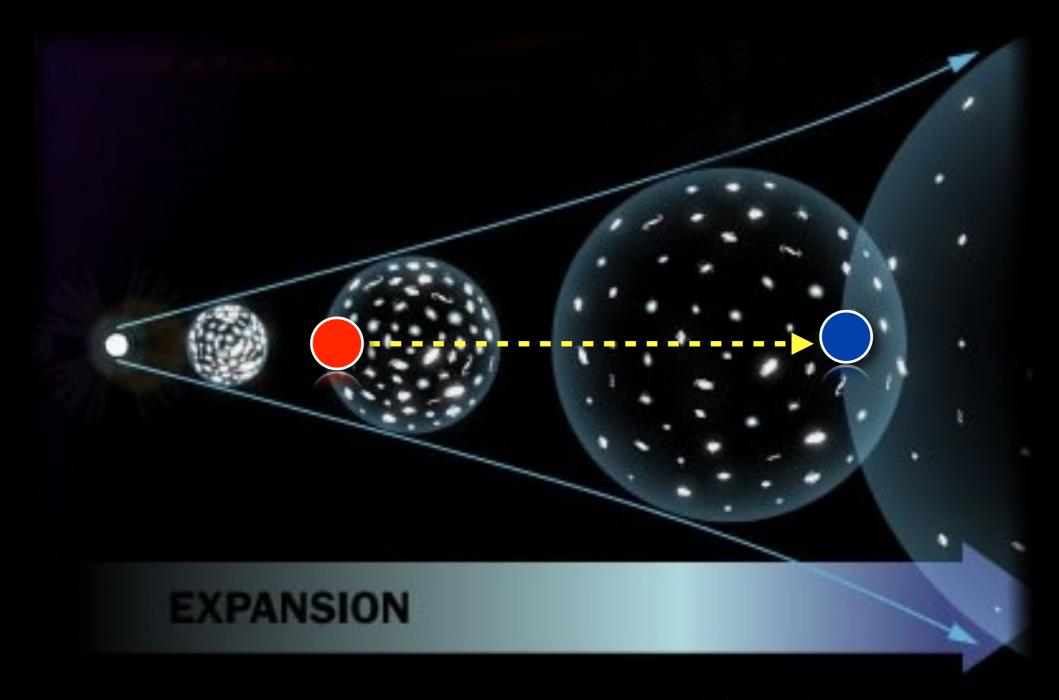
A GLIMPSE OF THE EARLY UNIVERSE WITHOUT REAL LIGHT

arXiv:1501.01650

ANA BLASCO

Universidad Complutense de Madrid

In collaboration with MERCEDES MARTÍN-BENITO LUIS J. GARAY, EDUARDO MARTÍN-MARTÍNEZ



Transmission of information from the early Universe to the current era

STRONG HUYGENS PRINCIPLE

THE RADIATION GREEN'S FUNCTION OF A MASSLESS SCALAR FIELD HAS SUPPORT ONLY ON THE LIGHT-CONE

→ THE COMMUTATOR HAS SUPPORT ONLY ON THE LIGHT-CONE

$$\Box G(x, x') = -4\pi \delta_4(x, x') \qquad [\Phi(x), \Phi(x')] = \frac{i}{4\pi} G(x, x')$$

- True in 3+1 Flat spacetime
- Violated in general if there is curvature (unless there is conformal invariance)

[McLenaghan, Sonego, Faraoni, ...]

VIOLATION OF THE STRONG HUYGENS PRINCIPLE: CONSEQUENCES ON RELATIVISTIC QUANTUM COMMUNICATION in COSMOLOGY

In curved spacetimes, communication through massless fields is not confined to the light-cone, but there can be a leakage of information towards the inside of the light-cone.

Robert H. Jonsson, Eduardo Martín-Martinez, and Achim Kempf. Quantum Collect Calling. arXiv:1405.3988, 2014.

SPACETIME GEOMETRY

SPATIALLY FLAT, OPEN FRW SPACETIME 3+1D:

$$ds^{2} = a(\eta)^{2}(-d\eta^{2} + dr^{2} + r^{2}d\Omega^{2})$$

 η : conformal time

 $a(\eta)$: scale factor

 $t\,$: cosmological time,

 $\mathrm{d}t = a(\eta)\mathrm{d}\eta$

units: $\hbar = c = 1$

This geometry will be generated by:

a perfect fluid with a constant density-to-presure ratio $\left(p=w
ho\right) \quad w>-1$

$$\longrightarrow$$
 the scale factor evolves as $a \propto \eta^{\frac{2}{3w+1}} \propto t^{\frac{2}{3(w+1)}}$

SET UP: TEST FIELD

COUPLED TO THIS BACKGROUND GEOMETRY:

SCALAR FIELD COUPLING TO GRAVITY

KLEIN-GORDON EQUATION

$$(\Box - m^2 + \xi R)\phi = 0 \qquad \Box = \frac{1}{\sqrt{|g|}} \partial_{\mu} (\sqrt{|g|} g^{\mu\nu} \partial_{\nu})$$

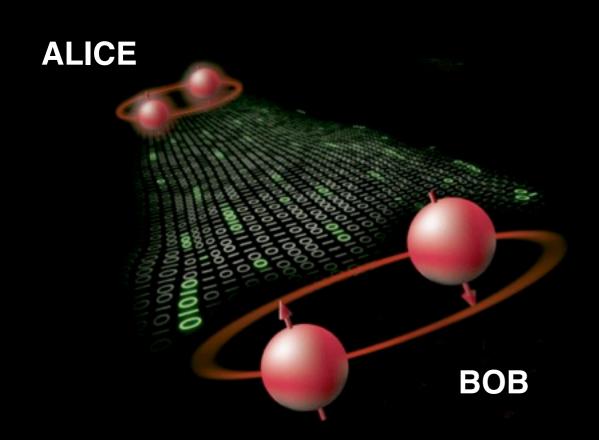
CONFORMAL COUPLING
$$\xi=$$

VS

MINIMAL COUPLING

$$\xi = 0$$

ENCODING OF INFORMATION



Alice & Bob do not have direct access to the field.

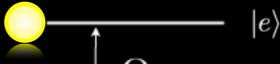
Alice makes a local perturbation of the field (let's model it with a particle detector)

Bob can perform measurements on the fielf indirectly by **locally coupling** 'particle detectors'

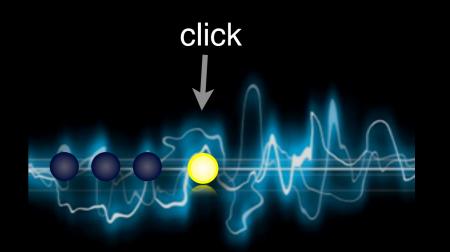
Information is **encoded** in the **quantum state of the field**

ALICE & BOB's **DETECTOR** MODEL

Unruh-DeWitt DETECTOR



-Two-level system



-Energy gap ground-excited states:

 Ω

-Monopole moment operator:

$$\mu_{\nu}(t) = |e_{\nu}\rangle\langle g_{\nu}|e^{i\Omega_{\nu}t} + |g_{\nu}\rangle\langle e_{\nu}|e^{-i\Omega_{\nu}t}$$

-Spatially smeared: $F(\vec{x},t)=rac{1}{\sigma^3\sqrt{\pi^3}}e^{-a(t)^2\vec{x}^2/\sigma^2}$

Detectors:
$$\nu = \{A, B\}$$

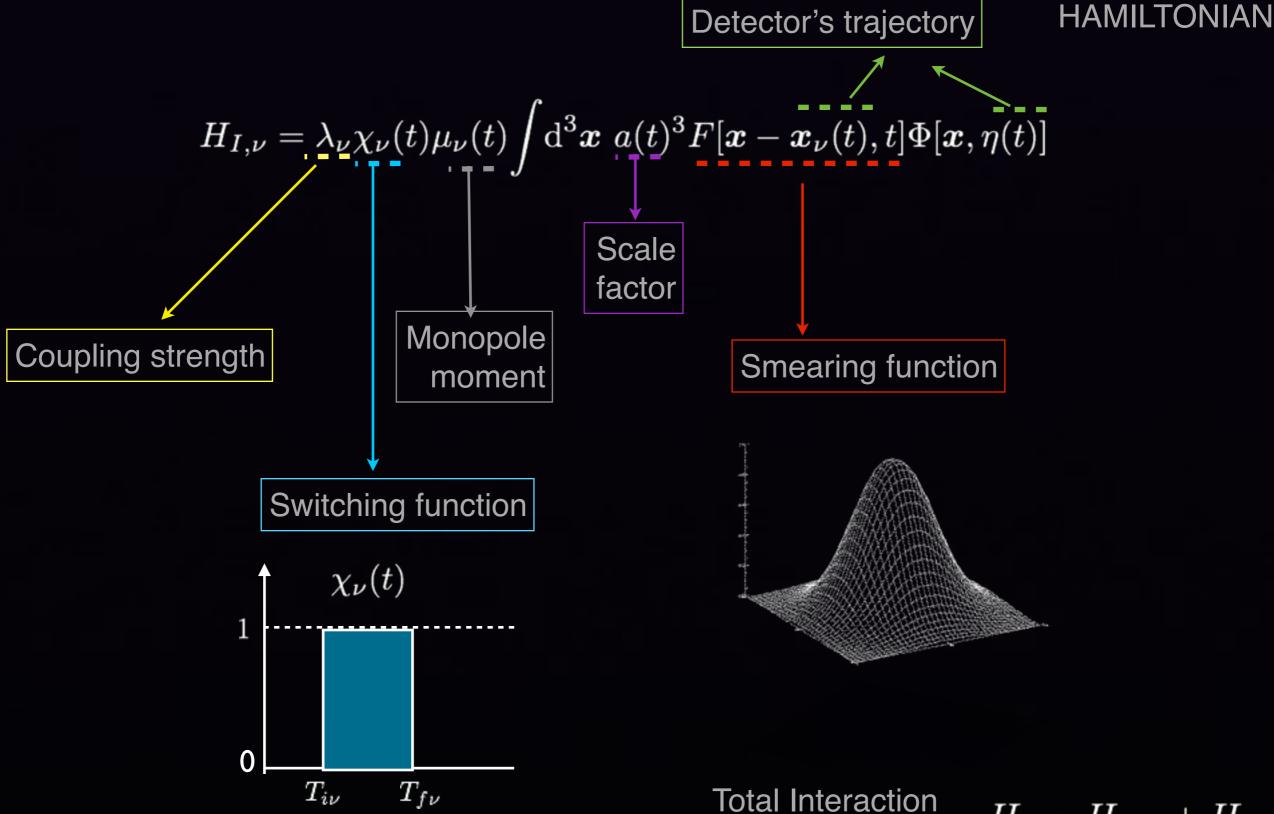
DETECTOR-FIELD INTERACTION HAMILTONIAN

$$H_{I,\nu} = \lambda_{\nu} \chi_{\nu}(t) \mu_{\nu}(t) \int d^3 \boldsymbol{x} \ a(t)^3 F[\boldsymbol{x} - \boldsymbol{x}_{\nu}(t), t] \Phi[\boldsymbol{x}, \eta(t)]$$

INTERACTION LAMILTONIANI

 $H_I = H_{I,A} + H_{I,B}$

Hamiltonian:



TRANSMISSION OF INFORMATION

Influence of the presence of A on B ———— SIGNALING ESTIMATOR, S

how much information can be sent? ———— CHANNEL CAPACITY, C

How is B's excitation probability modulated by the interaction of A with the field?

-Initial state:
$$\rho_0 = \rho_{A0} \otimes \rho_{B0} \otimes |0\rangle\langle 0|$$

$$\rho_{\nu 0} = |\psi_{\nu 0}\rangle\langle\psi_{\nu 0}|$$

$$|\psi_{\nu 0}\rangle = \alpha_{\nu}|e_{\nu}\rangle + \beta_{\nu}|g_{\nu}\rangle$$

-At time
$$T$$
: $ho(T) = U_T
ho_0 U_T^\dagger$

Taking λ_{ν} small, perturbative expansion: $U_T = \mathbb{I} + U_T^{(1)} + U_T^{(2)}$

$$U_T = \mathbb{I} + U_T^{(1)} + U_T^{(2)}$$

$$\rho_B(T) \simeq \text{Tr}_{A,\Phi} \left[\rho_0 + U_T^{(1)} \rho_0 + \rho_0 U_T^{(1)\dagger} + U_T^{(1)} \rho_0 U_T^{(1)\dagger} + U_T^{(2)} \rho_0 + \rho_0 U_T^{(2)\dagger} \right]$$

How is B's excitation probability modulated by the interaction of A with the field?

-Initial state:
$$\rho_0 = \rho_{A0} \otimes \rho_{B0} \otimes |0\rangle\langle 0|$$

$$\rho_{\nu 0} = |\psi_{\nu 0}\rangle\langle\psi_{\nu 0}|$$

$$|\psi_{\nu 0}\rangle = \alpha_{\nu}|e_{\nu}\rangle + \beta_{\nu}|g_{\nu}\rangle$$

-At time
$$T$$
: $ho(T) = U_T
ho_0 U_T^\dagger$

Taking λ_{ν} small, perturbative expansion: $U_T = \mathbb{I} + U_T^{(1)} + U_T^{(2)}$

$$U_T = \mathbb{I} + U_T^{(1)} + U_T^{(2)}$$

$$\rho_B(T) \simeq \rho_{B0} + \lambda_B^2 \left(\cdots \right) + \lambda_A \lambda_B \left(S_2 \cdots \right) + \mathcal{O}(\lambda_\nu^4)$$

$$S = \lambda_A \lambda_B S_2 + \mathcal{O}(\lambda_\nu^4)$$

SIGNALING ESTIMATOR, S

$$S = \lambda_A \lambda_B S_2 + \mathcal{O}(\lambda_\nu^4)$$

$$S_2 = 4 \int dt \int dt' \chi_A(t) \chi_B(t') \operatorname{Re}(\alpha_A^* \beta_A e^{i\Omega_A t}) \operatorname{Re}(\alpha_B^* \beta_B e^{i\Omega_B t'} [\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t'])$$

SIGNALING ESTIMATOR, S

$$S = \lambda_A \lambda_B S_2 + \mathcal{O}(\lambda_
u^4)$$
 (INDEPENDENT OF STATE OF Φ)

$$S_2 = 4 \int dt \int dt' \chi_A(t) \chi_B(t') \operatorname{Re}(\alpha_A^* \beta_A e^{i\Omega_A t}) \operatorname{Re}(\alpha_B^* \beta_B e^{i\Omega_B t'} [\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t'])$$

CONFORMAL COUPLING

$$[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = \frac{i}{4\pi} \frac{\delta(\Delta \eta + R) - \delta(\Delta \eta - R)}{a(t)a(t')R}$$

$$\Delta \eta = \eta(t) - \eta(t')$$

$$R = \parallel \vec{x}_A - \vec{x}_B \parallel$$

CONFORMAL COUPLING

$$[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = \frac{i}{4\pi} \frac{\delta(\Delta \eta + R) - \delta(\Delta \eta - R)}{a(t)a(t')R}$$

Decay with Spatial separation

CONFORMAL INVARIANCE NO VIOLATION OF STRONG HUYGENS PRINCIPLE

CONFORMAL COUPLING

$$[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = \frac{\mathrm{i}}{4\pi} \frac{\delta(\Delta \eta + R) - \delta(\Delta \eta - R)}{a(t)a(t')R}$$

Decay with Spatial separation

BUT...WHAT HAPPENS IF WE CONSIDER MINIMAL COUPLING?

MINIMAL COUPLING

$$[\Phi(\vec{x}_A,t),\Phi(\vec{x}_B,t')] = \mathrm{i} \frac{\theta(-\Delta\eta) - \theta(\Delta\eta)}{\pi^2 a(t) a(t') R} \int_0^\infty dk \sin(kR) g_\alpha(\eta(t),\eta(t'),k)$$

$$g_{\alpha}(\eta, \eta', k) = \sqrt{\frac{\eta}{\eta'}} \frac{J_{\alpha}(k\eta)Y_{\alpha}(k\eta') - Y_{\alpha}(k\eta)J_{\alpha}(k\eta')}{Y_{\alpha}(k\eta')\left[J_{\alpha-1}(k\eta') - J_{\alpha+1}(k\eta')\right] - J_{\alpha}(k\eta')\left[Y_{\alpha-1}(k\eta') - Y_{\alpha+1}(k\eta')\right]}$$

$$J_{lpha}$$
 , Y_{lpha} BESSEL FUNCTIONS $\qquad \alpha = rac{3-3w}{6w+2}$

MINIMAL COUPLING

$$[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = i \frac{\theta(-\Delta \eta) - \theta(\Delta \eta)}{\pi^2 a(t) a(t') R} \int_0^\infty dk \sin(kR) g_\alpha(\eta(t), \eta(t'), k)$$

$$g_{\alpha}(\eta, \eta', k) = \sqrt{\frac{\eta}{\eta'}} \frac{J_{\alpha}(k\eta)Y_{\alpha}(k\eta') - Y_{\alpha}(k\eta)J_{\alpha}(k\eta')}{Y_{\alpha}(k\eta')\left[J_{\alpha-1}(k\eta') - J_{\alpha+1}(k\eta')\right] - J_{\alpha}(k\eta')\left[Y_{\alpha-1}(k\eta') - Y_{\alpha+1}(k\eta')\right]}$$

$$J_{m{lpha}}$$
 , $Y_{m{lpha}}$ BESSEL FUNCTIONS $lpha = rac{3-3w}{6w+2}$

$$\begin{array}{ccc} w = 0 \\ \alpha = 3/2 \end{array} \longrightarrow a \propto \eta^2 \propto t^{2/3}$$

$$[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = \frac{i}{4\pi} \left[\frac{\delta(\Delta \eta + R) - \delta(\Delta \eta - R)}{a(t)a(t')R} + \frac{\theta(-\Delta \eta - R) - \theta(\Delta \eta - R)}{a(t)a(t')\eta(t)\eta(t')} \right]$$

CONFORMAL COUPLING

$$[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = \frac{i}{4\pi} \frac{\delta(\Delta \eta + R) - \delta(\Delta \eta - R)}{a(t)a(t')R}$$

Decay with Spatial separation

MINIMAL COUPLING

$$[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = \frac{i}{4\pi} \left[\frac{\delta(\Delta \eta + R) - \delta(\Delta \eta - R)}{a(t)a(t')R} + \frac{\theta(-\Delta \eta - R) - \theta(\Delta \eta - R)}{a(t)a(t')\eta(t)\eta(t')} \right]$$

CONFORMAL COUPLING

support on the light cone

 $[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = \frac{i}{4\pi} \frac{\delta(\Delta \eta + R) - \delta(\Delta \eta - R)}{a(t)a(t')R}$

Decay with Spatial separation

MINIMAL COUPLING

VIOLATION OF STRONG HUYGENS PRINCIPLE !!!!

$$[\Phi(\vec{x}_A, t), \Phi(\vec{x}_B, t')] = \frac{\mathrm{i}}{4\pi} \left[\frac{\delta(\Delta \eta + R) - \delta(\Delta \eta - R)}{a(t)a(t')R} + \frac{\theta(-\Delta \eta - R) - \theta(\Delta \eta - R)}{a(t)a(t')\eta(t)\eta(t')} \right]$$

Does NOT decay with Spatial separation

Timelikeleakage

CHANNEL CAPACITY

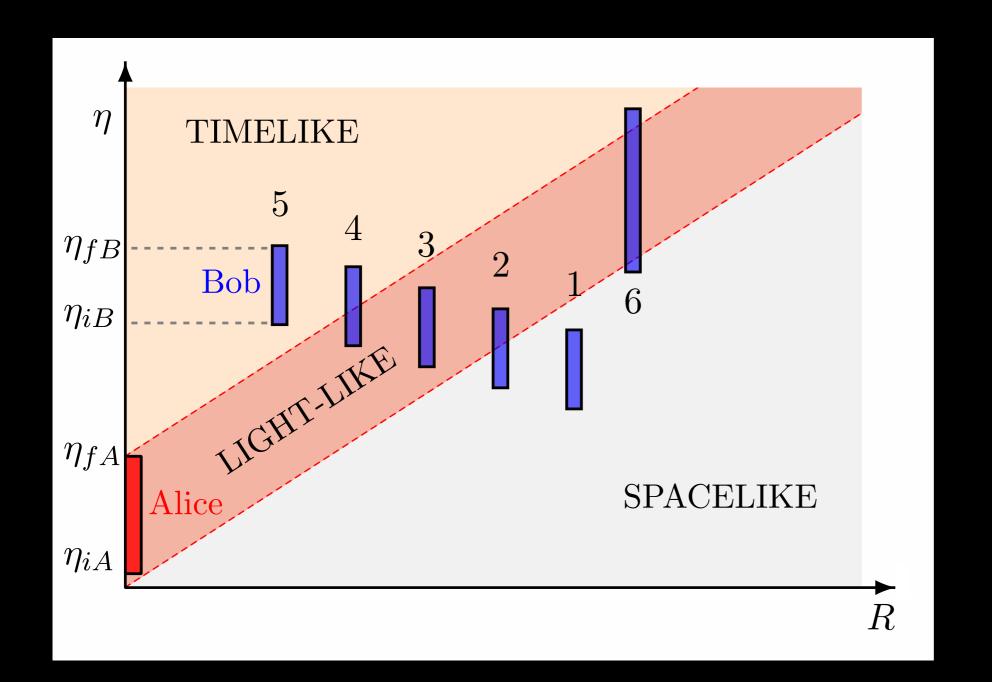
To obtain a lower bound to the channel capacity, we use a simple **COMMUNICATION PROTOCOL:**

- Alice encodes "1" by coupling her detector A to the field, and "0" by not coupling it.
- Later **Bob** switches on B and measures its energy. If B is excited, Bob interprets a "1", and a "0" otherwise.

$$C \simeq \lambda_A^2 \lambda_B^2 \frac{2}{\ln 2} \left(\frac{S_2}{4|\alpha_B||\beta_B|} \right)^2 + \mathcal{O}(\lambda_\nu^6)$$

(noisy asymetric binary channel)

A&B **CAUSAL** RELATIONSHIPS

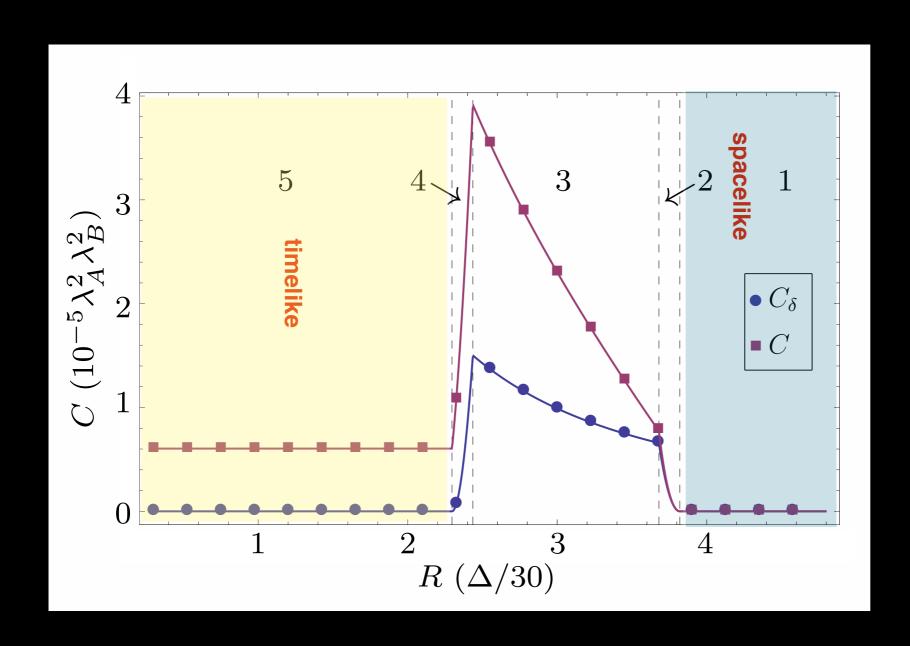


$$\eta_{i\nu} \equiv \eta(T_{i\nu})$$

$$\eta_{f\nu} \equiv \eta(T_{f\nu})$$

CHANNEL CAPACITY

VARIATION WITH THE SPATIAL SEPARATION BETWEEN ALICE AND BOB

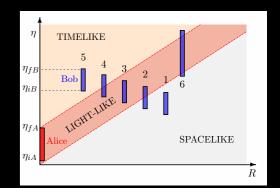


$$|\psi_{\nu 0}\rangle = \alpha_{\nu}|e_{\nu}\rangle + \beta_{\nu}|g_{\nu}\rangle$$

 $|\alpha_A| = |\beta_A| = 1/\sqrt{2}$
 $\arg(\alpha_A) - \arg(\beta_A) = \pi$
 $\arg(\alpha_B) - \arg(\beta_B) = \pi/2$

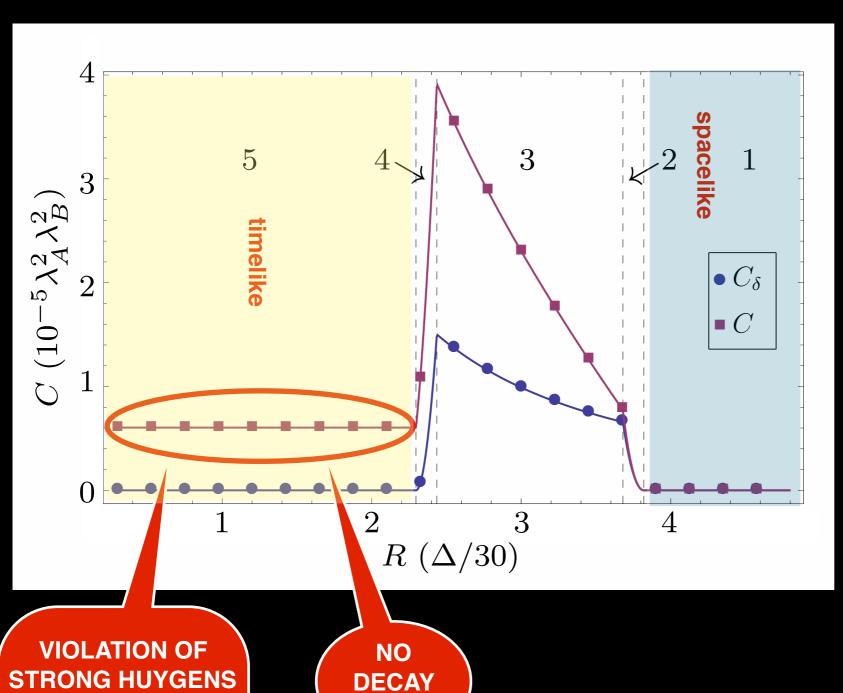
$$T_{fA} - T_{iA} = T_{fB} - T_{iB} = \Delta$$

$$T_{iA} = \Delta/30$$
 $T_{iB} = 10\Delta$



CHANNEL CAPACITY

VARIATION WITH THE SPATIAL SEPARATION BETWEEN ALICE AND BOB



with R

$$|\psi_{\nu 0}\rangle = \alpha_{\nu}|e_{\nu}\rangle + \beta_{\nu}|g_{\nu}\rangle$$

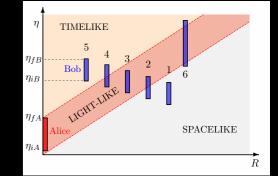
$$|\alpha_A| = |\beta_A| = 1/\sqrt{2}$$

$$\arg(\alpha_A) - \arg(\beta_A) = \pi$$

$$arg(\alpha_B) - arg(\beta_B) = \pi/2$$

$$T_{fA} - T_{iA} = T_{fB} - T_{iB} = \Delta$$

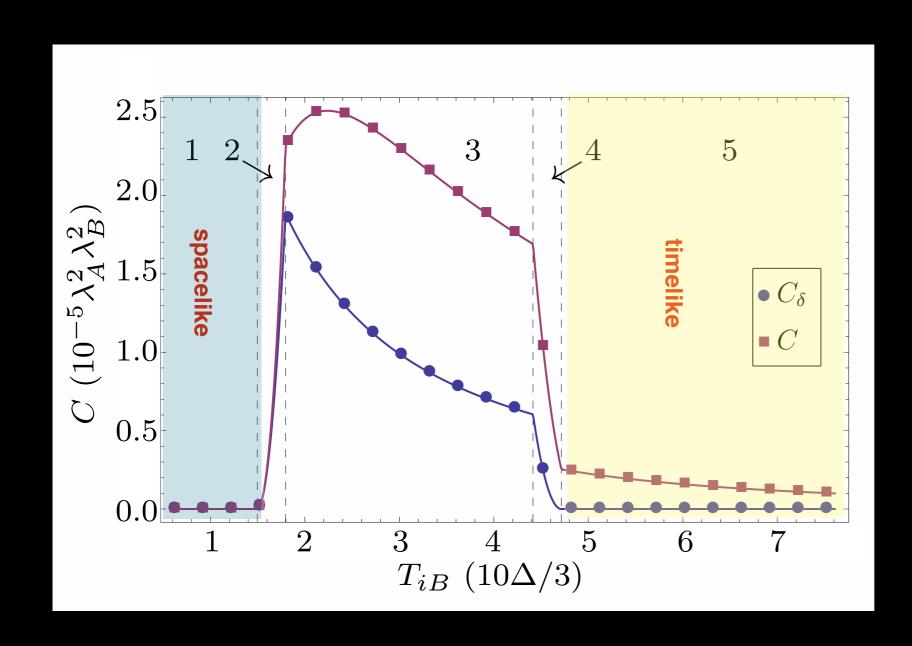
$$T_{iA} = \Delta/30$$
 $T_{iB} = 10\Delta$



PRINCIPLE !!!!

CHANNEL CAPACITY

VARIATION WITH THE TEMPORAL SEPARATION BETWEEN ALICE AND BOB

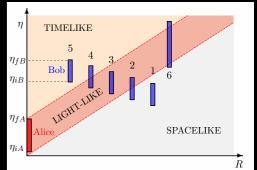


$$|\psi_{\nu 0}\rangle = \alpha_{\nu}|e_{\nu}\rangle + \beta_{\nu}|g_{\nu}\rangle$$

 $|\alpha_A| = |\beta_A| = 1/\sqrt{2}$
 $\arg(\alpha_A) - \arg(\beta_A) = \pi$
 $\arg(\alpha_B) - \arg(\beta_B) = \pi/2$

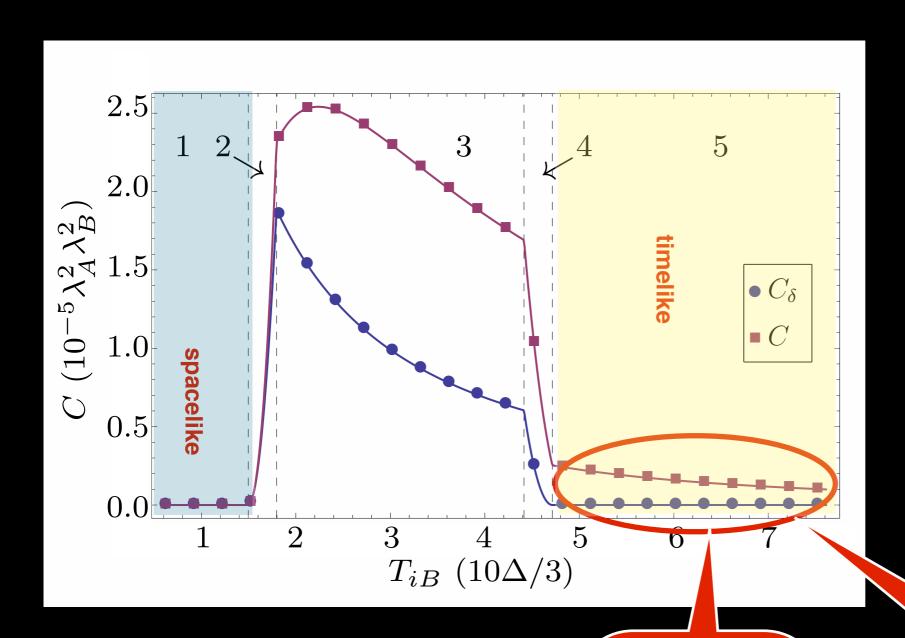
$$T_{fA} - T_{iA} = T_{fB} - T_{iB} = \Delta$$

$$T_{iA} = \Delta/30$$
 $R = \Delta/10$



CHANNEL CAPACITY

VARIATION WITH THE TEMPORAL SEPARATION BETWEEN ALICE AND BOB



$$|\psi_{\nu 0}\rangle = \alpha_{\nu}|e_{\nu}\rangle + \beta_{\nu}|g_{\nu}\rangle$$

$$|\alpha_A| = |\beta_A| = 1/\sqrt{2}$$

$$arg(\alpha_A) - arg(\beta_A) = \pi$$

$$arg(\alpha_B) - arg(\beta_B) = \pi/2$$

$$T_{fA} - T_{iA} = T_{fB} - T_{iB} = \Delta$$

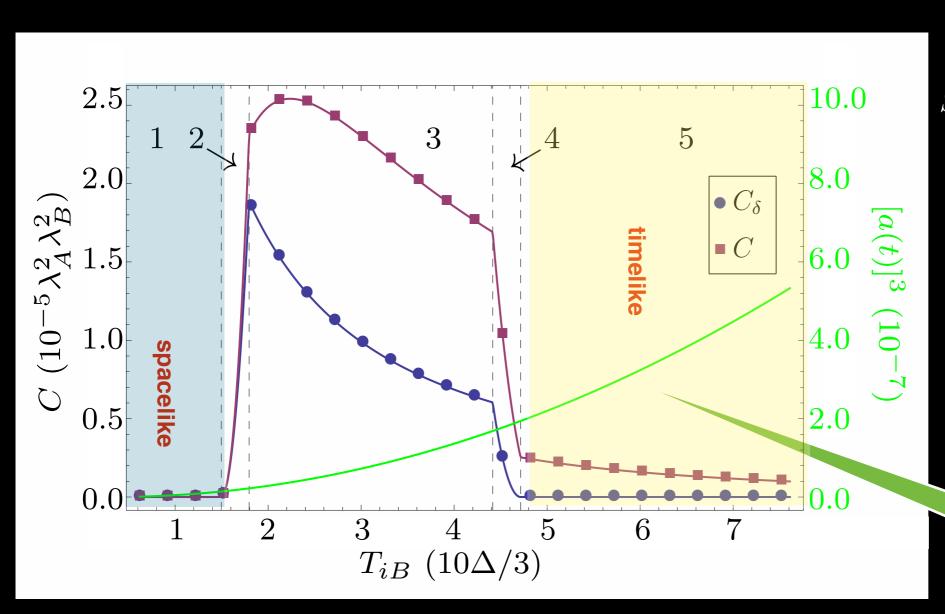
$$T_{iA} = \Delta/30$$
 $R = \Delta/10$

DECAY, could we compensate it?

VIOLATION OF STRONG HUYGENS PRINCIPLE !!!!

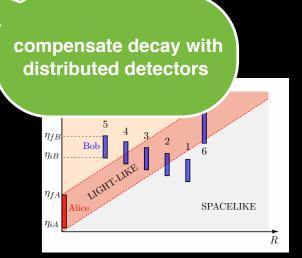
CHANNEL CAPACITY

VARIATION WITH THE TEMPORAL SEPARATION BETWEEN ALICE AND BOB



$$S_2 \propto \ln\left(\frac{\eta_{fA}}{\eta_{iA}}\right) \ln\left(\frac{\eta_{fB}}{\eta_{iB}}\right)$$

$$\eta_{iB} = \eta(T_{iB})$$



ELECTROMAGNETIC FIELD

THE ELECTROMAGNETIC TENSOR $F_{\mu\nu}$ IS CONFORMALLY INVARIANT

→ IT **DOES NOT VIOLATE** STRONG HUYGENS PRINCIPLE

THE ELECTROMAGNETIC TENSOR $F_{\mu\nu}$

IS CONFORMALLY INVARIANT

→ IT **DOES NOT VIOLATE** STRONG HUYGENS PRINCIPLE

BUT

THE ELECTROMAGNETIC POTENTIAL A_{μ} DOES VIOLATE IT

Charged currents couple to A_{μ} . Electromagnetic **antennas will see** the strong Huygens principle **violation** (in the same fashion they see e.g. the Aharonov-Bohm effect or Casimir forces.)

Conclusions

All events that generate light signals also generate timelike signals (not mediated by massless quanta exchange), that decay slower.

For a matter dominated universe we find that these signals do not decay with the spatial separation to the source. Temporal decay can be compensated by deploying a network of receivers inside the light-cone.

We particularize the discussion to a concrete channel as a mere example to illustrate the non--decaying behaviour of the information capacity.

Inflationary phenomena, early universe physics, primordial decouplings, etc, will also leave a timeline echo on top of the light signals that we receive from them.

OUR RESULTS MAY PERHAPS INSPIRE NOVEL WAYS TO LOOK AT THE EARLY UNIVERSE VIA THE TIMELIKE SIGNALS

III SCIENTISCIEN The rush to go down in astronomical history Dig that reverb Ancientechoesspeak

to us from the big bang

THANK YOU