the IPCC [2], CCS technologies will 

play a significant role in reducing CO2 emissions and stabilizing its concentration in the 

atmosphere with reasonable cost-effectiveness, mitigating its negative effects on the 

environment. The main disadvantages of these technologies are their higher initial costs 

and the energy penalty on the overall combustion process. In this context, over the last 

years there has been considerable growth in interest in developing new, cost-effective 

combustion processes that generate highly concentrated CO2 streams. One of these new 

processes is Chemical Looping Combustion (CLC) which has emerged as an 

environmentally-acceptable alternative for energy production from fossil fuels given 

that CO2 separation is inherent to the actual combustion process. 

The concept on which the CLC process is based was first proposed in 1954 by Lewis 

and Gilligand [3] to produce pure CO2 from fossil fuels. Three decades later, in 1983, 

Ritcher and Knoche [4] presented CLC technology as a suitable process with which to 

increase the thermal efficiency of a power plant, which was supported by works 

performed by Ishida et al. [5-7]. At the beginning of the current century Lyngfelt et al. 

[8] proposed CLC for the capture CO2 at a low cost. The CLC design was based on two 

interconnected fluidized beds with a solid, known as an oxygen carrier, circulating 

between them. This oxygen carrier is often composed of a metal oxide, which is the 

source of oxygen in this process, and an inert material which acts as support in order to 
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increase mechanical strength. The main role of this oxygen carrier is to prevent the 

direct contact between fuel and air during the combustion process, for which this 

material is circulated between two reactors: the fuel reactor, where the reduction of the 

oxygen carrier and combustion of the fuel take place, and the air reactor, where the 

oxygen carrier is oxidized. 

One key aspect for optimum performance of a CLC system is the oxygen carrier, which 

has to be able to fully convert the fuel to CO2 and H2O and to present high reactivity 

with the fuel and air throughout a large number of redox cycles. Furthermore, it must 

fulfil other characteristics, such as high attrition resistance and not presenting any 

problems of agglomeration or carbon deposition. Finally, environmental and economic 

aspects must be also considered for the final selection of an optimum oxygen carrier [9]. 

Iron-based oxygen carriers are gaining considerable importance for the CLC process, 

since they present better environmental compatibility and a lower cost in comparison 

with other metal oxides. These oxygen carriers have shown adequate reactivity under 

atmospheric [10-12] and pressurized [13] conditions and high reactivity with CO and 

H2, and do not present thermodynamic limitations to fully convert CH4, CO and H2 to 

CO2 and H2O if the reduction of the iron oxide, in the form of haematite (Fe2O3), is 

limited to the form of magnetite (Fe3O4). Nevertheless, if the Fe-based oxygen carriers 

include Al2O3 as support material, FeAl2O4 can be formed as a reduced compound and 

also achieve complete combustion of gas to CO2 and H2O [14-17]. Thus, the oxygen 

transport capacity of the oxygen carrier is increased three times in comparison with the 

Fe2O3-Fe3O4 redox couple. Furthermore, Fe-based oxygen carriers present a low 

tendency to carbon deposition [18] and no risk of sulphide or sulphate formation at any 

concentration or operating temperature when H2S-containing gases are used as fuels 
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[17, 19-20]. 

Fe-based oxygen carriers have traditionally presented lower reactivity with fuel gases 

compared to Ni-, Cu-, and Mn-based oxygen carriers, mainly for reduction with CH4. 

Consequently, incomplete combustion of CH4 occurred in different continuous CLC 

plants when Fe-based materials were used [21-28]. Among these materials there were 

synthetic oxygen carriers prepared by different methods [21-23], iron-containing 

minerals [24-27] and residues [27-28]. Our research group at Instituto de Carboquímica 

(ICB-CSIC) has recently developed a highly reactive Fe-based oxygen carrier prepared 

by the impregnation method [16]. This material showed complete combustion of CH4 

during continuous operation in a 0.5 kWth CLC unit [16]. Additionally, it presented 

adequate resistance to agglomeration and attrition, even when H2S was present in the 

gas fuel at very high concentrations [17,19-20].  

Process modelling is a powerful tool with which to design and optimize a CLC unit. A 

proper model of the fuel and air reactors in a CLC system must take into consideration 

the oxygen transport capacity and the reaction kinetics of the oxygen carrier particles. 

Kinetic determination of redox reactions becomes crucial for the simulation, design and 

optimization of CLC units because the solids inventory needed in the fuel and air 

reactors is directly related to oxygen carrier reactivity [29]. Moreover, oxygen transport 

capacity greatly affects the solids recirculation rate needed between the fuel and the air 

reactors.  

Several works deal with the kinetic determination of reduction and oxidation reactions 

between oxygen carriers and common gases used for CLC, i.e., CH4, CO, H2 and O2. 

Table 1 shows a summary of the research works found in the literature regarding kinetic 

data determined for Fe-based oxygen carrier particles. This table includes information 
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related to the composition of the oxygen carriers, method of preparation, properties of 

the evaluated materials, experimental conditions studied, and the type of reactor and 

model used to determine the kinetic data. The existence of different conditions inside 

the fluidized beds makes it essential to determine the reaction rates for a wide range of 

temperature and fuel concentration values. Furthermore, it is also important to calculate 

kinetic data for all relevant gases, i.e. CH4, CO, H2 and O2, and Fe-based redox systems 

applicable for CLC process, such as Fe2O3-Fe3O4, Fe2O3-FeAl2O4 and Fe2TiO5-FeTiO3. 

From the analysis of the data collected in Table 1, it can be concluded that most of the 

works produced to date do not provide sufficient information with which to model a 

CLC system using an Fe-based material as an oxygen carrier. Theoretical kinetic 

studies, relevant from a basic-science point of view, have been also conducted to 

investigate the mechanisms of interaction between reacting gases and Fe-based oxygen 

carriers [39-48], suggesting that the Fe2O3-support interaction influences material 

reactivity. However, these works do not provide enough practical information for CLC 

system design and simulation.  

The aforementioned Fe-based material [16] can be considered a promising oxygen 

carrier for use during the scale-up of the CLC process. Therefore, determination of 

kinetic data would be essential in order to design, optimize and scale-up a CLC system 

based on this oxygen carrier. CH4, CO and/or H2 are considered major components in 

natural gas, syngas and PSA-off gas. Thus, the objective of this work was to determine 

the kinetic parameters for the reduction of the highly reactive Fe-based oxygen carrier 

with CH4, CO and/or H2, as well as the kinetics of oxidation with O2. The effect of both 

temperature and gas concentration on reaction rate was evaluated. Moreover, the 

obtained parameters were further used to estimate the recirculation rate and the solids 
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inventory needed in a CLC system. 

2. Material and methods  

2.1. Oxygen carrier 

A kinetic study of redox reactions for CLC was conducted for a promising Fe-based 

oxygen carrier prepared at ICB-CSIC. This oxygen carrier was prepared by the incipient 

impregnation method and was composed of Fe2O3, as active material, supported on -

Al2O3. A detailed description of the method of preparation can be found elsewhere [16]. 

The total Fe2O3 content in the particles used in this work was 20 wt%. The main 

physicochemical properties of the oxygen carrier particles are shown in Table 2. This 

oxygen carrier is hereafter referred to as Fe20Al. 

2.2. Characterization techniques 

Different techniques were used to physically and chemically characterize fresh particles 

of the Fe20Al material. The total Fe2O3 content was determined by inductively coupled 

plasma atomic emission spectroscopy (ICP-AES) with a Jobin Ybon 2000 spectrometer. 

The mean particle size was measured by means of size particle distribution, via laser 

diffraction technique, according to the ISO 13320 Standard with LS 13 320 Beckman 

Coulter equipment. The skeletal density of the particles was determined with a 

Micromeritics Model AccuPyc II 1340 helium pycnometer. A Shimpo FGN-5X 

apparatus was used to measure the crushing strength of particles as the force needed to 

fracture them. Crushing strength was obtained as the average value of at least 20 

measurements for particles with a particle size range of dp = +200-400 μm. Porosity was 

measured by Hg intrusion in a Quantachrome PoreMaster 33, whereas the specific 

surface was determined by the Brunauer-Emmett-Teller (BET) method by 

adsorption/desorption of nitrogen at 77 K in a Micromeritics ASAP-2020 
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(Micromeritics Instruments Inc.). Crystalline chemical species were identified by 

powder X-ray diffraction (XRD) in a Bruker AXS D8 Advance system, with 

Bragg−Brentano geometry configuration, Cu Kα radiation and equipped with secondary 

graphite monochromator. Finally, the reducibility of the Fe-based oxygen carrier 

particles was determined by temperature-programmed reduction (TPR) experiments in 

an AUTOCHEM II flow apparatus from Micromeritics. In the TPR technique, the 

temperature was increased from room temperature to 1273 K at a constant rate of 7 K 

min-1 with a flow of 20 ml min-1 of a 10 vol% H2/90 vol% Ar mixture. 

2.3. Experimental setup and procedure 

The kinetics of reduction and oxidation reactions with the Fe-based oxygen carrier was 

determined from experiments at atmospheric pressure in a TGA, CI Electronics type, 

described elsewhere [37]. Three different gases were used as reducing agents, i.e., CH4, 

CO and H2, whereas O2 was used for the oxidation reactions. In all cases, the redox 

agents were diluted in N2. 

The samples of approximately 50 mg of oxygen carrier were loaded in a platinum 

basket, and a gas flow of 25 LN/h was fed into the reactor of the TGA system. External 

and interparticle diffusion have low relevance under these conditions [14]. Furthermore, 

García-Labiano et al. [49] found that oxygen carrier particles can be considered 

isotherm under usual operating conditions, and that mass transfer inside them is 

negligible. 

The oxygen carrier particles were heated to the operating temperature in an air 

atmosphere. When the sample weight was stabilized, the oxygen carrier was exposed to 

a reduction and an oxidation cycle. In order to prevent the mixing of fuel and air, a 2-

minute flow of N2 was fed between the reducing and oxidizing period. This material 
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showed excellent stability in redox reactivity over hundreds of cycles [17]. Data 

obtained during the first redox cycle were selected for kinetic determination. 

Different fuel gas (CH4, CO and H2) concentrations ranging from 5 to 60 vol% were 

used to determine the kinetics of the reduction reaction. In order to prevent carbon 

deposition, 20 vol% of H2O or CO2 were added to the reacting mixture when CH4 or CO 

were used as fuel gases, respectively. To analyse oxidation reactivity, it was initially 

necessary to reduce the sample to FeAl2O4, simulating the behaviour expected in a CLC 

process when iron oxide (Fe2O3) supported on Al2O3 is considered as the oxygen 

carrier. In this case, as mentioned in the introduction section, it was possible to reach 

complete fuel combustion to CO2 and H2O, obtaining FeAl2O4 as the reduced form of 

the oxygen carrier. For this reason, the previous reducing periods were conducted at 

1223 K in a 15 vol% CO + 20 vol% CO2 (N2 to balance) atmosphere. Under these 

conditions and with the addition of CO2, the reduction of Fe2O3 was stopped at 

FeAl2O4, and no further reduction to metallic iron was produced. This fact was also 

confirmed by XRD analysis of reduced samples. The oxygen carrier particles were 

subsequently ready to be subjected to the oxidizing period. The O2 concentration for 

oxidation was varied from 5 to 21 vol%. 

To study the effect of the temperature on reduction and oxidation reaction rates, this 

parameter was varied between 973 and 1323 K. When the reduction reaction was 

studied, the fuel gas concentration was always 15 vol% and the samples were oxidized 

at 1223 K in an air atmosphere. On other hand, in order to evaluate the influence of 

temperature on oxidation kinetics, a 10 vol% O2 concentration was always used and, as 

mentioned above, the reducing period was conducted at 1223 K in a 15 vol% CO + 20 

vol% CO2 (N2 to balance) atmosphere. 
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2.4. Data evaluation 

The following reactions took place between Fe2O3 and the reducing gases:  

4 Fe2O3 + 8 -Al2O3 + CH4  8 FeAl2O4 + 2H2O + CO2 
1223K
redH = -348.7 kJ/mol (1) 

Fe2O3 + 2 -Al2O3 + H2  2 FeAl2O4 + H2O 1223K
redH = -135.5 kJ/mol (2) 

Fe2O3 + 2 -Al2O3 + CO  2 FeAl2O4 + CO2  
1223K
redH = -168.1 kJ/mol (3) 

As can be observed, all the reduction reactions were exothermic at 1223 K, a usual 

operating temperature for the CLC process. 

For the oxidation of FeAl2O4, the following reaction was expected: 

4 FeAl2O4 + O2  2 Fe2O3 + 4 -Al2O3  
1223K
oxH = -227.1 kJ/mol (4) 

The conversion of solids, XS, was calculated with Eqs. (5) and (6) for the reduction or 

oxidation period, respectively. 
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where m is the actual mass of the sample, mred the mass of reduced sample, mox the mass 

of oxidized sample. The difference between mox and mred is the maximum amount of 

oxygen that can be transferred from the oxygen carrier to the fuel, which is defined by 

the oxygen transport capacity, ROC. In the case of iron materials, this amount of oxygen 

depends on the final oxidation state during the reduction reaction. In this kinetic study, 

the amount of oxygen that could be provided by the oxygen carrier material to allow 

complete combustion of fuel to CO2 and H2O was considered to correspond to the 

reduction from hematite (Fe2O3) to iron aluminate (FeAl2O4) [9]. Therefore, the 

conversion of solids and, consequently, the reduction and oxidation kinetics were 
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calculated by taking this redox couple as a reference.  

3. Results                                                                                                            

3.1. Analysis of Fe2O3 reduction to FeAl2O4 

Prior to conducting the kinetic study of this oxygen carrier, evaluation was made of 

what would be the most appropriate method for kinetic determination. There are mainly 

two methods for kinetics determination, known as the isothermal method and non-

isothermal method. In this sense, different experiments for reduction reaction were 

carried out in a TGA system either at a fixed temperature or by TPR. From a TPR 

profile, see Fig. 1, three hydrogen consumption peaks were well identified at 683, 985 

and 1132 K, respectively. These three peaks corresponded to the following reducing 

transitions: Fe2O3  Fe3O4  FeO  Fe [17]. None of these peaks could be attributed 

to the reduction of FeAl2O4 since the peak corresponding to the reduction from FeAl2O4 

to Fe0 would have been detected at a higher temperature [17]. 

In order to analyse the reduction pathway under relevant conditions in CLC, isothermal 

experiments were conducted at 1223 K with a reducing gas mixture of 5 vol% H2, 48 

vol% H2O (N2 to balance). The reduction period was stopped at different times during 

the operation in order to obtain several degrees of solid conversion. The corresponding 

samples were further subjected to XRD analyses with the aim of observing the 

crystalline iron phases at different degrees of oxygen carrier reduction. In all cases, the 

XRD technique revealed that the only Fe-based reduced phase found in the oxygen 

carrier was iron aluminate, FeAl2O4 together with unreacted Fe2O3, regardless of the 

degree of the oxygen carrier reduction. This result was also corroborated by 

thermodynamic analyses carried out with HSC Chemistry 6.1 software [50]. Moreover, 

tests performed with this material in a continuous CLC unit for CH4 combustion 
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revealed the presence of FeAl2O4 in the oxygen carrier particles extracted from the fuel 

reactor as the only reduced compound [16, 17]. 

With the above experimental data, it can be concluded that different results regarding 

the reduction mechanism were found depending on the method selected for kinetic 

determination. However, the isothermal method, based on the experiments carried out in 

the TGA at a fixed temperature, provided a better fit with the conditions found in the 

CLC process. In this respect, it was concluded that the isothermal method was suitable 

to determine reaction kinetics of this material for use under typical conditions in CLC. 

It was also concluded that the reduction reaction mechanism was based on the 

interaction of Fe2O3 with Al2O3 in presence of the reacting gases to form FeAl2O4 as the 

only stable Fe-based phase. Thus, as previously mentioned, the conversion of solids 

and, consequently, the reduction and oxidation kinetics were calculated taking the Fe2O3 

(Al2O3) - FeAl2O4 redox couple as a reference.  

3.2. Isothermal analysis of reduction reaction 

The reduction kinetics of the Fe20Al oxygen carrier was studied in a TGA by using 

three different fuels: CH4, H2 and CO. The kinetics were determined in a wide range of 

temperatures (from 973 to 1323 K) and gas concentrations (from 5 vol% to 60 vol%) 

typically found in a CLC unit. 

3.2.1. Effect of fuel type 

Fig. 2 shows the conversion vs time curves for the three fuel gases used to determine 

reduction kinetics. The reduction tests with H2 and CH4 were performed by adding 20 

vol% H2O to the reacting mixtures, whereas 20 vol% of CO2 was added for TGA tests 

with CO. As can be observed, the reduction rate was very high in the three cases up to a 

solid conversion value of 0.6. Beyond this point, the oxygen carrier presented a slightly 
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different behaviour depending on the reducing gas being considered. In the cases of H2 

and CH4, the reaction rate decreased rapidly, continuing at a very slow rate from this 

point. Consequently, complete reduction from Fe2O3 to FeAl2O4 was not achieved using 

these reacting agents. However, when CO was considered as the reducing gas, the 

reaction rate was also considerably reduced at conversion values higher than 0.6, but it 

was still high enough to completely reduce the oxygen carrier to FeAl2O4 after 600 s. At 

that point, the reduction reaction stopped and no further reduction to metallic iron took 

place, even though the experiment in the TGA was prolonged until 3600 s. A 

remarkable result obtained from the reduction tests with CO is that the active iron oxide 

content calculated from the TGA tests coincides accurately with the theoretical content 

derived from the preparation method for the oxygen carrier, i.e. the incipient 

impregnation method, as well as with the corresponding content determined from ICP-

AES analysis, see Table 2. The haematite (Fe2O3) content of the oxygen carrier particles 

was 20 wt% in all three cases. These results mean that reduction tests in a TGA using a 

mixture of CO and CO2 as reacting gas can be considered an additional, valid method to 

determine the mass percentage of active iron oxide in an Fe-based oxygen carrier 

supported on alumina. Reduction with H2 gave a value of 15 wt% Fe2O3 [16], which 

corresponded to the fraction of Fe2O3 that was highly reactive.  

3.2.2. Effect of gas products on the reduction reaction 

Different gas products can be formed during the combustion process of a gaseous fuel, 

of which CO2 and H2O are the most relevant. The presence of different amounts of these 

products on the reaction atmosphere could affect the reaction rate. In order to evaluate 

the effect of H2O on the reduction reaction rate of the Fe20Al oxygen carrier, several 

tests were carried out with H2 acting as reducing gas and by varying the H2O/H2 ratio 
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from 0 to 10 approximately. Fig. 3a illustrates the reduction conversion obtained for this 

material with H2 when the H2O content was varied from 0 to 48 vol.%. When H2O was 

not added to the reducing gas mixture, the oxygen carrier was reduced beyond FeAl2O4, 

although it could not be completely reduced to metallic iron. When H2O was added to 

the reducing gas, the reaction rate stopped after 50 s of reduction at a solids conversion 

of 0.75 approximately. A further increase in the amount of H2O slightly changed the 

oxygen carrier reactivity and the reaction rate with H2. This means that the reduction of 

FeAl2O4 to Fe0 is prevented if H2O is present in the reducing gas mixture.  

On the other hand, Fig. 3b shows the conversion vs time curves obtained with 5 vol% 

CO when the CO2 concentration was increased from 0 to 50 vol%. In all cases, the 

reaction rate was very fast up to a solids conversion value of 0.75 approximately. This 

degree of conversion was obtained after 30 s of reduction reaction. For higher times, the 

reaction rate was considerably decreased, but the oxygen carrier particles were able to 

be reduced completely to FeAl2O4. When CO2 was not added to the reducing gas 

mixture, the oxygen carrier was reduced beyond FeAl2O4. When CO2 was added 

together with the reducing gas, the behaviour of the oxygen carrier was practically the 

same, regardless of the CO2 concentration used. Thus, the reduction reactivity with CO 

was hardly affected when the amount of CO2 was varied from 10 to 50 vol% in the 

reaction gas mixture. 

From the results obtained in this section it can be concluded that the presence of 

different concentrations of H2O and CO2, the main products of the combustion reaction, 

in the reacting gas mixtures affected neither the reaction rate nor the reactivity of the 

oxygen carrier. Only the avoidance of these gases in the reaction gas mixture increased 

the reaction rate during the reaction at high solids conversion values, characterized by 
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slow reactivity. However, H2O and CO2 are considered to be in the gas reacting in the 

fuel reactor because they would be quickly generated in the fuel reactor, or can even be 

present in fluidizing gases, e.g. in the fuel gas itself or in gases introduced into loop 

seals. Therefore, kinetic determination was obtained considering the presence of H2O or 

CO2 in the reacting gas mixture. 

3.2.3. Effect of gas concentration 

The concentration of fuel gases inside a fuel reactor varies with height along the 

fluidized bed. The oxygen carrier is usually in contact with high fuel concentration 

values at the bottom, whereas the concentration of fuel gases decreases dramatically at 

the top of the bed in such a way that the gaseous mixture is mainly composed of CO2 

and H2O.  

The effect of fuel gas concentration on the reduction of the Fe20Al oxygen carrier was 

determined by carrying out experiments in a TGA with different concentrations of CH4, 

CO and H2 at a temperature of 1223 K. In the cases of CH4 and H2, the fuel gas 

concentration was varied from 5 to 30 vol%, while the concentration of CO was 

increased up to 60 vol%. The conversion vs time curves corresponding to the three fuel 

gases are shown in Fig. 4 (a-c). An increase in the reaction rate was noticed during the 

first part of the reduction period as the fuel gas concentration was increased. At the 

beginning of the period, the reaction rate was very fast for all the fuel gases (for 10 s for 

CH4 and H2 and for 20 s for CO, respectively), however it decreased immediately, 

continuing at a very low rate for the rest of the period. In this second period, 

characterized by a low reaction rate, the fuel gas concentration barely affected the 

reduction rate of the oxygen carrier with the different fuel gases. This behaviour 

indicates that the corresponding reduction reactions are controlled by two different 
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resistances. The change in controlling mechanism happens at conversion values of 0.45 

for CH4 and H2 and at 0.7 for CO. 

3.2.4. Effect of temperature 

The effect of temperature on the reduction reactivity of the Fe20Al oxygen carrier was 

also evaluated. In this case, the concentration of the reducing gases for these tests was 

set at a fixed value and the temperature was varied from 973 to 1323 K. This range of 

values includes the usual operating temperatures in a CLC system. Fig. 5 (a-d) shows 

solids conversion as a function of time for the following reducing gas mixtures: (a) 15 

vol% CH4 + 20 vol% H2O; (b) 15 vol% CO + 20 vol% CO2; (c) 15 vol% H2 + 20 vol% 

H2O; and (d) 5 vol% H2 + 48 vol% H2O. The gas mixtures were completed with N2 in 

all four cases. The reaction rate and final reduction conversion of the oxygen carrier 

were affected by the temperature, since an increase in this parameter produced an 

increase in both terms. In the case of the final conversion reached for the oxygen carrier 

this means that the reduction degree to iron aluminate (FeAl2O4) was clearly influenced 

by the temperature.  

Solids conversion was quite low at T < 1073 K, mainly for CH4 and H2, but the reaction 

rate was relatively fast during the first seconds of the reduction period when XS,red < 0.2. 

As in the case of the study of the effect of gas concentration (see Section 3.2.3), this 

behaviour indicates that the reducing reaction is controlled by two different resistances 

depending on solids conversion. At low XS,red values, the reaction rate was fast. 

However, as the oxygen carrier particles were reduced to a greater extent, the control 

step changes and the reaction rate quickly decreased. The same behaviour was observed 

at higher temperatures for all the reducing gases, with the difference that the reduction 

conversion at which the reaction rate changed from fast to slow increased with 
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temperature. This fact was the main reason for the increase in conversion achieved at 

long times with temperature. The effect of temperature on the reaction rate during the 

second step, which was characterized by a low reaction rate, was low. This fact can be 

seen because the conversion vs time curves obtained at different temperatures were 

practically parallel. 

3.3. Isothermal analysis of oxidation reaction 

Oxidation of the oxygen carrier takes place in the air reactor. Fully or partially reduced 

particles coming from the fuel reactor are exposed to air in the air reactor with the aim 

of regenerating the material for a new reduction step. Different O2 concentrations exist 

in the air reactor. The O2 concentration varies along the bed height from 21 vol% to the 

O2 concentration in the exhaust air stream. An O2 concentration of 4 vol% at the top of 

the bed, a typical value in a CLC plant [51], is equivalent to 20% excess air in the air 

reactor. Therefore, the concentration in the studies using the TGA was varied between 5 

and 21 vol% O2 (N2 to balance), and the temperature from 1073 to 1273 K. The 

experiments were carried out following the procedure described in the experimental 

section. 

3.3.1. Effect of O2 concentration 

Fig. 6 illustrates the conversion of the oxygen carrier during oxidation at 1223 K with 5, 

10, 15 and 21 vol.% O2. The oxidation reaction rate increased as the O2 concentration 

was increased. These conversion vs time curves evidence the high speed at which the 

oxidation reaction took place. The oxygen carrier samples were fully oxidized in all 

cases and the time for complete conversion ranged between 15 s and 50 s. 

3.3.2. Effect of temperature on the oxidation reaction 
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The effect of the temperature on the oxidation reaction was also investigated in this 

work. The influence of this parameter was studied between 1073 and 1273 K. Fig. 7 

shows solids conversion as a function of time for an O2 concentration of 10 vol%. In 

this case the variation in temperature scarcely affects the reaction rate. As in the 

previous case (see Section 3.2.1), the oxidation reaction was very fast and the samples 

were always fully oxidized at the end of the oxidation period. 

3.4. Kinetic model 

The kinetic parameters of the reduction and oxidation reactions can be determined using 

a particle reaction model that fits adequately with the experimental results. For materials 

prepared by impregnation, the grain model with uniform conversion in the particle and 

reaction in grains following shrinking core model [52]. From previous Figures (Figs. 3-

7), some information was acquired regarding the mechanisms controlling the reduction 

and oxidation reactions with the Fe20Al oxygen carrier. The reaction rate was 

observed to be very fast with all gases at the beginning of the reduction period. 

However, it decreased immediately and continued at a very low rate for the rest of the 

period. This behaviour indicates that the corresponding reduction reactions are 

controlled by two different resistances. Furthermore, it should be taken into account that 

magnetite (Fe3O4) never appears as the Fe-based reduced phase and FeAl2O4 was the 

only reduced compound in the presence of H2O or CO2 when the oxygen carrier was 

reduced by H2 or CO2, respectively.  

Fig. 8, is a schematic illustration of the proposed reacting mechanism for CH4 reduction 

with the Fe20Al oxygen carrier. The reacting model for reduction kinetics assumes a 

first step with the reaction rate controlled by chemical reaction in the grain surface [53-

54]. During this first step, alumina and oxygen must diffuse towards the reaction 
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interphase. As a result, a product layer of FeAl2O4 is formed. In the second step, the 

mechanism that controls the reaction at higher conversion values is the diffusion 

through the product layer of FeAl2O4 around the grains. Moreover, the reduction rate 

during this step is independent of the fuel gas concentration. This fact suggests that 

diffusion of the reacting gas is blocked, but oxygen must diffuse outwards [53]. Thus, 

chemical reaction still takes place on the grain surface, but the reaction rate is now 

limited by oxygen diffusion through the product layer. A third step, based on the 

reaction of FeAl2O4 with H2 or CO in a highly reducing atmosphere to form metallic 

iron, was not considered for the reacting model since this step must not take place in a 

CLC process if complete combustion of the fuel gas is desired, because of 

thermodynamic restrictions for H2 or CO conversion when FeAl2O4 is reduced to Fe0 

[9].  

Taking the above comments and conditions in the TGA into consideration, the 

dependence of solids conversion with time for this Fe-based oxygen carrier is described 

by the following equation [55]: 

    redSredSplredSch XXXt ,
3/2

,, 12131      (7) 

where τch and τpl are the times for complete reduction conversion of the particle owing 

to the chemical reaction and the diffusion through the product layer. τch is calculated as 

follows: 

n
is

ch Ck 


1    (8) 

where ks is the chemical kinetic constant, which follows an Arrhenius-type expression 

with temperature: 
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The time of complete conversion for the diffusion through the product layer reaction, 

τpl, is defined by expression (10):  

'

1
n
ipl

pl CD 
    (10) 

In this experimental work, a sharp decrease in the reaction rate over time was observed 

when the diffusion through the product layer of FeAl2O4 controlled the reduction 

reaction. This suggests that the effective product layer diffusivity, Dpl, is affected both 

by temperature and solids conversion. In this case, an additional term to the effect with 

temperature is included, which modifies the effective diffusivity through the product 

layer [56-57], with Dpl calculated as: 
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0,    (11) 

where 
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E

XX
g

X

ekk 


 0,    (12) 

With regard to oxidation kinetics, the reacting model assumes a reaction rate only 

controlled by chemical reaction, since the reaction rate was very fast for the complete 

conversion of the oxygen carrier. The dependence of oxidation conversion on time for 

this Fe20Al oxygen carrier is described by the following equation: 

oxSch Xt ,     (13) 

3.5. Determination of kinetic parameters 

The kinetics parameters for reduction with CH4, H2, CO and oxidation with O2 were 

calculated with the kinetic model presented in the previous section.  



21 

 

In a first stage, the kinetic parameters corresponding to the case where the reaction rate 

is controlled by the chemical reaction in the gas-solid interphase were determined. Thus, 

the first step of the reaction is described by the following equation: 

Sch Xt      (14) 

τch values are obtained at different Ci by fitting each experimental curve. Thus, the 

following equation was deduced from expression (8). 

is
ch

Cnk lnln
1

ln 









   (15) 

Fig. 9 shows a plot of ln(Ci) vs ln (1/τch) in order to calculate the reaction order, n, with 

respect to each reducing or oxidizing agent. This parameter was obtained for each gas 

from the slope of each curve. Furthermore, the chemical kinetic constant, ks, could be 

obtained from the intercept. The reaction order calculated for reduction with CH4 and 

oxidation with O2 were the lowest and the highest, respectively. The reaction order for 

reduction with CH4 was very similar to that obtained by Mogthaderi and Song [34] with 

a Fe-based oxygen carrier supported on Al2O3 and prepared by mechanical mixing using 

the shrinking core model (SCM) for kinetic determination. In the case of reduction with 

H2 and CO, these authors found values that were considerably higher. With regard to 

oxidation reaction, Abad et al. [29] determined a reaction order of 1 with O2 using a Fe-

based oxygen carrier prepared by freeze granulation, which is a value very similar to the 

one found in this work. 

By fitting the conversion vs time curves in Figs. 5 and 7 with the model, parameter ks 

was determined at each temperature. The Arrhenius plot obtained from the reduction 

and oxidation reactions is shown in Fig. 10 (a). From the slope of the curves, the 

activation energy, Ech, was determined for each reaction. The highest value was 
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obtained for CH4, i.e., 66 kJ/mol, whereas the activation energies for H2, CO and O2 

were considerably lower, ranging from 8 to 23 kJ/mol. The value of the activation 

energy for oxidation reaction, i.e., 23 kJ/mol, was higher in comparison with other 

kinetic studies conducted in the literature on Fe-based oxygen carriers [21,29,36]. The 

opposite behaviour was found with the activation energies for reduction reactions with 

CO and H2. In these cases, the values determined in this work were slightly lower than 

the ones found in the literature, see Table 1.  

As mentioned previously, diffusion through the product layer became the limiting step 

that controlled the reduction reactions at higher solids conversion values. The 

corresponding kinetic parameters fitting the conversion curves for different gas 

concentrations and temperatures were also calculated.  

It was found that the reacting gas concentration had no influence over the diffusion 

mechanism. Furthermore, it was observed that the decay constant, kX, was not 

dependent on the reacting temperature since there were no perceptible variations in the 

slope of the conversion vs time curves when the reaction rate was controlled by the 

diffusion mechanism. It should be noted that parameter kX affects the intensity of the 

reaction rate decrease in the second step, which was similar at all temperatures tested in 

this work. Therefore, the activation energy for kX was considered to be EX = 0 J mol-1. 

Fig. 10 (b) illustrates a plot of ln (Dpl) vs the inverse of the temperature in order to 

determine the pre-exponential factor, Dpl,0, and the activation energy, Epl, for the 

reduction reactions. Both parameters achieved the highest values for CH4 reduction, see 

Table 3. Finally, the decay constant, kX, was also calculated. This parameter took the 

highest value for the reduction reaction with CH4, since the decrease in the reaction rate 

with time was slightly more noticeable with this gas than with the other reducing gases. 
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Table 3 shows the kinetic parameters obtained in this work for reduction of Fe20Al 

material with CH4, H2 and CO, as well as for oxidation with O2. 

As can be observed in Figs. 4-7, the theoretical curves determined from the reaction 

model correctly predicted the experimental results obtained during the whole reacting 

time for each type of gas, temperature and concentration considered.  

4. Discussion 

The reaction kinetics and oxygen transport capacity determined in this work can be used 

to evaluate relevant parameters for the design of a CLC system, such as the solids 

circulation rate between the fuel reactor and the air reactor and the solids inventory in 

both reactors. 

The solids circulation rate must be high enough to transfer oxygen for fuel combustion 

and to provide the heat necessary to maintain optimum temperatures in the system. In 

the case of an Fe-based oxygen carrier supported on Al2O3 for which the Fe2O3/Al2O3 - 

FeAl2O4 redox couple is considered, heat plays a less important role because both 

reduction and oxidation reactions are exothermic [9]. Thus, there are no restrictions on 

the solids circulation rate in order to maintain a low temperature difference between 

both reactors [29].  

In a previous work, Abad et al. [29] developed a simplified model to determine the 

solids inventory and the solids circulation rate in a CLC system taking into 

consideration the reactivity and oxygen transport capacity of the oxygen carrier 

particles. This method enables the magnitude order of the design parameters to be 

established and, therefore, a comparison between oxygen carriers can be made by 

analysing the obtained values.  

4.1. Solids recirculation rate 
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The solids circulation rate depends on the oxygen carrier and the fuel used, as well as on 

the variation of solids conversion in the fuel reactor and air reactor. As previously 

mentioned, the recirculation rate was calculated according to the model developed by 

Abad et al. [29]. This parameter is defined by Eq. (16), expressed as the mass flow of 

fully oxidized oxygen carrier material, taking as a reference the 1 MWth of power 

provided by the fuel and assuming complete gas conversion (Xg =1).   

s

c
OC X

m
m


 

    (16) 

where cm  is the characteristic circulation rate, a specific parameter for each oxygen 

carrier-fuel combination. 
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The oxygen transport capacity of the material, OCR , is defined as MeOOOC xRR  , 

where MeOx  is the mass percentage of metal oxide in the oxygen carrier. The active 

Fe2O3 content in the oxygen carrier was 20 wt% and %10OR  for the Fe2O3-FeAl2O4 

redox couple. Thus, the oxygen transport capacity was OCR = 0.02. The cm  parameter 

took values of 4.0, 3.3 and 2.8 kg s-1 MW-1 for this material when considering CH4, H2 

and CO as fuels, respectively. 

Fig. 11 illustrates the circulation rate, OCm , as a function of the variation of solids 

conversion in the fuel reactor if CH4 is used for reduction reaction. The solids 

circulation rate in a CLC unit is often evaluated by using the oxygen carrier to fuel ratio, 

, which expresses the molar ratio between the potential flow oxygen in circulating 

oxygen carrier and the required flow of oxygen for fuel combustion. Thus, the  
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parameter is also included in Fig. 11. It can be observed that OCm  parameter decreased 

as the variation of solids conversion, Xs, increased. The minimum circulation rate for 

CH4 combustion with the Fe20Al oxygen carrier at Xs = 1 was 4.0 kg s-1 MW-1. On 

the other hand, the solids circulation flow was dependent on the operating conditions 

and the configuration of the riser in the CLC unit. For usual conditions of velocity, 

temperature and excess of air, the maximum circulation rate in a CLC system is 

established at 16 kg s-1 MW-1 [29]. Therefore, a solids conversion higher than 0.25 

would be necessary for this material in order to maintain the flow of solids under the 

average maximum limit of 16 kg s-1 MW-1 if CH4 is used as the feed gas for the CLC 

unit.  

Furthermore, it must be taken into consideration that temperature greatly affected the 

reduction conversion degree of the oxygen carrier, and, consequently, the solids 

circulation rate. It can be inferred from Fig. 5 that, depending on the operating 

temperature in the CLC system, the maximum variation of reduction conversion 

reached by this material in the fuel reactor would be different. As a first approximation, 

it was assumed that the oxygen carrier would only be reduced in a real CLC system up 

to solids conversion values within the range at which the reaction kinetics was 

controlled by chemical reaction. Therefore, the maximum variation of reduction 

conversion was determined from experimental results for the different reacting gases in 

a usual range of operating temperatures, see Fig. 12. From the results shown in Figs 11 

and 12, important conclusions regarding adequate operating temperatures in the fuel 

reactor and solids circulation rates in the CLC system can be deduced if the Fe20Al 

material is used as an oxygen carrier. For CH4 combustion, it was concluded that Xs < 

0.25 would not be allowed if a maximum limit of 16 kg s-1 MW-1 were assumed [29]. 
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Therefore, temperatures lower than 1100 K could not be used in the fuel reactor since 

the maximum variation of reduction conversion reached at this temperature (see Fig. 12) 

would require a solids circulation rate higher than the upper limit. On the contrary, at 

temperatures higher than 1273 K, the corresponding values of XS,ch and solids 

circulation rate were 0.57 and 7.0 kg s-1 MW-1 respectively.  

4.2. Solids inventory 

In a CLC process, it is desirable to minimize the amount of oxygen carrier existing in 

the fuel and air reactors in order to reduce the size of the plant fan power and the cost 

relative to the oxygen carrier. The solids inventory can be determined from a mass 

balance to the oxygen carrier and fuel gas in both reactors in combination with reaction 

kinetics. Furthermore, the solids inventory is also directly related to the reactivity and 

oxygen transport capacity of the oxygen carrier.  

As in the case of the determination of the solids circulation rate, the calculation of the 

solids inventory was also based on the methodology developed by Abad et al. [29]. The 

solids inventory in the fuel reactor and air reactor, FROCm ,  and AROCm , , can be expressed 

according to Equations (18) and (19): 

FR

r
cFROC mm





,    (18) 

AR

o
cAROC mm





,    (19) 

where r  and o  are the times for complete conversion of the particles in the fuel 

reactor and air reactor, respectively. These parameters are obtained at an average 

reacting gas concentration calculated from the following expression: 
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where g  represents the expansion of volume as a result of the chemical reaction and 

can be calculated as:  

0,
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where Vg,Xg=0  and Vg,Xg=1 are the volumes of the gas mixture at Xg = 0 and Xg = 1, 

respectively. This parameter changes its value depending on the fuel gas considered for 

the CLC process. For example, g  takes a value of 2 for CH4, 0 for H2 and CO and 

−0.21 for the oxidation reaction with air. 

The average concentrations were determined at 1223 K in both reactors taking into 

consideration the reaction order, n, shown in Table 3. When 100 vol% fuel gas 

concentration at the fuel reactor inlet and a final gas conversion of 0.999 was 

considered, the average CH4, H2 and CO concentrations in this reactor were 15.7, 30.7 

and 24.6 vol%, respectively. On other hand, for an oxidation reaction in the air reactor 

with 21 vol% O2 and 20 vol% excess air, the resulting average O2 concentration was 

11.2 vol%. The times for complete conversion of the particles in the fuel reactor, 

considering a temperature of 1223 K, were 13.7, 11.0 and 14.2 s for CH4, H2 and CO 

combustion, respectively. In the case of oxidation reaction, the time for complete 

conversion of the Fe20Al oxygen carrier particles in the air reactor at 1223 K was 

23.9 s.  

Equations (18) and (19) are also dependent on parameters FR  and AR  which are the 

characteristic reactivity in the fuel reactor and air reactor respectively. Assuming perfect 



28 

 

mixing of the solids in both reactors, j can be expressed as a function of the variation 

of solids conversion and as a function of the solids conversion in the inlet of each 

reactor. For the kinetic model used in this work, the expressions for j  are the 

following and take a value between 0 and 1: 
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The total solids inventory in the CLC system, defined in terms of kilograms of fully 

oxidized oxygen carrier per MW of fuel, can be calculated adding the masses obtained 

in the fuel reactor and air reactor: 

AROCFROCOC mmm ,,     (24) 

For comparison purposes, the minimum solids inventory in the CLC system was 

calculated for the three reducing gases considered in this work, i.e., CH4, H2 and CO 

considering fuel and air reactors at 1223 K. In this case, Xs,red ch = 0.52, and the active 

Fe2O3 content was 10.4 wt%; see Fig. 12. Thus, ROC = 1.04 wt%. But the reacting time 

to achieve the solids conversion Xs,red ch, i.e. '
r  to be used in Eq. (18) instead of r , 

was conveniently reduced by (see Appendix A) 

'
,  r s red ch rX       (25) 

The minimum solids inventory was obtained when the variation of solids conversion in 

the reactors was very low (XS  0) and the characteristic reactivity reached the highest 

value. For the kinetic model used in this work, the highest value of parameter j  is 1. 

The minimum solids inventories for CH4, H2 and CO combustion were 149, 116 and 



29 

 

109 kg MW-1, respectively, see Table 4. A comparison between the expected 

performance of different oxygen carriers can easily be made by contrasting the 

minimum solids inventory values. The minimum solids inventories obtained for the 

Fe20Al material were compared to the ones found for the Fe45Al oxygen carrier 

prepared by freeze granulation [29] or ilmenite [37]. In fact, the high reactivity of 

Fe20Al with CH4 resulted in a lower solids inventory in the fuel reactor for Fe20Al 

(54 kg/MWth) compared to that of Fe45Al (950 kg/MWth) and of activated ilmenite (272 

kg/MWth), even when the iron content in these materials was higher. Thus, it can be 

concluded that the Fe20Al oxygen carrier, prepared by the incipient impregnation 

method, presents much higher reactivity with CH4, and hence the minimum solids 

inventory needed in the CLC unit reactor is lower in comparison with the other Fe-

based material. 

In real conditions, the solids inventory depends on the degree of oxidation of the oxygen 

carrier particles in the inlet of both reactors and on the value of XS. Furthermore, it 

must be also taken into consideration that in real conditions, the variation of solids 

conversion, XS, is defined by the solids circulation rate established in the CLC system, 

see Eq. (16), and it is possible that the oxygen carrier will not completely oxidized when 

it enters the fuel reactor .  

Fig. 13 illustrates the total solids inventory of the Fe20Al oxygen carrier needed in a 

CLC unit for CH4 combustion as a function of the oxidation conversion of the particles 

at the inlet of the fuel reactor considering that the variation of solids conversion, XS, is 

limited to the minimum value related to the maximum solids circulation rate of 

16 kg s−1 MW-1. Thus, these calculations were made for a variation of solids conversion 

of 0.25, see Fig. 11. This value of XS is adequate because it is within the optimum 
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range proposed by Abad et al. [29], i.e., XS = 0.2 – 0.5, to obtain low solids inventories 

and reasonable circulation rate values.  

Now, the method to calculate FR  was modified from that shown by Abad et al. [29] to 

consider the active Fe2O3 fraction as being only the fraction reacting with chemical 

control, but the solid fraction reacting with slow diffusional controlled reaction was 

assumed to be inert; see Appendix A. Thus, to calculate FR  by Eq. (22), a modified 

conversion '
, redSX  was used, which ranges from 0 to 1 when the solids conversion 

varies from 0 to chredSX , . Considering the case of CH4 combustion at 1223 K, 

chredSX , was established at 0.52 approximately (see Fig. 12), which means that for a 

variation of solids conversion of SX = 0.25, '
SX  takes a value of 0.48.  

With the above considerations, the inlet conversion of solids to the fuel reactor must 

fulfill FRinoxSX ,  >  chredSS XX ,1  because the fraction  chredSX ,1  is considered 

inert for the reduction reaction. It can be observed in Fig. 13 that the minimum 

oxidation conversion at the inlet of the fuel reactor is FRinoxSX ,  = 0.73 for SX = 0.25. 

If the value of parameter FRinoxSX ,  is very close to the aforementioned limit, the 

availability of oxygen for the reduction conversion will be low because the oxygen 

carrier particles are reduced to a great extent and, consequently, the required solids 

inventory in this reactor will tend towards infinity. At the same time, a low value of 

FRinoxSX ,  implies that the solids inventory needed in the air reactor decreases. The 

opposite reasoning can be made for very high values of oxidation conversion at the fuel 

reactor inlet. The combination of both effects over the total solids inventory entails the 

presence of a minimum which corresponds to the optimum solids inventory in the CLC 
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system under these conditions. In this case, the minimum amount of this material is 272 

kg MW-1 at an approximated value of FRinoxSX , = 0.85.  

Finally, it should be remarked that the value of solids inventory calculated for a real 

CLC system would be from 2 to 10 times higher [58] because the method for 

determination does not take into consideration such fluidization effects as the resistance 

to gas exchange between the bubbles and the emulsion in the fluidized beds. For 

example, Gayán et al. [16] found that for this oxygen carrier a solids inventory of 500 

kg MW-1 was necessary for complete combustion of CH4 in the fuel reactor of a 500 

Wth continuous CLC unit. Thus, the total solids inventory in this CLC unit would be 

within the range established by Abad et al. [58] taking into consideration the value 

calculated in this work. Therefore, these values are valid for comparison purposes with 

other oxygen carriers, but not for design purposes. 

The results obtained from this simplified model provide valuable information for 

comparison purposes with different materials and a first approximation to the total 

solids inventory needed in a real CLC system. For example, when using this calculation 

method, the Fe20Al oxygen carrier presents a much lower value of total solids 

inventory for CH4 combustion in comparison with another Fe-based oxygen carrier 

supported on Al2O3 with 60 wt% Fe2O3 prepared by freeze granulation [29]. This fact 

emphasizes the high reactivity achieved by oxygen carriers prepared by means of the 

impregnation method. On other hand, the solids inventory obtained for the Fe20Al 

material is higher than the ones found for Ni- or Cu-based oxygen carriers in that work 

[29]. However, it must be considered that iron is significantly cheaper and more 

environmentally friendly than either nickel or copper.  
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5. Conclusions 

The isothermal method in a TGA was identified as the proper method with which to 

obtain the reduction and oxidation kinetics of the Fe20Al oxygen carrier with CH4, H2, 

CO and O2 as reacting gases under typical CLC conditions. The effect of temperature 

and the concentration of the reacting gases on reaction rate of Fe20Al material were 

studied.  

The Fe20Al oxygen carrier was always reduced to FeAl2O4 at typical temperatures in 

CLC regardless of the final solids conversion achieved in the oxygen carrier samples. 

The formation of Fe3O4 as a reduced Fe-based phase was never found in the particles. 

This result suggested that the reduction reaction mechanism was based on the 

interaction of Fe2O3 with Al2O3 in presence of the reacting gases to form FeAl2O4 as the 

only stable Fe-based phase. Furthermore, it was found that the reduction rate and the 

final solids conversion were clearly affected by the temperature. Nevertheless, complete 

regeneration was found after the oxidation step with O2. 

The grain model with uniform conversion in the particle and reaction in grains 

following the shrinking core model (SCM) was used for kinetics determination, 

assuming a first step of reduction controlled by chemical reaction, followed by a second 

step controlled by the diffusion through the product layer around the grains. The 

reaction order values found for the reducing gases ranged between 0.25 and 0.6. 

Additionally, the lowest and the highest activation energy values were found for 

reduction reactions with H2 and CH4 respectively, 8 and 66 kJ/mol. With regard to 

oxidation kinetics, the reacting model assumed a reaction rate that was only controlled 

by chemical reaction. The reaction order took a value of 0.9 and the activation energy 

for oxidation reaction with O2 was 23 kJ/mol. 
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Finally, the solids inventory needed in a CLC system was also estimated taking into 

consideration the results obtained from the kinetics study. Firstly, it was found that the 

minimum solids inventories for CH4, H2 and CO combustion with the Fe20Al oxygen 

carrier were 149, 116 and 109 kg MW-1, respectively. Furthermore, the solids inventory 

was calculated for usual operating conditions in a CLC unit, such as Xs = 0.25 and a 

temperature in the fuel reactor and air reactor of 1223 K. Under these conditions, and 

considering CH4 as fuel gas, the minimum total solids inventory was 272 kg MW-1. 
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Nomenclature 

Ci = concentration of reacting gas i (mol m-3) 

iC = average concentration of gas i in the reactor (mol m-3) 

Ci,0 = inlet concentration of gas i into the reactor (mol m-3) 

d = stoichiometric factor in the fuel combustion reaction with oxygen (mol O2 per mol 

fuel) 

dp = particle diameter (m) 

Dpl = effective product layer diffusivity (m3n’ mol-n’ s-1) 

Dpl,0 = pre-exponential factor for effective product layer diffusivity (m3n’ mol-n’ s-1) 

Eact = activation energy of the kinetic studies presented in Table 1 (kJ mol-1) 

Ech = activation energy for the chemical reaction (kJ mol-1) 

Epl = activation energy for the diffusion through the product layer reaction (kJ mol-1) 

EX = activation energy which modifies the decay constant for the product layer 

diffusivity (kJ mol-1) 

Fg = shape factor for the grain 

ks = chemical kinetic constant (m3n mol-n s-1) 

ks,0 = pre-exponential factor for chemical kinetic constant (m3n mol-n s-1) 

kX = decay constant for the product layer diffusivity 

kX,0 = pre-exponential factor for decay constant for the product layer diffusivity  

m = actual mass of the oxygen carrier (kg) 

cm = characteristic circulation rate (kg s-1 MW-1) 

OCm = circulation rate of fully oxidized oxygen carrier (kg s-1 MW-1) 

OCm = total solids inventory in the air reactor and fuel reactor (kg MW-1) 
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jOCm , = solids inventory in the reactor j (kg MW-1) 

mox = mass of the sample of oxygen carrier when it is fully oxidized (kg) 

mred = mass of the sample of oxygen carrier in reduced form (kg) 

MO = molecular weight of oxygen (g mol-1) 

n = reaction order for reacting gas in gas-solid chemical reaction 

n’ = exponential constant for gas concentration in the product layer diffusion process 

Rg = constant for ideal gases (Rg = 8.314 J mol-1 K-1) 

RO = oxygen transport capacity of the pure metal oxide (kg oxygen per kg metal oxide)   

ROC = oxygen transport capacity of the oxygen carrier (kg oxygen per kg solids) 

'
OCR = maximum oxygen transport capacity of the oxygen carrier when the reaction 

kinetics is controlled by chemical reaction 

t = time (s) 

T = temperature (K) 

Vg,Xg=0 volume of the gas mixture at Xg = 0 (m3) 

Vg,Xg=1 volume of the gas mixture at Xg = 1 (m3) 

xMeO = metal oxide content 

Xg = gas conversion 

Xg,in = gas conversion at the reactor inlet 

Xg,out = gas conversion at the reactor outlet 

XS = conversion of solids 

XS,ox in AR = oxidation conversion of solids at the inlet of the air reactor 

X’S,ox in AR = normalized oxidation conversion of solids at the inlet of the air reactor 

when the reaction kinetics is controlled by chemical reaction 

XS,ox in FR = oxidation conversion of solids at the inlet of the fuel reactor 
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X’S,ox in FR = normalized oxidation conversion of solids at the fuel reactor inlet when the 

reaction kinetics is controlled by chemical reaction 

XS,ox min = minimum oxidation conversion of solids when the reaction kinetics is 

controlled by chemical reaction 

XS,red in FR = reduction conversion of solids at the inlet of the fuel reactor  

X’S,red in FR = normalized reduction conversion of solids at the fuel reactor inlet when the 

reaction kinetics is controlled by chemical reaction 

Greek symbols: 

 = porosity of particles 

g = coefficient of expansion of the gas mixture 

H = variation of enthalpy for reduction or oxidation reactions (kJ mol-1) 

0
CH = standard heat of the gas fuel combustion (kJ mol-1) 

Xg = variation of gas conversion 

XS = variation of solids conversion between fuel reactor and air reactor 

X’S = normalized variation of solids conversion between fuel reactor and air reactor 

when the reaction kinetics is controlled by chemical reaction 

XS,red ch = variation of solids conversion between fuel reactor and air reactor when the 

reaction kinetics is controlled by chemical reaction 

τch = time for complete conversion when the chemical reaction controls the process (s) 

o = time for complete conversion of particles in the air reactor (s) 

τpl = time for complete conversion when the diffusion through the product layer controls 

the process (s) 

r = time for complete conversion of particles in the fuel reactor (s) 
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'
r = time for complete conversion of particles in the fuel reactor when the reaction 

kinetics is only controlled by chemical reaction (s)  

j = characteristic reactivity in the reactor j 

'
j = characteristic reactivity in the reactor j when the reaction kinetics is only 

controlled by chemical reaction 

Subscripts 

i = gas (CH4, H2, CO) 

j = reactor (AR = air reactor, FR = fuel reactor) 

ox = oxidation 

red = reduction 

Abbreviations 

CGSM: Changing Grain Size Model 

CLC: Chemical Looping Combustion 

SCM: Shrinking Core Model 

DRM: Diffusion Reaction Model 

ICP-AES: Inductively Coupled Plasma Atomic Emission Spectroscopy  

MVM: Modified Volumetric Model 

TGA: Thermogravimetric Analyser 

TPR: Temperature-Programmed Reduction 

VM: Volumetric Model 

XRD: X-ray Diffraction 



38 

 

References 

[1] IPCC, 2013. Climate Change 2013: The Physical Science Basis. Technical 

Summary. Working Group I Contribution to the IPCC Fifth Assessment Report (AR5). 

[2] IPCC, 2005. Special report on carbon dioxide capture and storage. Working group II 

of the Intergovernmental Panel on Climate Change, Editors: B. Metz, O. Davidson, H. 

de Coninck, M. Loos, L. Meyer, Cambridge University Press, Cambridge, UK and New 

York, NY, USA, 2005. 

[3] W.K. Lewis, E.R. Gilliland, Production of pure carbon dioxide, S.O.D Company, 

US Patent: 2 665 971, United States, 1954. 

[4] H.J. Richter, K. Knoche, Reversibility of combustion processes. Efficiency and 

costing - Second law analysis of processes, ACS Symposium Series 235 (1983) 71-85. 

[5] M. Ishida, D. Zheng, T. Akehata, Evaluation of a chemical-looping-combustion 

power-generation system by graphic exergy analysis, Energy 12 (1987) 147-154. 

[6] M. Ishida, H. Jin, A new advanced power-generation system using chemical-looping 

combustion, Energy 19 (1994) 415-422. 

[7] M. Ishida, H. Jin, A novel combustor based on chemical-looping reactions and its 

reaction kinetics, J. Chem. Eng. Jpn. 27 (1994) 296-301. 

[8] A. Lyngfelt, B. Leckner, T. Mattisson, A fluidized-bed combustion process with 

inherent CO2 separation; application of chemical-looping combustion, Chem. Eng. Sci. 

56 (2001) 3101-3013. 

[9] J. Adánez, A. Abad, F. García–Labiano, P. Gayán, L.F. de Diego, Progress in 

Chemical Looping Combustion and Reforming Technologies, Progress in Energy and 

Combustion Science 38 (2012) 215-282. 

[10] J. Adánez, L.F. de Diego, F. García-Labiano, P. Gayán, A. Abad, J.M. Palacios, 



39 

 

Selection of oxygen carriers for chemical-looping combustion, Energy & Fuels 18 

(2004) 371-377. 

[11] T. Mattisson, M. Johansson, A. Lyngfelt, Multicycle reduction and oxidation of 

different types of iron oxide particles - Application to chemical-looping combustion, 

Energy & Fuels 18 (2004) 628-637. 

[12] M. Johansson, T. Mattisson, A. Lyngfelt, Investigation of Fe2O3 with MgAl2O4 for 

chemical-looping combustion, Industrial & Engineering Chemistry Research 43 (2004) 

6978-6987. 

[13] F. García-Labiano, J. Adánez, L.F. de Diego, P. Gayán, A. Abad, Effect of pressure 

on the behaviour of copper-, iron-, and nickel-based oxygen carriers for chemical 

looping combustion, Energy Fuels 20 (2006) 26-33. 

[14] A. Abad, F. García-Labiano, L.F. de Diego, P. Gayán, J. Adánez, Reduction 

kinetics of Cu-, Ni- and Fe-based oxygen carriers using syngas (CO+H2) for chemical 

looping combustion, Energy & Fuels 21 (2007) 1843-1853. 

[15] M. Ortiz, L.F. de Diego, P. Gayán, M.A. Pans, F. García-Labiano, A. Abad, J. 

Adánez, Hydrogen production coupled with CO2 capture by chemical-looping using 

mixed Fe-Ni oxygen carriers, Proc 1st Int Conf on Chemical Looping, Lyon, France, 

2010.  

[16] P. Gayán, M.A. Pans, M. Ortiz, A. Abad, L.F. de Diego, F. García-Labiano, J. 

Adánez, Testing of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier for a SR-

CLC system in a continuous CLC unit, Fuel Processing Technology 96 (2012) 37–47. 

[17] A. Cabello, C. Dueso, F. García-Labiano, P. Gayán, A. Abad, L.F. de Diego, J. 

Adánez, Performance of a highly reactive impregnated Fe2O3/Al2O3 oxygen carrier with 

CH4 and H2S in a 500 Wth CLC unit, Fuel 121 (2014) 117-125.  



40 

 

[18] P. Cho, T. Mattisson, A. Lyngfelt, Carbon formation on nickel and iron oxide-

containing oxygen carriers for chemical-looping combustion, Industrial & Engineering 

Chemistry Research 44 (2005) 668-676. 

[19] L.F. de Diego, F. García-Labiano, J. Adánez, P. Gayán, A. Abad, A. Cabello, G. 

Sprachmann, Performance of Cu- and Fe-based oxygen carriers in a 500 Wth CLC unit 

for sour gas combustion with high H2S content, Submitted for publication. 

[20] F. García-Labiano, J. Adánez, L.F. de Diego, P. Gayán, A. Abad, A. Cabello, G. 

Sprachmann, Energy exploitation of acid gas with high H2S content by means of a 

chemical looping combustion system, Submitted for publication. 

[21] S.R. Son, S.D. Kim, Chemical-looping combustion with NiO and Fe2O3 in a 

thermobalance and circulating fluidized bed reactor with double loops, Ind. Eng. Chem. 

Res. 45 (2006) 2689-2696. 

[22] A. Abad, T. Mattisson, A. Lyngfelt, M. Johansson, The use of iron oxide as oxygen 

carrier in a chemical-looping reactor, Fuel 86 (2007) 1021-1035. 

[23] A. Lyngfelt, H. Thunman, Construction and 100 h of operational experience of a 

10-kW chemical-looping combustor, in: D.C. Thomas, S.M. Benson (Eds.), Carbon 

dioxide capture for storage in deep geologic formations - Results from the CO2 capture 

project, Elsevier, Oxford, UK, 2005,  vol. 1, chapter 36. 

[24] T. Pröll, K. Mayer, J. Bolhàr-Nordenkampf, P. Kolbitsch, T. Mattisson, A. 

Lyngfelt, H. Hofbauer, Natural minerals as oxygen carriers for chemical looping 

combustion in a dual circulating fluidized bed system, Energy Procedia 1 (2009) 27-34.  

[25] P. Kolbitsch, J. Bolhàr-Nordenkampf, T. Pröll, H. Hofbauer, Operating experience 

with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) 

unit, International Journal of Greenhouse Gas Control 4 (2010) 180-185. 



41 

 

[26] M. Rydén, M. Johansson, E. Cleverstam, A. Lyngfelt, T. Mattisson, Ilmenite with 

addition of NiO as oxygen carrier for chemical-looping combustion, Fuel 89 (2010) 

3523-3533. 

[27] P. Moldenhauer, M. Rydén, A. Lyngfelt, Testing of minerals and industrial by-

products as oxygen carriers for chemical-looping combustion in a circulating fluidized-

bed 300W laboratory reactor, Fuel 93 (2012) 351-363. 

[28] M. Ortiz, P. Gayán, L.F. de Diego, F. García-Labiano, A. Abad, M.A. Pans, J. 

Adánez, Hydrogen production with CO2 capture by coupling steam reforming of 

methane and chemical-looping combustion: Use of an iron-based waste product as 

oxygen carrier burning a PSA tail gas, Journal of Power Sources 196 (2011) 4370-4381. 

[29] A. Abad, J. Adánez, F. García-Labiano, L.F. de Diego, P. Gayán, J. Celaya, 

Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen 

carriers in chemical-looping combustion, Chem. Eng. Sci. 62 (2007) 533-549.  

[30] K.S. Go, S.R. Son, S.D. Kim, Reaction kinetics of reduction and oxidation of metal 

oxides for hydrogen production, In J Hydrogen Energy 33 (2008) 5986-5995.  

[31] C.D. Bohn, J.P. Cleeton, C.M. Müller, J.F. Davidson, A.N. Hayhurst, S.A. Scott, 

J.S. Dennis, The kinetics of the reduction of iron oxide by carbon monoxide mixed with 

carbon dioxide, AIChE Journal 56 (2010) 1016-1029. 

[32] J. Bao, Z. Li, H. Sun, N. Cai, Experiment and rate equation modeling of Fe 

oxidation kinetics in chemical looping combustion, Combustion and Flame 160 (2013) 

808–817. 

[33] E.R. Monazam, R.W. Breault, R. Siriwardane, G. Richards, S. Carpenter, Kinetics 

of the reduction of hematite (Fe2O3) by methane (CH4) during chemical looping 

combustion: A global mechanism, Chemical Engineering Journal 232 (2013) 478–487. 



42 

 

[34] B. Moghtaderi, H. Song, Reduction properties of physically mixed metallic oxide 

oxygen carriers in chemical looping combustion, Energ. Fuel. 24 (2010) 5359-5368.  

[35] E.R. Monazam, R.W. Breault, R. Siriwardane, D.D. Miller, Thermogravimetric 

Analysis of Modified Hematite by Methane (CH4) for Chemical-Looping Combustion: 

A Global Kinetics Mechanism, Ind. Eng. Chem. Res. 52 (2013) 14808-14816. 

[36] E. Ksepko, M. Sciazko, P. Babinski, Studies on the redox reaction kinetics of 

Fe2O3–CuO/Al2O3 and Fe2O3/TiO2 oxygen carriers, Applied Energy 115 (2014) 374-

383.  

[37] A. Abad, J. Adánez, A. Cuadrat, F. García-Labiano, P. Gayán, L.F. de Diego, 

Reaction kinetics of ilmenite for Chemical-Looping Combustion, Chem. Eng. Sci. 66 

(2011) 689-702. 

[38] S. Nasr, K.P. Plucknet, Kinetics of Iron Ore Reduction by Methane for Chemical 

Looping Combustion, Energy & Fuels doi: 10.1021/ef402142q.  

[39] C. Dong, S. Sheng, W. Qin, Q. Lu, Y. Zhao, X. Wang, J. Zhang, Density functional 

theory study on activity of α-Fe2O3 in chemical-looping combustion system, Applied 

Surface Science 257 (2011) 8647-8652. 

[40] F. Li, Z. Sun, S. Luo, L.S. Fan, Ionic diffusion in the oxidation of iron-effect of 

support and its implications to chemical looping applications, Energy Environ. Sci. 4 

(2011) 876-880. 

[41] F. Li, S. Luo, Z. Sun, X. Bao, L.S. Fan, Role of metal oxide support in redox 

reactions of iron oxide for chemical looping applications: experiments and density 

functional theory calculations, Energy Environ. Sci. 4 (2011) 3661-3667.  

[42] C. Dong, X. Liu, W. Qin, Q. Lu, X. Wang, S. Shi, Y. Yang, Deep reduction 

behavior of iron oxide and its effect on direct CO oxidation, Applied Surface Science 



43 

 

258 (2012) 2562-2569. 

[43] Q. Tan, W. Qin, Q. Chen, C. Dong, W. Li, Y. Yang, Synergetic effect of ZrO2 on 

the oxidation–reduction reaction of Fe2O3 during chemical looping combustion, Applied 

Surface Science 258 (2012) 10022-10027. 

[44] W. Li, Q. Chen, T. Mi, Density Functional Theory Study of interaction between 

CO and Oxygen Carrier Fe2O3@SBA-15, Advanced Materials Research 610 (2013) 

498-501. 

[45] D.D. Miller, R. Siriwardane, Mechanism of Methane Chemical Looping 

Combustion with Hematite Promoted with CeO2, Energy Fuels 27 (2013) 4087-4096. 

[46] W. Qin, Q. Chen, Y. Wang, C. Dong, J. Zhang, W. Li, Y. Yang, Theoretical study 

of oxidation–reduction reaction of Fe2O3 supported on MgO during chemical looping 

combustion, Applied Surface Science 266 (2013) 350-354. 

[47] W. Qin, Y. Wang, C. Dong, J. Zhang, Q. Chen, Y. Yang, The synergetic effect of 

metal oxide support on Fe2O3 for chemical looping combustion: A theoretical study, 

Applied Surface Science 282 (2013) 718-723. 

[48] L. Wang, Q. Li, W. Qin, Z. Zheng, X. Xiao, C. Dong, Activity of Fe2O3 and its 

effect on CO oxidation in the chemical looping combustion: A theoretical account, 

Advanced Materials Research 726 (2013) 2040-2044. 

[49] F. García-Labiano, L.F. de Diego, J. Adánez, A. Abad, P. Gayán, Temperature 

variations in the oxygen carrier particles during their reduction and oxidation in a 

Chemical Looping Combustion system, Chem. Eng. Sci. 60 (2005) 851-862. 

[50] HSC Chemistry 6.1, Chemical Reaction and Equilibrium Software with 

Thermochemical Database and Simulation Module, Oututec Research Oy., Pori, 

Finland. 2008. 



44 

 

[51] Q. Zafar, A. Abad, T. Mattisson, B. Gevert, Reaction Kinetics of a Freeze-

Granulated NiO/MgAl2O4 Oxygen Carrier Particles for Chemical-Looping Combustion, 

Energy & Fuels 21 (2007) 610-618. 

[52] F. García-Labiano, L.F. de Diego, J. Adánez, A. Abad, P. Gayán, Reduction and 

Oxidation Kinetics of a Copper-Based Oxygen Carrier Prepared by Impregnation for 

Chemical-Looping Combustion, Ind. Eng. Chem. Res. 43 (2004) 8168-8177. 

[53] J.E. Readman, A. Olafsen, J.B. Smith, R. Blom, Chemical Looping Combustion 

Using NiO/NiAl2O4: Mechanisms and Kinetics of Reduction-Oxidation (Red-Ox) 

Reactions from In Situ Powder X-ray Diffraction and Thermogravimetry Experiments, 

Energy & Fuels 20 (2006) 1382-1387.  

[54] C. Dueso, M. Ortiz, A. Abad, F. García-Labiano, L.F. de Diego, P Gayán, J 

Adánez,	Reduction and oxidation kinetics of nickel-based oxygen-carriers for chemical-

looping combustion and chemical-looping reforming, Chemical Engineering Journal 

188 (2012) 142-154. 

[55] O. Levenspiel, Chemical Reaction Engineering, John Wiley and Sons, New York, 

1981. 

[56] L.F. de Diego, A. Abad, A. Cabello, P. Gayán, F. García-Labiano, J. Adánez, 

Reduction and Oxidation Kinetics of a CaMn0.9Mg0.1O3−δ Oxygen Carrier for Chemical-

Looping Combustion, Ind. Eng. Chem. Res. 53 (2014) 87-103.  

[57] J. Adánez, F. García-Labiano, A. Abad, L.F. de Diego, P. Gayán, Regeneration of 

Sulfided Dolomite with Steam and Carbon Dioxide, Energy & Fuels 15 (2001) 85-94.  

[58] A. Abad, J. Adánez, F. García-Labiano, L.F. de Diego, P. Gayán, Modelling of the 

chemical-looping combustion of methane using a Cu-based oxygen-carrier, Combustion 

and Flame 3 (2010) 602-615. 



45 

 

Figure Captions 

Fig. 1. TPR profile of fresh particles of the Fe20Al oxygen carrier.  

Fig. 2. Conversion vs time curves during reduction period with CH4, CO and H2. 

Testing conditions: T = 1223 K; reducing gas mixtures: 15 vol% H2 + 20 vol% H2O; 15 

vol% CO + 20 vol% CO2; and 15 vol% CH4 + 20 vol% H2O (N2 to balance). 

Fig. 3. Effect of H2O and CO2 presence on the reduction conversion of the Fe20Al 

oxygen carrier with H2 (a) and CO (b). Testing conditions: T = 1223 K; reducing gases: 

5 vol% H2 and 5 vol% CO. 

Fig. 4. Effect of fuel gas concentration on the reduction reaction for CH4 (a), H2 (b) and 

CO (c). T = 1223 K. The continuous lines are results predicted by the model using 

kinetic parameters obtained in this work. 

Fig. 5. Effect of the temperature on the reduction reaction of the Fe20Al oxygen 

carrier. Reducing gas mixtures: (a) 15 vol% CH4 + 20 vol% H2O; (b) 15 vol% CO + 20 

vol% CO2; (c) 15 vol% H2 + 20 vol% H2O; and (d) 5 vol% H2 + 48 vol.% H2O. The 

continuous lines are results predicted by the model using kinetic parameters obtained in 

this work. 

Fig. 6. Effect of O2 concentration on the oxidation reaction of the Fe20Al oxygen 

carrier. Operating conditions: T = 1223 K. The continuous lines are results predicted by 

the model using kinetic parameters obtained in this work. 

Fig. 7. Effect of temperature on the oxidation reaction of the Fe20Al oxygen carrier 

with O2 (10 vol%). The continuous lines are results predicted by the model using kinetic 

parameters obtained in this work. 
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Fig. 8. Scheme of the reacting mechanism for CH4 reduction with the Fe20Al oxygen 

carrier. 

Fig. 9. Plot of ln (Ci) vs. ln (1/τch) to obtain the reaction order with respect to CH4, H2, 

CO and O2. 

Fig. 10. Arrhenius plots to determine activation energy for ks (a), and effective product 

layer diffusivity, Dpl (b), for the reaction of CH4, H2, CO and O2 with the Fe20Al 

oxygen carrier. 

Fig. 11. Solids circulation rate vs variation of solids conversion in the fuel reactor using 

the Fe20Al material as oxygen carrier. Reducing gas: CH4.  

Fig. 12. Variation of reduction conversion in chemically controlled reaction for Fe20Al 

material reached in the fuel reactor for CH4, H2 and CO combustion in a usual range of 

operating temperatures for CLC. 

Fig. 13. Total solids inventory of the Fe20Al material as a function of the solids 

conversion at the inlet of the fuel reactor (XS,ox in,FR). Reducing agent: CH4. XS = 0.25. 

T = 1223 K. It is assumed that the Fe20Al oxygen carrier is only reduced up to solids 

conversion values within the range at which the reaction kinetics is controlled by 

chemical reaction. 
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Fig. 1. TPR profile of fresh particles of the Fe20Al oxygen carrier.  
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Fig. 2. Conversion vs time curves during reduction period with CH4, CO and H2. 

Testing conditions: T = 1223 K; reducing gas mixtures: 15 vol% H2 + 20 vol% H2O; 15 

vol% CO + 20 vol% CO2; and 15 vol% CH4 + 20 vol% H2O (N2 to balance). 
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Fig. 3. Effect of H2O and CO2 presence on the reduction conversion of the Fe20Al 

oxygen carrier with H2 (a) and CO (b). Testing conditions: T = 1223 K; reducing gases: 

5 vol% H2 and 5 vol% CO. 
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Fig. 4. Effect of fuel gas concentration on the reduction reaction for CH4 (a), H2 (b) and 

CO (c). T = 1223 K. The continuous lines are results predicted by the model using 

kinetic parameters obtained in this work. 
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Fig. 5. Effect of the temperature on the reduction reaction of the Fe20Al oxygen 

carrier. Reducing gas mixtures: (a) 15 vol% CH4 + 20 vol% H2O; (b) 15 vol% CO + 20 

vol% CO2; (c) 15 vol% H2 + 20 vol% H2O; and (d) 5 vol% H2 + 48 vol% H2O. The 

continuous lines are results predicted by the model using kinetic parameters obtained in 

this work. 
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Fig. 6. Effect of O2 concentration on the oxidation reaction of the Fe20Al oxygen 

carrier. Operating conditions: T = 1223 K. The continuous lines are results predicted by 

the model using kinetic parameters obtained in this work. 
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Fig. 7. Effect of temperature on the oxidation reaction of the Fe20Al oxygen carrier 

with O2 (10 vol%). The continuous lines are results predicted by the model using kinetic 

parameters obtained in this work. 
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Fig. 8. Scheme of the reacting mechanism for CH4 reduction with the Fe20Al oxygen 

carrier. 
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Fig. 9. Plot of ln (Ci) vs. ln (1/τch) to obtain the reaction order with respect to CH4, H2, 

CO and O2. 
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Fig. 10. Arrhenius plots to determine the activation energy for ks (a), and the effective 

product layer diffusivity, Dpl (b), for the reaction of CH4, H2, CO and O2 with the 

Fe20Al oxygen carrier. 
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Fig. 11. Solids circulation rate vs the variation of solids conversion in the fuel reactor 

using Fe20Al material as oxygen carrier. Reducing gas: CH4.  
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Fig. 12. Variation of reduction conversion in chemically controlled reaction for Fe20Al 

material reached in the fuel reactor for CH4, H2 and CO combustion in a usual range of 

operating temperatures for CLC.  
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Fig. 13. Total solids inventory of the Fe20Al material as a function of the solids 

conversion at the inlet of the fuel reactor (XS,ox in,FR). Reducing agent: CH4. XS = 0.25. 

T = 1223 K. It is assumed that the Fe20Al oxygen carrier is only reduced up to solids 

conversion values within the range at which the reaction kinetics is controlled by 

chemical reaction. 
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Table 1. Summary of kinetic data for Fe-based oxygen carriers. 

Oxygen carrier Method of 
preparation 

Experimental conditions Kinetic Model Redox system Reference 

Fe2O3 
dp = 125µm 
Roc= 10.0% 

Solid state 
calcination 

TGA; T = 773-1173 K 
CH4 

Diffusion control  
n = n.a.; Eact = 271kJ/mol 

Fe2O3/ FeO [30] 

Fe2O3 
dp = 300-425µm 
ROC = 3.3-10.0% 

Mechanical mixing 
 

Fluid bed; T = 723-1123 K 
1.5-10 vol.% CO  

DRM 
n = 1.0; Eact = 75 kJ/mol 
n = 1.0; Eact = 94 kJ/mol 

 
Fe2O3/Fe3O4 
Fe3O4/FeO 

[31] 

Multi-crystal Fe 
dp = n.a. 
ROC = 30.0% 

n.a. TGA; T = 973-1173 K 
0.07-5.25 vol.% O2  

Nucleation and growth model  
n = n.a.; Eact = n.a. 

Fe2O3/Fe [32] 

94 wt.% Fe2O3 
dp = 60-100µm 
Roc = 9.4% 

Crush and sieve TGA; T = 973-1098 K 
 
15-35 vol.% CH4 
 
 

Two parallel reactions (R1 and 
R2) 
R1: n = n.a.; Eact = 34kJ/mol 
R2: nucleation and grow 
model;  
n = n.a.; Eact = 39kJ/mol 

 
 
Fe3O4/FeO 
 
 
Fe2O3/Fe3O4 

[33] 

45 wt.% Fe2O3 on 
Al2O3 
dp = 90-250µm 
ROC = 1.3% 

Impregnation TGA; T = 773-1273 K 
Total pressure: 1-30 atm 
5-70 vol.% H2 
5-70 vol.% CO 
5-21 vol.% O2 

CGSM  
 
n = 0.8; Eact = 24 kJ/mol 
n = 1.0; Eact = 20 kJ/mol 
n = 1.0; Eact = 14 kJ/mol 

Fe2O3/Fe3O4 [13] 

58 wt.% Fe2O3 on 
Al2O3 
dp = 90-106µm 
ROC = 4.0% 

Mechanical mixing TGA; T = 1073-1123 K 
20-70 vol.% CH4 
20-70 vol.% H2 
20-70 vol.% CO 

SCM with Fg=3 
n = 0.2; Eact = 45 kJ/mol 
n = 0.85; Eact = 22 kJ/mol 
n = 1.0; Eact = 19 kJ/mol 

Fe2O3/Fe3O4-
FeAl2O4 

[34] 

60 wt.% Fe2O3 on 
Al2O3 
dp = 90-250µm 
ROC = 4.1% 

Freeze granulation TGA; T = 873-1223 K 
5-70 vol.% CH4 
5-70 vol.% H2 
5-70 vol.% CO 
5-21 vol.% O2  

SCM with Fg=3 
n = 1.3; Eact = 49 kJ/mol 
n = 0.5; Eact = 24 kJ/mol 
n = 1.0; Eact = 20 kJ/mol 
n = 1.0; Eact = 14 kJ/mol 

Fe2O3/Fe3O4- 
FeAl2O4 

[14,29] 

60 wt.% Fe2O3 on 
bentonite 
dp = 106-150µm 
ROC = 2.0% 

Mechanical mixing  TGA; T = 973-1273 K 
10 vol.% CH4 
10 vol.% O2  

Red: MVM; Ox: SCM 
n = n.a.; Eact = 29 kJ/mol 
n = n.a.; Eact = 6 kJ/mol 

Fe2O3/Fe3O4  [21] 

75-95 wt.% Fe2O3 
on MgO 
dp = 100-300µm 
ROC = 7.5-9.5% 

Hot incipient 
wetness 
impregnation 
 

TGA; T = 973-1098 K 
 
5-20 vol.% CH4 
 

Two-competing reactions (R1 
and R2) 
R1: n = n.a; Eact = 50kJ/mol 
R2: n = n.a; Eact = 65kJ/mol 

 
 
Fe2O3/Fe3O4 
Fe3O4/FeO 

[35] 

80 wt.% Fe2O3 on 
TiO2 
dp < 250µm 
Roc= 2.7-24.0% 

Solid-state mixing 
 

TGA; T = 873-1223 K 
3 vol.% H2 in Ar 
Air 

Red:VM; Ox: SCM 
n= n.a.; Eact = 34 kJ/mol 
n= n.a.; Eact= 0 kJ/mol 

Fe2O3/Fe3O4-FeO-Fe [36] 

Pre-oxidized 
ilmenite 
(Fe2TiO5)  
dp = 150-300µm 
ROC = 4.0% 

Thermal treatment TGA; T = 1073-1123 K 
5-50 vol.% CH4 
5-50 vol.% H2 
5-50 vol.% CO 
5-21 vol.% O2  

SCM with Fg=3 
n = 1.0; Eact = 165 kJ/mol 
n = 1.0; Eact = 109 kJ/mol 
n = 1.0; Eact = 113 kJ/mol 
n = 1.0; Eact = 12 kJ/mol 

Fe2O3·TiO2/ 
FeO·TiO2 

[37] 

Activated 
ilmenite 
(Fe2TiO5)  
dp = 150-300µm 
ROC = 3.3% 

Thermal treatment + 
activation in a 
fluidized bed 

TGA; T = 1073-1123 K 
5-50 vol.% CH4 
5-50 vol.% H2 
5-50 vol.% CO 
5-21 vol.% O2  

SCM with Fg=3 
n = 1.0; Eact = 136 kJ/mol 
n = 1.0; Eact = 65 kJ/mol 
n = 0.8; Eact = 80 kJ/mol 
n = 1.0; Eact = 25 kJ/mol 

Fe2O3·TiO2/ 
FeO·TiO2 

[37] 

98 wt.% Fe2O3 

dp = 50-200µm 
Roc = 3.2% 

Crush and sieve  TGA; T = 1073-1223 K 
 
33 vol.% CH4 

Avrami-Erofe’ev phase change 
model  
n= n.a.; Eact = 215 kJ/mol 

Fe2O3/Fe3O4 [38] 
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Table 2. Main physicochemical properties of the Fe20Al material 

 Fresh material 

Fe2O3 (wt. %) 201 

Oxygen transport capacity, ROC  0.02 

Particle size (µm) 200-400 

Skeletal density (kg m-3) 3950 

Crushing strength (N) 1.5 

Porosity (%) 50.5 

Specific surface area, BET (m2 g-1) 39.1 

XRD Fe2O3, α-Al2O3 

1 Determined by ICP-AES. 
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Table 3. Kinetic parameters for reaction of Fe20Al oxygen carrier particles with 

reducing (CH4, H2, CO) and oxidizing gases (O2).  

  Units CH4 H2 CO O2 

n Order of the reaction --- 0.25 0.3 0.6 0.9 

ks,0 Pre-exponential factor of ks m3n mol-n s-1 4.34·101 1.45·10-1 1.59·10-1 3.64·10-1 

Ech Activation energy for ks kJ/mol 66 8 14 23 

n’ Order of diffusion --- 0 0 0 --- 

Dpl,0 Pre-exponential factor of Dpl m3n’ mol-n’ s-1 9.80·1030 1.40·1013 2.29·109 --- 

Epl Activation energy for Dpl kJ/mol 672 288 204 --- 

kX,0 Pre-exponential factor of kX --- 20 14 10 --- 

EX Activation energy for kX kJ/mol 0 0 0 --- 
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Table 4. Minimum solids inventories for CH4, H2 and CO combustion in fuel and air 

reactors of a CLC unit with Fe20Al as oxygen carrier (T = 1223 K). 

 CH4 H2 CO 

Min. solids inventory in FR (kg) 54 37 42 

Min. solids inventory in AR (kg) 95 79 68 

Min. total solids inventory (kg) 149 116 109 

 



65 

 

Appendix A. Determination of solids inventory. Modification to the calculation 

method proposed by Abad et al. [29] considering that complete reduction of the 

oxygen carrier was not possible owing to diffusional limitations. 

Considering the reaction kinetics obtained in this work, it can be assumed that 

diffusion-controlled reaction does not take place to any relevant extension in a CLC unit 

because this takes much more time than the average residence time of particles in the 

fuel reactor. Thus, additional expressions were defined in order to calculate the total 

solids inventory in the fuel reactor for the case where the oxygen carrier is only reduced 

up to solids conversion values within the range at which the reduction is controlled by 

chemical reaction. 

Thus, the solids conversion had to be recalculated to be used in Eqs (22) and (23). 

Namely, the active Fe2O3 content, and therefore the actual oxygen transport capacity 

'
OCR , depends on the XS,red ch value shown in Fig. 12 as 

OCchredSOC RXR  ,
'    (A.1) 

Therefore, the solid fraction reacting with slow diffusion-controlled reaction is assumed 

to be inert. The solids inventory in the fuel reactor can be calculated in these conditions 

as follows: 

'

, 0 ' '

2 1O r
OC FR

C OC FR

d M
m

H R

  
  

 
   (A.2) 

Fig. A.1 (a) illustrates an example of a conversion vs time curve for CH4 combustion 

from which both '
r  and chredSX ,  parameters can be calculated. chredSX ,  is the maximum 

conversion reached by the oxygen carrier particles when the reduction reaction is 

controlled by chemical reaction. The time corresponding to this reduction conversion is 
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defined as '
r . The calculation method considers a modified conversion '

, redSX , which 

ranges from 0 to 1 when the solids conversion varies from 0 to chredSX , . '
r  can be 

determined at each temperature and reducing gas concentration with the kinetic data 

obtained in this work as 

'
,  r s red ch rX       (A.3) 

Thus, it was deduced that 

'

'
r r

OC OCR R

 
   (A.4) 

and consequently, Eq. (A.2) can be written as 

, 0 '

2 1O r
OC FR

C OC FR

d M
m

H R

  
  

 
   (A.5) 

The characteristic reactivity in the fuel reactor was also redefined according to the 

following expression:   

 















 '

'

'
,'

1
exp1 FR

S

FRinredS
FR X

X
   (A.6) 

where '
, FRinredSX  and '

SX  are calculated as (see Fig. A1 (b)): 

chredSFRinredS
chredS

FRinredS
FRinredS XX

X

X
X ,,

,

,'
, ,     (A.7) 

chredSS
chredS

S
S XX

X

X
X ,

,

' , 


    (A.8) 

Furthermore, '
, FRinoxsX  can be calculated as: 
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min,

min,,'
, 1 oxS

oxSFRinoxS
FRinoxS X

XX
X




    (A.9) 

Considering that chredSoxS XX ,min, 1 , FRinoxSX ,  can be defined according to Eq. 

(A.10) as follows: 

 chredSchredSFRinoxSFRinoxS XXXX ,,
'

,, 1    (A.10) 
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Fig. A.1. (a) Determination of '
r  and chredSX ,  parameters from reduction conversion vs 

time curve (Fig. 5a). (b) Normalized reduction conversion vs time curve when the 

reduction reaction is controlled by chemical reaction. Operating conditions: reducing 

gas, 15 vol% CH4; temperature: 1223 K. 

 

 


