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High-energy collective electronic excitations in layered transition-metal dichalcogenides
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We characterize experimentally and theoretically the collective electronic excitations in two prototypical
layered transition-metal dichalcogenides, NbSe2 and Cu0.2NbS2. The energy- and momentum-dependent
dynamical structure factor was measured by inelastic x-ray scattering (IXS) spectroscopy and simulated by
time-dependent density-functional theory. We find good agreement between theory and experiment, provided
that Nb semicore states are taken into account together with crystal local-field effects. Both materials have very
similar spectra, characterized by two main plasmons at 9 and 23 eV, which we show to both have π + σ character
on the basis of a detailed analysis of the band structure. Finally, we discuss the role of the layer anisotropy in the
dispersion of these plasmons.
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I. INTRODUCTION

Layered materials like graphite consist of quasi-two-
dimensional sheets bound together by weak van der Waals
forces. This peculiarity together with the recent advances in
nanoscale growth and mechanical exfoliation allow isolating
single sheets to fabricate low-dimensional systems such
as zero-dimensional quantum dots or nanoparticles, one-
dimensional nanoribbons or nanotubes, and two-dimensional
nanosheets [1–3]. This makes these materials interesting
not only for practical applications but also for fundamental
understanding of collective excitations in confined geometries.
When the dimensionality is reduced, the inherent increase
in the relative importance of Coulomb interactions together
with strongly reduced screening imply that many-body effects
become particularly prominent, giving rise to new phenomena
that cannot be observed in standard three-dimensional (3D)
bulk systems. The interest in layered materials grew rapidly af-
ter the synthesis of graphene [4]. In fact, even if its unique elec-
tronic properties make this system one of the most promising
materials for future carbon-based electronics, the lack of band
gap in the electronic band structure [5,6] makes the creation
of graphene nanodevices highly nontrivial. This stimulated the
search for other families of semiconducting layered materials.
Among them, transition metal dichalcogenides (TMD) [7]
are probably the materials with the most versatile electronic
properties [8,9]. Their chemical formula is MX2, where M is a
transition metal and X a chalcogen (S, Se, and Te). In general,
their crystal structures are such that each hexagonally packed
sheet is characterized by a layer of transition metal atoms
embedded between two layers of chalcogen atoms. Atoms
within a sheet are bonded covalently, while individual sheets
are bound via weak van der Waals interaction, which makes the

properties of these materials very anisotropic as in graphite.
Depending on the transition metal M, they display metallic or
insulating behavior [7]. Metallic systems as for example NbSe2
and TaS(Se)2 exhibit remarkable low-temperature phenomena,
including the competition between superconductivity and
charge-density wave order [10]. Insulators like MoS2, on
the other hand, are indirect band gap materials in the bulk
form. However, in two dimensions they display a direct band
gap [11,12], becoming promising materials for optoelectronic
applications [13]. An essential contribution to gain insight into
the electronic structure of these materials, for both applications
and fundamental problems, can be obtained by studying
the elementary excitations that characterize their electronic
properties. In the present work, we therefore investigate the
dynamical response of TMD belonging to the 2H family
with the aim of understanding the nature of the neutral
collective excitations in these systems. Neutral excitations
(plasmons in particular) have been extensively investigated
in the past using electron energy loss spectroscopy (EELS)
[14–16]. These experiments showed that the loss function of
TMD is similar to that of graphite. In fact, for both metals
and insulators, it is possible to identify two plasmons in the
EELS spectra measured for in-plane momentum transfer: a
low-energy plasmon at about 9 eV and a high-energy plasmon
involving all valence electrons at about 23 eV. Beside these two
features, metallic TMD present also an intraband plasmon at
about 1 eV involving only the charge-carrier electrons [17–20].
However, neutral excitations in these materials have never been
studied at large momentum transfer where the short-range part
of the Coulomb interaction plays a key role. Only recent
first-principle calculations investigated the behavior of the
intraband plasmon at large momentum transfer normal to the
layers, showing that this collective excitation has a periodic

1098-0121/2014/90(12)/125125(7) 125125-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.125125


PIERLUIGI CUDAZZO et al. PHYSICAL REVIEW B 90, 125125 (2014)

behavior with the reappearance around Bragg reflections of the
plasmon of the first Brillouin zone [20]. This can be interpreted
as a clear effect of short-range charge fluctuations induced by
crystal local fields [21]. Nevertheless, the dispersion, i.e., the
energy-momentum relation, of the high energy plasmons is a
topic that to the best of our knowledge has not been investigated
so far. Inelastic x-ray scattering (IXS) spectroscopy allows
measuring the dynamical structure factor, which is related to
the imaginary part of the inverse dielectric function. Contrarily
to EELS, IXS is particularly suitable for experiments at large
momentum transfer out of the first Brillouin zone. In this way
it is possible to probe the plasmon dispersion and look at the ef-
fects of the short-range part of the Coulomb interaction, which
becomes more and more important as the momentum transfer
increases. In the following, combining IXS experiments and
first-principle calculations based on time-dependent density-
functional theory (TDDFT) [22], we present an analysis of
the high-energy collective excitations and their dispersion for
two prototypical metallic TMD, namely 2H-Cu0.2NbS2 and
2H-NbSe2. In NbSe2 the critical temperature for the phase
transition to the superconducting state is 7.2 K, and for the
charge density wave ordered phase it is 33.5 K [23]. Cu0.2NbS2

is superconducting below 2.5 K [24,25] but to our knowledge
whether charge density wave order exists has not been studied.

II. METHODS

A. Experiment

The experiment was performed at the beamline ID20 of the
European Synchrotron Radiation Facility. The radiation was
produced utilizing three undulators with 32-mm period. The
incident energy was selected with a Si(111) monochromator.
The beam was focused to a spot of 15 μm × 15 μm (H × V )
on the samples using Kirkpatrick-Baez mirrors. A Johann-type
diced Si(533) analyzer with a 0.7 × 0.7 mm2 cube size was
utilized. The analyzer was masked leaving an active area of
20 × 60 (H × V ) mm2 to reach a momentum resolution of
≈0.1 Å−1. The analyzer bending radius was 1 m. The analyzer
focused the scattered radiation onto a Maxipix detector. The
monochromator and spectrometer bandpasses summed up to
an energy resolution of 1 eV.

The samples were thin platelike crystals of NbSe2 and
Cu0.2NbS2. NbSe2 and Cu0.2NbS2 powders were prepared
starting from constituting elements at stoichiometric ratio, and
the crystals were grown by thermal gradient using iodine as a
transport agent. Details of the crystal growth are described in
Ref. [26]. Sample stoichiometry was verified by standardless
energy dispersive spectrometry using a Jeol JXA-8600 electron
probe microanalyzer. Approximate dimensions of the samples
were 10 × 5 × 0.1 mm3. The samples were mounted on a
goniometer so that the c axis was in the scattering plane and
the sample orientation was determined using x-ray diffraction.
The c-axis lattice parameters were 12.54 and 12.11 Å for
NbSe2 and Cu0.2NbS2, respectively. The Cu0.2NbS2 sample
was then further tilted from the scattering plane by ≈3◦
to reduce the background from Bragg peaks and phonon
scattering when q was close to a reciprocal lattice point or
along a symmetry line. Similarly the NbSe2 was also tilted
by ≈1.5◦. The energy loss spectra were recorded with the
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FIG. 1. (Color online) Comparison between experimental (bold
line) and theoretical (thin line) spectra of Cu0.2NbS2 (a) and NbSe2

(b) evaluated at Q (in multiples of 2π/c) along the c axis with a
broadening of 1.0 eV.

inverse energy scan technique. The analyzer Bragg angle was
kept fixed at 86◦ and the incident energy was scanned from
−2 to +50 eV about a nominal incident energy of 7504.2 eV.
See Fig. 1 for the momentum transfer values. The spectra
were normalized with an incident intensity monitor signal.
For each value of q, the spectra were measured repeatedly.
The measured spectra were checked for internal consistency
after the above-mentioned normalization, and finally averaged
to yield the final spectrum. An empirically determined constant
background was subtracted from the results, which were finally
normalized to have the same area as the theoretical S(q,ω) in
the ω interval 10–40 eV.

B. Computational details

The microscopic dielectric function ε is related to the
susceptibility χ (Ref. [27]) by the relation ε−1 = 1 + vχ

(v being the Coulomb potential). In TDDFT χ is the solution
of the Dyson-like equation: χ = χ0 + χ0(v + fxc)χ , where χ0

is the Kohn-Sham (KS) susceptibility expressed in terms of KS
eigenenergies and eigenfunctions, while fxc is the exchange-
correlation kernel, for which we use the adiabatic local-density
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approximation (ALDA). When fxc = 0 we retrieve the ran-
dom phase approximation (RPA). The Fourier components
of both χ and ε are matrices in terms of the reciprocal
lattice vectors G. The macroscopic dielectric function εM

is given by εM (Q,ω) = 1/ε−1
GG(q,ω), where Q = q + G and

q is inside the first Brillouin zone. The dynamical structure
factor S(Q,ω) measured in IXS experiments is directly
related to the loss function, i.e., the imaginary part of the
inverse macroscopic dielectric function, through the following
equation:

S(Q,ω) = − �|Q|2
4π2e2n0

Im ε−1
M (Q,ω), (1)

where n0 denotes the average electron density. In the present
work the KS eigenenergies and eigenfunctions used to deter-
mine χ0 have been evaluated in the local-density approxima-
tion (LDA) implemented in a plane-wave-based code [28]. In
our calculations we adopt the experimental lattice structures
[29]. We use Troullier-Martins and Hartwigsen-Goedecker-
Hutter norm-conserving pseudopotentials [30] (with an energy
cutoff of 120 Ry) where Nb 4s 4p semicore states are not
pseudized but explicitly taken into account. In the calculation
of χ0 (Ref. [31]) we used a 24 × 24 × 12 grid of k points and
included 200 bands. The macroscopic dielectric function has
been obtained by inverting a matrix of 300 G vectors (those
parameters lead to converged results for the response function
in the range of energies and momentum studied in the present
work). Finally, the electron doping induced in the NbS2 by the
Cu atoms has been simulated by shifting upward the Fermi
level according to a simple rigid-band model.

III. RESULTS AND DISCUSSIONS

In Figs. 1(a) and 1(b) we compare the experimental spectra
of Cu0.2NbS2 and NbSe2 obtained from IXS measurements
with the theoretical ones evaluated in ALDA for momentum
transfer normal to the layers. Through TDDFT calculations,
these TMD were found to be characterised by very similar
dynamical response functions at low energies [20]. This is
now confirmed also in a higher-energy range by the present
results. In both systems the experimental loss function is
dominated by a wide peak centered at about 23 eV which is
well reproduced by the calculations. Simulated spectra display
a blueshift of this main peak of at most ∼2 eV with respect
to experiments. Besides possible effects of Cu doping beyond
a rigid-band model and the slight discrepancy between the
lattice parameters of Ref. [29] and those of the actual samples
[32], the agreement between theory and experiment could
be improved by taking into account the effect of the finite
lifetimes of the electrons and holes involved in the excitations.
They are neglected in our approach and have been shown to
cause a redshift of the plasmon energy, especially at large
momentum transfer [33–35]. In the energy window between 5
and 50 eV we can identify two other features at about 9 and
40 eV, which are visible in both theoretical and experimental
spectra. However, only the large peak at 23 eV corresponds
to a zero of Re εM (Q,ω) and it can be thus interpreted as
a collective excitation of all valence electrons. The other
two features are instead associated to interband transitions.
Finally, also the behavior of the spectra as a function of the
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FIG. 2. (Color online) Comparison between the theoretical spec-

tra (loss function) of Cu0.2NbS2 at Q = 0.77 Å
−1

along the c axis
evaluated in different approximations. In this calculations we have
used a broadening of 0.1 eV.

momentum transfer is well reproduced by our calculation. In
fact, in agreement with experiments we find that in the range

0.77 � |Q| � 1.29 Å
−1

, the large peak at 23 eV broadens but
does not disperse appreciably in energy. The overall agreement
is sufficiently good to allow us to use the results of the
calculation to perform an analysis of the spectra. In general,
the plasmon behavior is the result of several competing effects
related to the electronic band structure, crystal local fields, and
the exchange correlation, which in our approach is described
by the fxc kernel [27]. To understand the role played by
each contribution, we compare in Fig. 2 the loss functions
of Cu0.2NbS2 evaluated in different approximations: ALDA,
RPA, and RPA without local fields (called RPA-NLF in Fig. 2).
When both local fields and exchange-correlation effects are
neglected (blue line), we find that, in addition to the main
plasmon peak at 23 eV, the loss function is characterized
by a sharp peak at 36 eV which arises from independent
electron-hole pairs involving Nb 4p semicore states. The
inclusion of the crystal local fields causes a global reduction
of the oscillator strength of the spectrum (compare blue and
red lines in Fig. 2). In particular the semicore sharp peak at
36 eV is largely suppressed and blueshifted to 40 eV. This
strong depolarization effect induced by the crystal local fields
on the semicore peak is due to the localized nature of these
states.

In fact, crystal local-field effects (LFE) are related to
the inhomogeneity of the induced electronic charge (thus
appearing in the induced Hartree potential). Semicore states
are spatially strongly localized and quite polarizable, which
explains the relevance of LFE [36] and shows that LFE cannot
be neglected [37]. Finally, from the comparison of the spectra
evaluated in ALDA and RPA we can conclude that the effect of
the ALDA fxc kernel is small since it causes only a redshift of
the plasmon peak of about 0.3 eV. This in the following allows
us to neglect the kernel and interpret the spectra in RPA. High-
energy interband transitions due to Nb semicore states play a
crucial role also for the main plasmon at lower frequency [38].
In fact, when they are removed in the RPA-NLF calculation the
main plasmon at 23 eV is blueshifted by 1 eV (compare blue
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FIG. 3. (Color online) (a) Imaginary and (b) real part of the

dielectric function and (c) loss function of Cu0.2NbS2 at Q = 0.77 Å
−1

along the c axis evaluated in RPA-NLF with and without semicore
states with a broadening of 0.1 eV.

and red lines in the bottom panel of Fig. 3). The excitation
of semicore states is seen as an additional double peak in
ε2 = Im εM at ∼32–34 eV (see top-most panel in Fig. 3). This
additional peak in ε2 through the Kramers-Kronig relation
affects ε1 = Re εM in a wide energy range (see middle panel
in Fig. 3) changing the position of its zero crossing and hence
of the main plasmon. We thus conclude that Nb semicore
electrons effectively screen the main plasmon. When LFE are
taken into account, this screening effect of Nb semicore states
is strongly reduced and the main plasmon is blueshifted (see
Fig. 2). Thus, crystal local fields have two effects: a direct one,
which consists of suppressing the oscillator strength, and an
indirect one through the semicore states which modifies the
position the plasmon peak. To better illustrate the plasmon
dispersion, we show in Fig. 4 the RPA loss function evaluated
in a larger window of momentum transfer between 0.39 and

1.00 Å
−1

. The plasmon is characterized by an oscillating trend
as function of Q within a small energy range ∼23–24 eV.

Between 0.39 and 0.60 Å
−1

the plasmon dispersion is positive.

Then it becomes negative up to 0.77 Å
−1

. Finally at larger Q it
goes back to being positive. The negative dispersion is related
to the appearance of a new feature at 26 eV that increases in
intensity as the momentum transfer increases [39]. This peak,
related to interband transitions above the plasmon frequency
that are dipole forbidden at small momentum transfer but are
activated by multipole terms, screens the plasmon causing
a redshift of the peak that is stronger as Q is larger.

Finally at Q = 0.77 Å
−1

the new feature starts to disperse
positively and its effect on the plasmon becomes weaker: the
slope of the plasmon dispersion switches to positive. Thus,
the behavior of the valence plasmon is the result of two
competing effects: the intrinsic positive dispersion related to
the collective nature of the excitation and the appearance
of higher energy interband transitions at large momentum
transfer.
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FIG. 4. (Color online) RPA loss function of Cu0.2NbS2 evaluated
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units) along the c axis with a broadening of 0.1 eV. The
dashed red line is a guide for the eye.

IV. ANALYSIS OF THE SPECTRA

To gain further insight into the nature of the collective
excitations we now discuss the electronic structure of NbS2

in more detail. Similar considerations apply to NbSe2 as well,
the electronic structure of the two systems being equivalent
(compare Figs. 5 and 6). From the analysis of the density
of states projected on atomic orbitals (see Fig. 5) we find
that there is a strong hybridization between the Nb sd and
S pxy orbitals which are responsible for the formation of
covalent Nb-S bonds. In total there are 17 valence electrons per
formula unit. The covalent in-plane σ bonds are made up of
10 electrons. Among the remaining 7 electrons, one occupies
the Nb dz orbital and determines the metallic character of the
system, while the remaining 6 electrons are distributed among
the S atoms and are responsible for the interlayer van der Waals
forces. In particular 2 electrons occupy the pz state which is
close in energy to the metallic dz state, while the remaining
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FIG. 5. (Color online) Band structure and projected density of
states of NbS2. The zero of the vertical axis indicates the Fermi level.
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FIG. 6. (Color online) Same as Fig. 5 for NbSe2.

electrons give rise to two nonbonding s states below the σ

bands. Thus, in analogy with graphite the electronic band
structure of TMD can be characterized by π and σ states
[7,40]. The latter are responsible for in-plane covalent bonds
and cause a band gap opening in the band structure. The former
involving the pz and dz states of S and Nb atoms respectively
are responsible for the interlayer forces and are located inside
the σ -σ ∗ band gap. Therefore, from this analysis of the band
structure we can identify three kinds of interband transitions:
the low-energy π -π∗ transitions and the overlapping σ -σ ∗ and
π -σ ∗ transitions at higher energy. With this picture in mind we
now come back to our spectra. The layered structure of TMD
gives rise to an anisotropic dielectric function. Figure 7(a)
shows the real and imaginary parts of the dielectric function,
εM = ε1 + iε2, evaluated neglecting LFE for small Q parallel
and perpendicular to the layers (“in-plane” and “out-of-plane,”
respectively). Besides the intraband peak (not shown), the
in-plane ε2 [black line in Fig. 7(a)] is characterized by two main
features at 2.9 and 4.6 eV related to π -π∗ and σ -σ ∗ transitions
respectively. In the out-of-plane ε2 [red line in Fig. 7(a)] the
first peak is suppressed and the oscillator strength is transferred
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FIG. 7. (Color online) Real and imaginary part of the macro-
scopic dielectric function, εM = ε1 + iε2, of Cu0.2NbS2 evaluated

at Q = 0.09 Å
−1

with a broadening of 0.1 eV (a) neglecting and
(b) taking into account LFE.
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FIG. 8. (Color online) Comparison between the RPA spectra
of Cu0.2NbS2 evaluated for in-plane and out-of-plane momentum

transfer Q = 0.09 Å
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with a broadening of 0.1 eV.

to higher-energy interband transitions between 4.7 and 5.5 eV,
which involve mainly π and σ ∗ bands.

Thus, like in graphite [41], π -π∗ and σ -σ ∗ transitions
dominate the optical spectrum for in-plane Q, while for out-of-
plane Q the main contribution comes from π -σ ∗ transitions.
The main difference with graphite is that in this case, since π

and σ bands overlap between them, σ -σ ∗ and π -σ ∗ transitions
are not completely separated and are very close to the π -π∗
ones. This has important consequences on the shape of the
loss function. In fact, contrarily to what happens in graphite,
due to the proximity of the σ states, π electrons are not able
to sustain collective excitations alone. On the other hand ε1

goes to zero at a frequency larger than the energy of the
σ -σ ∗ (π -σ ∗) electron-hole pairs giving rise to a plasmon at
9 eV [see lower panel in Fig. 7(a)]. As a consequence, this
collective excitation is not a pure π plasmon [14,15] as in
graphite, but it presents σ character as well. The only collective
excitation involving solely π states in TMD is hence the
intraband plasmon originating from the Nb dz orbital [20].
The anisotropy in the dielectric function is also clearly visible
when LFE are taken into account [41] since the induced charge
is specially more homogeneous in the plane of the layers than
in the direction perpendicular to them. In fact, we find that
LFE are almost negligible for in-plane ε2 [compare black lines
in Figs. 7(a) and 7(b)] while they are stronger for out-of-plane
ε2 [compare red lines in Figs. 7(a) and 7(b)], where the
π -σ ∗ peak is strongly suppressed and blueshifted towards the
plasmon energy. These depolarization effects on ε2 affect also
ε1 through the Kramers-Kronig relations [see the lower panel
in Fig. 7(b)]. Due to the suppression of ε2, the out-of-plane
ε1 remains positive in the low-energy region of the spectrum
and thus the plasmon at 9 eV is completely suppressed. In
other words, the damping induced by π -σ ∗ electron-hole pairs
is so strong that the system is not able to sustain collective
excitations at low energy for out-of-plane Q: the 9 eV plasmon
is much more visible for in-plane Q (see Fig. 8). The anisotropy
affects also the higher-energy part of the spectrum. In fact, the
depolarization effect induced by LFE on the semicore peak
is weaker for in-plane Q. As a consequence, for in-plane Q
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the interband transitions involving semicore states are more
efficient in screening the main plasmon that is redshifted by
about 2 eV with respect to what is observed for out-of-plane Q
(compare black and red lines in Fig. 8). Finally, we discuss the
effect of the anisotropy on the dispersion of the high-energy
plasmon. As we have seen in the previous section, the lack
of dispersion for out-of-plane Q is related to the activation of
high-energy interband transitions at large momentum transfer,
which screen the plasmon frequency. From our analysis of
the electronic structure, we can ascribe these transitions to
electron-hole pairs involving the low energy nonbonding S s

orbitals and high-energy σ ∗ states. They are dipole forbidden
for out-of-plane Q, but are activated by multipole terms as Q
increases. The effect related to the activation of these multipole
excitations is instead not visible for the in-plane polarizations,
since in this case the various transitions are already allowed in
the dipole limit. As a consequence they do not affect the in-
plane plasmon dispersion which remains positive (see Fig. 9).

V. CONCLUSIONS

In conclusion, combining state-of-the-art IXS experiments
and TDDFT calculations we have investigated the collective
excitations in two prototypical TMD, namely Cu0.2NbS2 and
NbSe2. Provided that the Nb semicore states are explicitly
taken into account in the calculation, we find good agreement
between experiment and theory already at the level of
the random-phase approximation. In particular, besides the
intraband plasmon [20] at ∼1 eV, also at high energies these
materials show very similar loss spectra, characterized by two
plasmons at ∼9 eV and at ∼23 eV. From the detailed analysis
of the band structure we have identified a π + σ character
for both plasmons. We have discussed in detail the role the
anisotropy associated to the layered structure of TMD, also in
connection with the different effect of crystal local fields for a
momentum transfer Q within the layers or normal to them. The
9 eV plasmon is visible for in-plane Q, while for Q parallel to
the c axis it is strongly damped by single-particle excitations,
as a result of which it is completely washed out in the electron
hole continuum. The 23 eV plasmon has a positive dispersion
for in-plane Q, while for for Q parallel to the c axis it has an
oscillating behavior. This is due to the activation at large Q
of dipole-forbidden interband transitions at energy above the
plasmon frequency.
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c = 12.55 Å for NbSe2, as in Ref. [29].

[33] H.-Ch. Weissker, J. Serrano, S. Huotari, F. Bruneval, F. Sottile,
G. Monaco, M. Krisch, V. Olevano, and L. Reining, Phys. Rev.
Lett. 97, 237602 (2006).

[34] M. Cazzaniga, H.-Ch. Weissker, S. Huotari, T. Pylkkänen,
P. Salvestrini, G. Monaco, G. Onida, and L. Reining, Phys.
Rev. B 84, 075109 (2011).

[35] S. Huotari, M. Cazzaniga, H.-Ch. Weissker, T. Pylkkänen,
H. Müller, L. Reining, G. Onida, and G. Monaco, Phys. Rev. B
84, 075108 (2011).

[36] N. Vast, L. Reining, V. Olevano, P. Schattschneider, and
B. Jouffrey, Phys. Rev. Lett. 88, 037601 (2002).

[37] P. Johari and V. B. Shenoy, ACS Nano 5, 5903 (2011);
P. Cudazzo, M. Gatti, and A. Rubio, New J. Phys. 15, 125005
(2013).

[38] M. Gatti, Ph.D. thesis, Ecole Polytechnique,
2007, http://etsf.polytechnique.fr/sites/default/files/users/
matteo/matteo_thesis.pdf; L. Dash, F. Bruneval, V. Trinité,
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