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Abstract. The three-dimensional (3-D) otolith shapes recently included in the Anàlisi de FORmes d’Otòlits (AFORO)
database are defined by means of clouds of points across their surfaces. Automatic retrieval and classification of natural
objects from 3-D databases becomes a difficult and time-consuming task when the number of elements in the database

becomes large. In order to simplify that taskwepropose a newmethod for compacting data from3-D shapes. The newmethod
has two main steps. The first is a subsampling process, the result of which can always be interpreted as a closed curve in the
3-D space by considering the retained points in an appropriate order. The subsampling preservesmorphological information,
but greatly reduces the number of points required to represent the shape. The second step treats the coordinates of the 3-D

closed curves as periodic functions. Therefore, Fourier expansions can be applied to each coordinate, producing more
information compression into a reduced set of points. The method can reach very high information compression factors. It
also allows reconstruction of the 3-D points resulting from the subsampling process in the first step. This parameterisation

method is able to capture 3-D information relevant to classification of fish species from their otoliths, providing a greater
percentage of correctly classified specimens compared with the previous two-dimensional analysis.
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three-dimensional shape parameterisation.
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Introduction

Fish otolith morphology has been widely used in the identifi-
cation of stocks (Bird et al. 1986) and species (Schmidt 1969),
phylogenetic reconstructions (Gaemers 1983), paleontological

studies (Nolf 1985), food web analyses (Fitch and Brownell
1968), ecomorphological work (Lombarte and Fortuño 1992)
and even sex identification and age estimation (Cardinale et al.

2004; Doering-Arjes et al. 2008). In all cases, adequate and
complete information about otolith morphology is required. The
Anàlisi de FORmes d’Otòlits (AFORO) website (http://aforo.

cmima.csic.es, accessed 22 August 2015) is an open online
catalogue of otolith images. It offers image analysis for auto-
matic identification of fish species and populations using two-
dimensional (2-D) closed contours representing otolith shape

(Lombarte et al. 2006).
At present, the AFORO database contains more than 4600

images from 1440 Teleostean species, and its software tools

have been used to generate an otolith atlas (Tuset et al. 2008;
Sadighzadeh et al. 2012), morphological indices (Tuset et al.
2006), stock identifications (Capoccioni et al. 2011; Tuset et al.

2013; Sadighzadeh et al. 2014a), automatic species identifica-
tions (Parisi-Baradad et al. 2005, 2010; Tuset et al. 2012),

ecomorphological comparisons (Cruz and Lombarte 2004;
Lombarte and Cruz 2007; Sadighzadeh et al. 2014b), archaeo-
logical studies (Harrison 2009) and, most especially, prey
identifications (Veiga et al. 2011; Neves et al. 2012; Otálora-

Ardila et al. 2013; Rosas-Luis et al. 2014).
Attempts to develop three-dimensional (3-D) morphological

studies of otoliths started with the use of X-ray microtomogra-

phies (Hamrin et al. 1999) for ageing fish and were followed
by anatomical studies of the inner ear (Ramcharitar et al.

2004; Schulz-Mirbach et al. 2011, 2013; Kéver et al. 2014).

We are engaged in a SpanishNational Research Program project
titled AFORO3-D, the main objective of which is to create 3-D
morphological descriptors for whole otoliths and to provide
more effective analysis and classification tools. The possibility

of obtaining 3-D pictures will offer more reliability for the
identification of otoliths by including external side and internal
side (sulcus acusticus) curvature descriptions with high taxo-

nomic value (Smale et al. 1995; Torres et al. 2000; Campana
2004; Tuset et al. 2008; Sadighzadeh et al. 2012). Most
importantly, the software we develop will allow production

and study of virtual 3-D models without having the otoliths
actually in hand (Gauldie 1988; Popper and Fay 1993;
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Schulz-Mirbach et al. 2013).To that end, theUniversity ofGirona

(Girona, Spain; Computer Vision and Robotics Research Group,
ViCOROB) and AQSENSE Co. (see http://www.aqsense.com/,
accessed 27August 2015) have developed a purpose-built, single-

camera, 3-D scanner prototype based on projected light-emitting
diode (LED) light capable of digitising the shapes of otoliths
ranging in size from 1 mm to a few centimetres. The objective of

the present study was to create 3-D morphological descriptors of
whole otoliths for analysis, automatic classification and automat-
ic retrieval from an image database. Introducing a shape into a
computer system in order to find themost similar shape already in

the database or to fit a new 3-D natural object into a classification
by comparing it with all the shapes in the database is very time
consuming because of the huge amount of information involved

for each object; it becomes progressivelymore difficult as the size
of the database increases.

Our study of 3-D methods has focussed on otoliths of the

family Scienidae (Percifomes). The sciaenids (drums or croa-
kers) are characterised by their specialised acoustic communi-
cation. Their ability to produce sounds has long been known, as

their English common names suggest, and it is part of their
reproductive behaviour (Luczkovich et al. 1999; Ramcharitar
et al. 2001). Their sagittae are characterised by their relatively
large size (Cruz and Lombarte 2004), compared to the average

size of fish otoliths, with strong development of the external side
(Nolf 2013; Ramcharitar et al. 2004) and a specialised sulcus
acusticus (Volpedo and Echevarrı́a 2000; Monteiro et al. 2005;

Ramcharitar et al. 2006; Tuset et al. 2008; Lin and Chang 2012).

Material and methods

Scanning protocol

In order to obtain 3-D otolith surface images, samples from three
species of Scienidae (Argyrosomus regius, Sciaena umbra and

Umbrina cirrosa) were digitised, following a protocol similar to

that used to capture the images in AFORO (Lombarte et al.

2006; Tuset et al. 2008) and also used by palaeontologists
(Gaemers 1983; Nolf 1985; Schwarzhans 1996; Reichenbacher

et al. 2007). Thus, all specimens share the same positions and
orientations in the Cartesian coordinates after being digitised.
In biological terms, the x-axis corresponds to the rostrum–

postrostrum axis of the otolith. The y-axis corresponds to the
otolith’s dorso–ventral axis. The z-axis is placed midway
between the internal and external side extremes of the otolith
and represents the width of the sagitta. Application of that

protocolmakes it unnecessary to determine descriptors invariant
to rotations. The only invariancewe need to considerwith regard
to scale, and that normalisation requires a scale factor. The

otolith shape is scaled so that its length along the y-axis is 2 units
(Fig. 1); therefore, for all the 3-D otolith shapes, this axis in our
coordinate system extends from the point (0,–1,0) to (0,1,0).

The otolith digitisation process involves scanning all otolith
sides and the partial scans are joined to represent the entire 3-D
object. The final result is a file containing a cloud of points

representing the otolith’s shape. Specialised software and
a technical expert are necessary for these tasks, so they are
expensive and time consuming. Furthermore, the scanner sys-
tem is limited by otolith size and only big sagittae, like those of

the sciaenids, provide optimal results. The cloud of points
representing an otolith surface can be seen in Fig. 2.

Surface parameterisation method

The proposed method can be broken down into two parts. The

first consists of a subsampling process that generates a set of
points that can always be interpreted as on a closed curve in the
3-D space. This process preserves important morphological
information, but the number of points is markedly reduced.
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Fig. 1. Representation of the left sagittal otolith position of Argyrosomus regius according to the Cartesian coordinates of the scanning protocol.
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The second part consists of computing the discrete Fourier
transform (DFT) on each of the 3-D coordinates. Periodic
functions, such as those obtained from closed curves, can be

expanded into a Fourier decomposition. This step achieves
greater information compression by selecting a reduced set of
the Fourier coefficients to represent the shape.

Subsampling process

The subsampling process is driven by an auxiliary curve com-
posed of two paths (forward and backward) that depend on
two main parameters, P and L, selected for a particular appli-

cation: P is the even number of points retained in the subsample
and L is the number of loops that each of the two paths takes.
The forward and backward paths of the auxiliary curve that
guide the subsampling process are shown on the left side of

Fig. 3. Each point on the auxiliary curve corresponds to a point
on the otolith surface. The forward path is described by half the

points (cxn,cyn,czn) and is shown in green on the left in Fig. 3.
Those points are obtained using the following equations:

cyn ¼ �1þ 4
P
n

cxn ¼ �A sinðLp � cynÞ
czn ¼ A cosðLp � cynÞ

�������
n ¼ 0; 1; 2; :::;

P

2
� 1 ð1Þ

The points of the backward path are represented in red on the
right in Fig. 3 and are obtained using the following equations:

cyn ¼ 1� 4
P

n� p

2

� �

cxn ¼ �A sinðLp � cynÞ
czn ¼ A cosðLp � cynÞ

�������
n ¼ P

2
;
P

2
þ 1; :::;P� 1 ð2Þ

The constant A can be taken as 1 (in practice, a larger number
is used). Note that by construction the coordinate y goes from�1
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Fig. 3. The left-hand panel shows the auxiliary curves forward (from 1 to�1 on the y-axis, 1 on the z-axis) and

backward (from 1 to�1 on the y-axis,�1 on the z-axis) used to guide the subsampling process. In this example,

the number of loops L¼ 3. The right-hand panel shows a representation of the first 38 auxiliary straight lines.
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Fig. 2. Cloud-of-points on an otolith surface represented in Cartesian coordinates after its digitisation

according to the scanning protocol. The otolith represented belongs to Umbrina cirrosa.
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to 1 and comes back from 1 to �1 in regular steps. So, the
proposed subsampling process occurs by increments and decre-

ments (forward and backward paths) along the y-axis, following
the cyn points. On the right side of Fig. 3, there is a partial
representation of the lines that go from the centre of the otolith

mass to the points on the auxiliary curves.
For each of the auxiliary curve points, a set of points is

selected on the surface that belongs to the interval cyn – 2/P,
cyn# cyn þ 2/P. Those points correspond to a slice orthogonal
to the y-axis of width 4/P. If coordinates x and z of those selected
points are represented on the x–z plane, a figure similar to a
section of the shape is drawn. This idea is illustrated for a

synthetic shape in Fig. 4. Next, the coordinates mxn and mzn of
the centre of mass of each slice of points are computed to obtain
the centre of the section at the point cyn (mxn,cyn,mzn). For every

cyn point, the straight line from the centre of mass to the point on
the auxiliary curve and orthogonal to the y-axis is computed
using the coordinates of those points. That line guides the

selection-of-point process. This idea is also represented in the
illustration in Fig. 4 in which, for a given cyn, a representation of
a set of points of a section appears together with the auxiliary
line. In the x–z planes, the straight line equations are expressed

in continuous form by the following:

z� mzn

czn � mzn
¼ x� mxn

cxn � mxn

����n ¼ 0; 1; 2; :::;P� 1 ð3Þ

The last step consists of selecting the point on the otolith
surface that intersects with that line. In practice, because we

have a discretised surface, there is no point on that surface that
matches perfectly with the line, so different approaches could be
considered. One is to select the discrete point on the surface
closest to the line; another is to obtain an interpolation given

a set of candidates. Both approaches begin with selecting a
reduced set of points by narrowing the area around the line and
analysing the points of the otolith included inside. In the first

case, the region is tapered until it contains only a single point.
In the second case, the process of narrowing the space around the

line is stopped with several points inside and the point of interest
is computed from them. With the original 3-D high-resolution

otolith shapes used in our work, all these approaches perform
very similarly. Fig. 5 is a representation of the normalised otolith
cloud of points together with the auxiliary curve that guides the

subsampling.
The subsampling process finishes once all the P points of the

auxiliary curve have been processed, obtaining P points on

the otolith surface representative of otolith shape. Fig. 6 shows
the partial result of processing the forward (upper) and backward
(bottom) paths when P¼ 1600 and L¼ 20; and the complete
result for the same otolith is shown in Fig. 7.

Fig. 8 shows plots of the coordinates x, y and z for the set of
P¼ 1600 points that are represented in 3-D in Fig. 7. The x, y and
z plots can be interpreted as the fundamental period of a periodic

function. Note that the graph in the middle, once the number of
P points is chosen, is, by construction, always the same. Because
we know a priori that it contains no information, the y coordi-

nate can be discarded in the next parameterisation step. Further-
more, notice that the y coordinate is always the same for
all shapes. To provide an idea of the information reduction
achieved by the down-sampling process, the shape represented

with 150 000 real numbers in the present example could be
represented with only 3200 real numbers: those required to
represent x and z coordinates of the closed curve. Comparing

the information provided by the original shape in Fig. 2 with the
selection of points shown in Fig. 7, the reduction of points can
be appreciated. However, Fig. 7 retains the most important

morphological information from the otolith shape.

Discrete Fourier expansion of the coordinates: a fast
algorithm by fast Fourier transformation to compute
coefficients and to reconstruct closed curves

The subsampling method just presented has some particular
characteristics. Samples of the otolith surface are taken at reg-
ular increments along the y-axis, thus the velocity of the closed

x–z plane

Fig. 4. Illustration of the subsampling process. For a given yn, the set of

points is shown belonging to a slice, together with the auxiliary line. The

selected point comes from the intersection of the line with the section

boundary. This section was obtained from a synthetic shape.
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curve sampling is constant. This approach differs from that
described byKuhl and Giardina (1982), which imposes constant

sampling velocities around the closed curve for all of its x, y
and z components, not just for one (y) as described herein.
The advantage of our approach compared with that of Kuhl

and Giardina (1982) is that our approach always uses the
same number of points to obtain a closed curve from a scale-
normalised shape. In our approach, the samples are taken at

regular angular increments around the auxiliary curve; however,

the otolith sections are not regular and can differ considerably
in size, meaning that parts of the otolith are represented with

different densities of points, with more points in the small sec-
tions, usually located at the otolith extremes. The considerable
advantage of our approach is that all the closed curves obtained

are described with the same number of points (P) regardless
of the shape they describe. The user can choose the parameter
P depending on the quality of the digital data or according to a

given application.
With our subsampling process, a set of P representative

points is selected from the original surface. Their spatial
relationships are described with those points. They can also be

described by the coefficients of a Fourier expansion derived by a
DFT. The fast Fourier transform (FFT) algorithm applied to the
P representative points provides a reduced set of parameters

with which to reconstruct the closed contour of the objects. This
will be illustrated for a single coordinate x and can be extended
in a similar way to the coordinate z.

Consider the P points (xn,yn,zn) of the 3-D closed curve and
take without loss of generality only the coordinate xn, where
n¼ 0, 1,y, P � 1. By applying the DFT on xn, the DFT
coefficient Xk is computed by:

Xk ¼
XP�1

n¼0

xne
�j2p

P
nk

k¼0; 1;:::;P�1 ð4Þ

and, therefore, the original xn can be written as Xk using the

inverse DFT (IDFT) as follows:

xn ¼
1

P

XP�1

k¼0

Xke
j 2p

P
nk

n¼0;1;:::;P�1 ð5Þ

Of course, with all the DFT coefficients Xk, the reconstruc-
tion xn where n¼ 0, 1,y, P � 1 is perfect. Now, let us take

advantage of some DFT properties. Because we always
deal with xn samples that are real, from Eqn 4 it is easy to see
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the well-known property of DFT coefficients (Proakis and
Manolakis 1996):

XP�k ¼ X �
k ¼ X�k ð6Þ

where the superindex asterisk (*) in Eqn 6 stands for the

complex conjugate operation. This result means that only the

first half of complex coefficients bring information and the other

half are redundant, because they can be obtained from the first

half. Now, let us split Eqn 5 into four parts:

xn ¼
1

P
X0 þ

XP2�1

k¼1

Xke
j 2p
P
nk þ XP

2
�1ð Þnþ

XP�1

k¼P
2
þ1

Xke
j 2p
P
nk

0
@

1
A

n¼0;1;:::;P�1

ð7Þ

Then, analysing the last term of Eqn 7, rearranging the index
of its summation from the last element to the first and using Eqn

6, from simple algebra of complex numbers, we have:

XP�1

k¼P
2
þ1

Xke
j 2p
P
nk ¼

XP2�1

k¼1

XP�ke
j 2p
P
n P�kð Þ ¼

XP2�1

k¼1

X �
k e

�j2p
P
nk ð8Þ

Then, considering this term together with the second term in
Eqn 7 and taking into account that one is the complex conjugate

of the other, we can rewrite Eqn 8 as follows:

XP2�1

k¼1

Xke
j 2p
P
nkþ

XP2�1

k¼1

X �
k e

�j2p
P
nk ¼ 2

XP2�1

k¼1

Re Xk½ � cos 2p
P
nk

� �

�Im Xk½ � sin 2p
P
nk

� �
ð9Þ

Eqn 9 uses the result that the addition of a complex number
with its complex conjugate gives twice its real part. Therefore,
Eqn 5 becomes:

xn ¼
X0

P
þ 1

P
XP

2
�1ð Þnþ

XP2�1

k¼1

2Re Xk½ �
P

cos
2p
P
nk

� �

� 2Im Xk½ �
P

sin
2p
P
nk

� �
n ¼ 0; 1; :::;P� 1 ð10Þ

Note than (�1)n comes from cos 2p
P
nk

� �
when k¼P/2. Then,

if we consider the discrete Fourier expansion of the coordinate

xn, (n¼ 0, 1,. . . , P� 1) provided by the coefficients ak and bk in
the form:

xn ¼ a0 þ
XP

2

k¼1

ak cos
2p
P
nk

� �

þbk sin
2p
P
nk

� �
n ¼ 0; 1; :::;P� 1 ð11Þ

we can establish from Eqn 10 the relationship between
real coefficients ak and bk with the complex DFT coefficients
Xk as follows:

k ¼ 0 ! a0 ¼ X0

P
; b0 ¼ 0

k ¼ 1; . . . ; P
2
� 1 ! ak ¼ 2Re Xk½ �

P
; bk ¼ � 2Im Xk½ �

P

k ¼ P
2

! aP
2
¼

XP
2

P
; bP

2
¼ 0

ð12Þ

The coefficients Xk can be computed very quickly from the
P samples of xn using the FFT algorithm, and similarly the xn
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samples can be recovered very quickly fromXk using the inverse
fast Fourier transform (IFFT) algorithm. From only a reduced

set of coefficients of Xk we can reconstruct the P samples of xn,
bxnjQ, where Qþ 1 is the number of DFT coefficients employed
in the reconstruction, and easily evaluate the appropriate num-

ber of those coefficients required to properly approximate the
closed curve. So, to obtain the P samples of the reconstruction
bxnjQ from the first Qþ1 DFT coefficients of Xk, (X0,y, XQ) and

keeping Q,P/2, we must construct the following vector of
length P and take its IFFT in the following way:

x̂njQ¼ ifft X0 X1 . . .XQ 0 0 :::0X �
Q . . . X �

2 X �
1

� �� �

ð13Þ

The same applies for the z coordinate:

ẑnjQ¼ ifft Z0 Z1 . . . ZQ 0 0 :::0Z�
Q . . . Z�

2 Z�
1

� �� �

ð14Þ

Here, Zk is the DFT coefficient of zn. Then, the points of the
3-D closed curve reconstruction will take the form
(bxnjQ; yn; bznjQ) when n¼ 0, 1,y, P � 1. Note that two real

numbers are required for a pair of coefficients ak and bk, the
same as required for Xk coefficients that are complex, so the
use of both forms is equivalent, as was shown in Eqn 12. If

reconstruction of shapes from a subset of coefficients is needed,
then the use of DFT coefficients in Eqns 13 or 14 is preferable
because the P selected points of 3-D closed curves can be
recovered by performing only two one-dimensional (1-D) IFFT

algorithms, which is achieved at computational cost of order of
P� log2(P), P being the number of points (Van Loan 1992;
Proakis and Manolakis 1996).
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In order to show some reconstruction results, let us consider

the shape shown in Fig. 2, now subsampled using P¼ 800 and
L¼ 5. The set of the closed curve points requires 3� 800¼ 2400
real numbers to be represented in a 3-D space (the original cloud
of points is defined by 150 000 real numbers). Reconstructions

(the most smoothed curves) are shown in Fig. 9, together with
the true points (which are repeated in all graphics) using 10� 2,
15� 2, 30� 2, 45� 2, 60� 2 and 75� 2 complex DFT coeffi-

cients, which represent 40, 60, 120, 180, 240 and 300 real
numbers respectively.

It can be appreciated (Fig. 9) that reconstructions using more

than 100 coefficients start to become very close to the original
information. Those numbers could also be taken as a reference
of the power compression achieved by this parameterisation. For
instance, in the case shown, when 120 real numbers (30� 2) are

used, the information compression factor is greater than 1000.
To validate the present 3-D parameterisation method by

solving an automatic classification problem in a practical

context, we have performed a set of experiments. The first task
was the training of different classificationmodels based on those
parameters. The first point to deal with was the limitations

of working with a small dataset of only fourteen 3-D otolith
images. To manage the data for training and testing the models,
we used a cross-validation strategy because, for small datasets, it

gives a good estimate of the predictive accuracy of the final
trained model. Cross-validation requires multiple fits but makes
efficient use of all the data. So, in all experiments, we partitioned
the data into five divisions or ‘folds.’ Each fold is taken in turn

for testing. A model is trained for each fold using all the data
outside the fold and then the performance of eachmodel is tested
using the data inside the fold. Finally, we calculated the average

test error over all the folds. As in AFORO project (Parisi-

Baradad et al. 2010), we obtained good results with k-Nearest
Neighbour (k-NN) classifications, so we decided to use those as
basis of comparison. All the comparitor classifications were
done using the algorithms provided by the Statistics and

Machine Learning App of Matlab (MathWorks, see http://es.
mathworks.com/products/statistics/?s_tid=hp_fp_list, accessed
27 August 2015).

Comparisons of the newly paramaterised 3-D contour analy-
ses calculated in the present study with those from the 2-D
AFORO system (Parisi-Baradad et al. 2010) were performed in

terms of correct classification rate. Both parameterisations were
obtained from a set of 14 otoliths belonging to the AFORO
collection.

Results

In order to provide some descriptive information first, in this

section we show a comparison between pairs of otoliths of the
same species together with their closed curves obtained with
L¼ 5 and P¼ 800. This information is represented graphically

for A. regius (Fig. 10), S. umbra (Fig. 11) and U. cirrosa

(Fig. 12). For all three species, the closed curve captures
important morphological information about the original shape,

and the information is more similar between otoliths from
the same species than between those from different species
(Figs 13, 14). In addition, the selection of a reduced set of
coefficients produces a smoothing of the high-frequency infor-

mation, which mostly derives from individual variability, so
that consequently there is an increase of the similarity statistics
between conspecific individuals.
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To explore the effect that the parameter L, half the number of
loops in the closed curve, has on the automatic classification

success rate, we developed the following experiment. For each
value of L going from 1 to 6 and for all 3-D shapes in the
database, we computed a particular parameterisation by taking

the first 10 Fourier coefficients of both x and z closed contour
coordinates to have 40 real coefficients per shape (formed
by their real and imaginary parts). For every value of L, a

parameterisation was obtained and a classification model was
computed and tested. Very robust classification results of more

than 92% correct were obtained in all cases. The next experi-
ment was to do a feature selection process for each L in order to
get the smallest selection of coefficients (among those 40)

required to achieve, or even improve, the classification results.
The feature selection process yielded very promising results.
For some values of L, only two real coefficients (of our 3-D
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parameterisation) were required to achieve an estimated classi-
fication rate of 100%. Those results were obtained using the

same cross-validation protocol and applying k-NN classifiers.
Fig. 13 shows a scatterplot of the parameterisation composed
only by two features, the real parts of the first and the fifth

Fourier coefficients (computed, in that case, by applying the
FFT on the x closed curve coordinate originated with L¼ 3).
The parameterisation identified as Parameterisation 1, shows

that the first and fifth FFT coefficients for each species cluster
together when plotted as variables. A more general and
powerful result shows that, for each value of L in the explored

range 1–6, there are many different combinations of only
three real coefficients that allow us to train and test a perfect
classificationmodel able to achieve a correct classification rate
of 100%. Fig. 14 shows one of these three-parameter combina-

tions, in this case also obtained from the FFT of the x coordi-
nate given by L¼ 1.

Comparing both analytical methods (the 2-D AFORO v. the

proposed 3-D methods; Fig. 15), the results of 3-D analysis give
a greater percentage, reaching 100% correctly classified speci-
mens compared with 78% with the previous 2-D analysis. The

better results of 3-D analyses are related to including 3-D
structures such as the sulcus acusticus and the external dome.
In the case of S. umbra, the species that showed very poor results
in 2-D analyses (0% of correct classifications), the 3-D analysis

detects a squared and shorter cauda of the sulcus acusticus and
less-developed external dome than of the other two sciaenid
species compared in the analyses. For a wide range of parameter

L, a very small set of FFT parameters is able to capture 3-D
information relevant to classification of fish species from their
otoliths.

Discussion

We have presented herein a new parameterisation method to
represent 3-D otolith shapes that exhibits very good information
compaction properties. Themethod deals with 3-D objects using
1-D transformations, so that operations required for the para-

meterisation and reconstruction are performed very fast, espe-
cially compared with methods that use higher-dimensional
transformations (Van Loan 1992) or more complex and time-

consuming decompositions, including spherical harmonics
(Tanaka et al. 1993; Ertürk and Dennis 1997), two-variable
Fourier descriptors (Wu and Sheu 1998), harmonic maps

(Brett and Taylor 2000), spherical wavelets (Greenshields
2001), local geometric properties (Caunce and Taylor 2001),
modelling from curves (Tubić et al. 2004) or geodesic analysis

(Dam et al. 2008).
The proposed parameterisation method, in addition to its

ability to compact information, deals with objects of different
sizes with different numbers and heterogeneous densities of

shape-defining points in different regions. The interesting prop-
erty of this parameterisation is that, from a small selection of the
coefficients, it is always possible to reconstruct the x,y,z coordi-

nates. Thus, the users can maintain intuition about the object’s
shape, providing a qualitative way to evaluate the information
preserved and discarded when a selection of coefficients is

considered. The best aspect of our approach is that the para-
meterisation and reconstruction of 3-D objects only requires two
1-D, fast transformations: the FFT in the parameterisation step

and the IFFT in the reconstruction. Comparing this with previ-
ous 3-D otolith descriptions (Hamrin et al. 1999; Ramcharitar
et al. 2004; Schulz-Mirbach et al. 2011, 2013), the process of
otolith digitalisation developed under the AFORO3-D frame-

work obtained very good 3-D representations.
There is an important drawback to this method. The imaging

scanner and post-production image require a lot of human

supervision, making the process slow and expensive. However,
fast developments in 3-D technology are likely to produce faster
and lower cost imaging in the very near future (Zitek et al. 2014).
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The new outputs can be analysed using our 3-D methods.
Despite the present limitation of having very few images in
the 3-D database, our parameterisation approach seems promis-

ing for automatic retrieval and classification. For the small sets
of images available, it works perfectly when the available 2-D
methods fail.

The parameterisation method must be proven with a bigger
database in order to identify the best values of P (number of
points per curve) and L (number of loops). The results obtained

to date show that values of L from 1 to 6 are appropriate to
parameterise the shapes. Those values of L seem to provide a
balance between otolith shape preservation and robustness
against small rotations that can appear in the digitisation proto-

col. It is known that the sulcus acusticus provides important
information to identify species. The combined matching of 2-D
outlines, curvatures and sulcus features (Torres et al. 2000;

Monteiro et al. 2005; Sadighzadeh et al. 2012; Nolf 2013) seems
to be a way to improve automatic classification results in large
datasets (Parisi-Baradad et al. 2010). The proposed method

provides an elegant and efficient way to do this in a simple
3-D parameterisation.
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