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Abstract27

Besides the well-established healthy properties of pollen, Palynology and api-

culture are of extreme importance to avoid hard and fast unbalances in our

ecosystems. To support such disciplines computer vision comes to aleviate

tedious recognition tasks. In this paper we present an applied study of the

state of the art in pattern recognition techniques to describe, analyze, and

classify pollen grains in an extensive dataset specifically collected (15 types,

120 samples/type). We also propose a novel contour-inner segmentation of

grains, improving 50% of accuracy. In addition to published morphological,

statistical, and textural descriptors, we introduce a new descriptor to mea-

sure the grain’s contour profile and a logGabor implementation not tested

before for this purpose. We found a significant improvement for certain com-

binations of descriptors, providing an overall accuracy above 99%. Finally,
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some palynological features that are still difficult to be integrated in com-

puter systems are discussed.

Keywords: Apiculture, pollen, automatic classification, bright-field28

microscopy, feature extraction, Fisher discriminant analysis, image29

processing, morphology descriptors, statistical descriptors, texture30

descriptors.31

1. Introduction32

A grain of pollen contains the male vegetative and generative cells re-33

quired for fertilization of plants to ensure the development of seeds and con-34

sequently the life of plants. The study of pollen, palynology, is therefore35

of great interest in so diverse disciplines such as archeology, paleontology,36

forensics, health (allergies) or agriculture (bee products, and crop forecast).37

Specifically, bee pollen is collected by worker honey bees which is used as38

food for the entire colony. For humans it is one of the richest and purest39

natural foods, with an incredible nutritional and medicinal value [1, 2] and40

one of the most interesting facts about bee pollen is that it cannot be syn-41

thesized in a laboratory. The main nectar source and main pollen source42

differ widely with latitude, region, season, and type of vegetation, where in43

scarce nectar periods bees can harvest far away up to 3 km, i.e., in an area of44

300-2800 hectares [3]. This reflects their large pollination capacity and the45

maintenance of plant diversity which directly influences important human46

activities like agricultural and forestry production. Furthermore, bees are47

the most common pollinators with strong influence on ecological relation-48

ships, ecosystem conservation, and stability, genetic variation in the plant49

community, biodiversity, specialization, and evolution [4].50
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The pollen grains manifest a great variety of shapes, sizes, and ornamen-51

tation and their description is genetically bound to their botanical family.52

Externally, pollen grains are protected by a resistant wall called sporoderm,53

conformed by an internal layer named intine and an outer layer named ex-54

ine, where the latter exhibits in its surface distinct morphological structures55

according to the pollen type. Generally, most of them are spheroidal in equa-56

torial view, varying between oblate spheroidal and prolate spheroidal in the57

range of 8-100 µm.58

In the human activities previously mentioned a correct pollen identifica-59

tion is vital in terms of production, bio-preservation, or simply knowledge60

achievement. The recognition can be accomplished through different tech-61

niques which in general are time consuming and require highly trained paly-62

nologists who must analyze manually thousands of individual pollen grains:63

Fourier transformed infra-red from attenuated total reflectance (FTIR-ATR)64

spectroscopy represents a useful technique for identifying chemical struc-65

tures [5]; and Polymerase Chain Reaction (PCR) is a recent method for66

pollen authenticity based on molecular analysis. PCR technique stands out67

for its specificity for botanical identification. Nevertheless both techniques68

are expensive in terms of equipment and reagents, and requires several pro-69

cessing days. Finally, the most common and affordable technique is bright-70

field microscopy. This technique is time consuming too and therefore many71

efforts have been put on automated classification systems. However it re-72

mains a challenge to provide accurate pollen classifications in real scenarios.73

For a recent study that provides a comparison of the microscopy techniques,74

see [6].75
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The first attempt to automate pollen recognition was conducted in 196876

by Flenley by [7], who identified two difficulties attached to bright-field mi-77

croscopy: images partially focused and multiple grain orientations (views).78

Both are related with the reduction of 3D objects into 2D captures. The79

depth of field of optical systems allows visualization of specimens partially in80

focus. Here, the use of multifocus stacks and recent multifocus fusion tech-81

niques [8] could eventually provide more details about pollen’s surface, but82

the way of collecting information is still an open issue. On the other hand,83

morphology, surface ornamentation, and pori layout are strong indicators of84

the pollen type, but such information strongly vary with the point of view.85

Besides these inherent difficulties in capturing 3D features into 2D, two86

main obstacles hamper the current progress in this field: a) the extraction of87

knowledge from expert palynologists and b) the limited access to open pollen88

databases with a large number of reference pollen per taxa. A previous work89

in the area of aero-palynology (ASTHMA EU project) used multifocus stacks90

and reported recognition rates around 97% for 5 pollen types [9]. Other91

studies demonstrate accuracy ratios between 90-97% [10, 11, 12, 13, 14].92

However, such ratios must be considered with care, they are not reliably93

comparable because their training database usually differ largely in terms of94

pollen genre and/or number of training samples, which is directly related to95

obstacle b).96

Most of these approaches, if not all, perform morphological and cer-97

tain statistical description of gray-levels like mean, median, variance, en-98

tropy,...etc. Some modern approaches incorporate more sophisticated de-99

scriptors through spatial correlations like the Haralick’s co-occurrence ma-100
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trices [15]. For instance, Zhang proposed Gabor transforms and invariant101

moments [16], Rodriguez-Damian et al. [17] evaluated Fourier descriptors102

and Run-Length Statistics, Chen et al. [11] incorporated a description of103

the number of pores and recently Ronneberger et al. proposed 3D invariant104

moments [18]. An interesting and profuse thesis can be consulted in [19].105

In some applications, e.g. images from ambient air, a previous image106

cleaning from dirt, fungal spores and other non-pollen particles [20] is re-107

quired. This is also a time consuming process where a robust automatic108

segmentation is a challenging problem.109

In this paper we present a complete applied study of segmentation, de-110

scription, and classification of bee pollen, reviewing the state of art and111

proposing some novel techniques. For that, within the EU-funded project112

APIFRESH, we recollected an important data base of 15 pollen types with113

120 samples per type described in Sec. 2. Under the hypothesis that contour114

and inner of grains typically manifest disparate statistical distributions, we115

proposed in Sec. 3 a novel segmentation to apply descriptors separately across116

these two regions. In Sec. 4 an important exercise of knowledge transfer is117

done from palynology to computer vision together with a complete list of118

descriptors. Sec. 5 and Sec. 6 describe classification strategies and classifiers.119

Finally experimental results are presented in Sec. 7 and Sec. 8 concludes the120

paper addressing unresolved challenging problems.121

2. Materials & Preparation: collecting database122

Bees collect pollen aggregated in balls and normally of the same pollen123

type, which guarantees a certain corresponding hue. Therefore, balls were124
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separated in the laboratory and individualized by color tonality and then125

labeled with a color code according to the Universal Code Guide PANTONE126

747XR. Although pollen can share color, each color corresponds to a pollinic127

type and a pollinic type can be matched to a larger group of plants (a family),128

to a middle group of plants (some genera from the same family), to a reduced129

group of plants (a genus) or more rarely to one species. Balls collected130

from the same place of origin were classified in colors and for each color131

we selected 25 pollen balls. Balls were dissolved with glycerogelatin drops132

and prepared in slices sealed with a coverslip. Through the microscope each133

botanical group has characteristic features that differentiate it from others134

like morphology, surface structures or pori layout. For a summarized featured135

list of the pollen types studied here consult the appendix in Sec. 9.136

Although multiple studies have already evaluated a wide range of pollen137

descriptors, most of them have been done with a reduced dataset and/or a138

reduced number of pollen types. Without a doubt one of the major efforts in139

this kind of studies has to do with the compilation, preparation and labeling140

of datasets. Thus, some of those studies deal with 300-500 total samples141

and/or 3-5 pollen types [10, 11, 9, 21, 22, 12]. The study from Chica [13]142

is one the most complete in this respect with 5 pollen types and 1063 total143

pollen grains. But one impressive case is Ronneberger et al. [14] with 180144

000 airborne particles and 22 700 pollen grains. In this case study, we have145

done an important effort to collect a considerable dataset in order to test146

computer vision algorithms focused on a real automated pollen classifier.147

The 15 pollen types studied were collected mostly from Spain (Guadala-148

jara, Toledo, La Rioja, Madrid and Cantabria). Other types like Aster and149
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Castanea came from Italy (Grosseto, Cosenza and Asti), Helianthus from150

Bulgaria and Teucrium from Turkey. They are enumerated in Tab. 1 and151

some examples are depicted in Fig 1. Neither type is endemic, which means152

that their presence is common along the whole Mediterranean territory and153

some of them are present all over the planet. Besides, none of them comes154

from plants commonly cultivated.155

Pollen types
Aster, Brassica, Campanulaceae, Carduus, Castanea, Cistus, Cytisus,

Echium, Ericaceae, Helianthus, Olea, Prunus, Quercus, Salix, Teucrium

Magnification ×40

Original captures 2560×1920 RGB pixels

Cropped grains from 200 to 600 gray pixels of width and height (variable aspect ratio)

Type grains 120 images/type

Total samples 1 800 images (grains)

Table 1: Pollen database description.

A NIKON E200 microscope (fluoride objective) and a camera NIKON DS-156

Fi1 were employed to capture the images. Auto-white background balance157

was previously carried out for every slice capture with the NIS-Elements158

Nikon software. In Fig. 2 a capture and a example of manual cropping is159

shown. See Tab. 1 for specifications of the captured and cropped images.160

Every sample was manually cropped to ensure an effective surrounding161

region with no nearby samples or debris, so cropped image samples are not162

necessarily square. To ensure an optimum focus, every acquisition included a163

31-stack image where only the best focused slice was included in the dataset.164

This best focus was again manually selected. These stages and their automa-165

tion are beyond the scope of this study.166

The colors observed through the microscope, which are not necessarily167

consistent with the color of the ball which the pollen come from, did not168
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Aster Brassica Campanulacea Carduus Castanea

Cistus Cytisus Echium Ericaceae Helianthus

Olea Prunus Quercus Salix Teucrium

Figure 1: Examples of pollen database. Note these grains have been conveniently scaled
here for aesthetic reasons.

Figure 2: Microscope example of Brassica genre at magnification ×40 of size 2560×1920
pixels. Framed sample of size 258×243 pixels.
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presented evidences of discriminant significance. In addition the white bal-169

ance performed by CCDs can significantly vary from one to other. Therefore170

the images were finally converted to grayscale. By doing this we mitigated171

at the same time the presence of yellowish lipids and other possible colored172

debris present in the slices which could impair the pollen segmentation and173

also feature extraction stages.174

3. Binary masks: contour-inner segmentation175

Binary masks are effective regions where descriptors must be computed,176

while other regions out of the mask are ignored. The list of published works177

about automatic pollen segmentation is short and there is still a need for a178

definitive method without posterior supervision. In this work we present a179

semi-automatic method which still requires manual outline corrections. Nev-180

ertheless the main novelty that we propose is a dual segmentation for inner181

areas and grain’s contours. In these two areas there are visible structural182

differences in terms of recognition and therefore our hypothesis is that some183

descriptors should manifest different distributions too. This is not expected184

to affect morphological descriptors but descriptors relating with statistical185

properties of the pixels. One way to deal with such a dichotomy could be to186

implement classifiers able to handle multi-modal distributions. However, in187

this case we considered this dual segmentation more robust and controlled188

approach. Doubling the number of effective regions will double dimension-189

ality of the classification domain, but at the same time the classification190

process gets simplified in terms of class separability according to the a priori191

location knowledge of pollen’s textures. The following items enumerate the192
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sequence of processes we used to give shape to such masks (see also in Fig. 3193

a schematic block diagram).194

1. Thresholding binarization: automatic thresholding segmentation with195

the maximum histogram value. Similar techniques like Otsu’s [22, 10,196

13].197

2. Maximum area: preservation of the biggest area, smaller regions re-198

jected.199

3. Hole filling: inside holes are filled if present.200

4. Opening: erosion and dilation with a 15×15 kernel, holes revised again.201

5. Inner-contour segmentation: erosion with a kernel proportional to the202

equivalent binary mask diameter1. Empirically adjusted to 15%.203

These well-known algorithms are present in almost every image processing204

software and therefore no further details are given in this respect. Due to205

the presence of debris and some peculiar pollen types more complex to be206

segmented, the binary masks were afterward manually checked for finishing207

correction, see some examples in Fig. 4. Note that every pollen type present208

different exine but the pollen type is not know a priori, therefore such a209

15% is necessarily a compromised value that could better fit in some pollen210

types than others, see Fig. 5. This value corresponds to exine sizes from 1-211

10µm. At this moment we will leave possible improvements and alternative212

segmentation strategies for an interesting further research.213

1diameter of a circle with the same area
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Figure 3: Segmentation example of a pollen grain borrowed from the previous Fig. 2
(258×243 pixels): image thresholding binarization with maximum histogram value; maxi-
mum area preservation and removal of smaller areas; inner holes filling-in; opening process
with a 15×15 mask (it may need feedback); and inner and contour segmentation (15% grain
diameter).

(a) (b) (c)

Figure 4: Examples of contour and interior pollen segmentation adjusted to 15% of their
equivalent diameter. (a) Echium (237×285), (b) Brassica from Fig. 3 (258×243) and (c)
Helianthus (354×330). Note these grains have been conveniently scaled here for aesthetic
reasons.

(a) (b) (c) (d) (e)

Figure 5: Examples of binary mask segmentation including a contour extraction with a
kernel 15% of the grain diameter. (a) Brassica (368×320), (b) Campanulaceae (272×256),
(c) Echium (288×272), (d) Helianthus (384×352) and (e) Prunus (512×512). Note again
these grains have been conveniently scaled here for aesthetic reasons.
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4. Pollen Feature Descriptors214

As descriptions of pollen species can be found through numerous publica-215

tions, a special effort must be done in translating such a knowledge in terms216

of computer vision. To a significant extent the experts’ capability to dis-217

tinguish among similar pollen types comes from a knowledge not necessarily218

extracted from such bright-field images, but also coming from text descrip-219

tions, 3D spatial vision and simply reasoning that humans often do almost220

effortlessly. Considering that some features are simply imperceptible without221

such human capability recognizing, which is still not present in the state of222

the art in computer vision, some other features do describe pollen grains as223

for accomplishing a helpful automatic classification. In this way, according224

to our palynologist team we described such pollen features in useful terms for225

pattern classification in Tab. 2. Although not all the features will be faced226

here, like for instance apertures which are for the moment under development227

and some previous works can be found in [11, 23], other features like general228

morphology or texture will be one of the basis of this study.229

Along the subsequent subsections we organized descriptors in groups ac-230

cording to their formulation, which at the same time will help to conduct the231

later experiments. A brief notion is introduced here and we let the reader to232

deepen along of plenty of well documented references. See descriptors cate-233

gorized in Tab. 3. Note that with the exception of the morphological type,234

the rest of descriptors are computed uniquely in those pixels tagged by the235

segmented binary masks (contour and inner separately).236

13



T
ab

le
2:

F
ea

tu
re

d
es

cr
ip

ti
o
n

o
f

th
e

1
5

p
o
ll

en
ty

p
es

in
te

rm
s

o
f

co
m

p
u

te
r

v
is

io
n

.

P
O

L
A

R
V

IE
W

M
E

R
ID

IA
N

V
IE

W

T
Y

P
E

IN
S
ID

E
C

O
N

T
O

U
R

S
IZ

E
P

E
R

IM
E

T
E

R
A

P
E

R
T

U
R

E
S

P
E

R
IM

E
T

E
R

A
P

E
R

T
U

R
E

S
U

S
U

A
L

V
IE

W

Q
u
e
rc
u
s

sl
ig

h
tl

y
g
ra

n
u
la

te
d

th
ic

k
m

e
d
iu

m
c
ir

c
u
la

r
o
r

o
v
a
l

3
d
e
p
re

ss
io

n
s

c
ir

c
u
la

r
o
r

o
v
a
l

e
n
la

rg
e
d

to
w

a
rd

s
p

o
le

s
n
o
n
e

E
c
h
iu

m
sm

o
o
th

th
in

sm
a
ll

o
v
a
l

(p
e
a
r)

n
e
g
li
g
ib

le
o
v
a
l

(p
e
a
r)

n
e
g
li
g
ib

le
m

e
ri

d
ia

n

C
is
tu

s
re

ti
c
u
la

r
m

e
d
iu

m
m

e
d
iu

m
c
ir

c
u
la

r
n
e
g
li
g
ib

le
c
ir

c
u
la

r
n
e
g
li
g
ib

le
n
o
n
e

O
le
a

p
a
rt

ia
ll
y

re
ti

c
u
la

r
th

ic
k
+

re
ti

c
u
la

r
m

e
d
iu

m
c
ir

c
u
la

r
3

su
b
tl

e
o
p

e
n
in

g
s

c
ir

c
u
la

r
n
e
g
li
g
ib

le
n
o
n
e

S
a
li
x

w
id

e
re

ti
c
u
la

r
th

ic
k
+

re
ti

c
u
la

r
m

e
d
iu

m
/
sm

a
ll

c
ir

c
u
la

r
3

p
ro

fo
u
n
d

o
p

e
n
in

g
s

o
v
a
l

e
n
la

rg
e
d

to
w

a
rd

s
p

o
le

s
n
o
n
e

B
ra

ss
ic
a

re
ti

c
u
la

r
m

e
d
iu

m
m

e
d
iu

m
tr

i-
lo

b
u
la

r
3

d
e
p
re

ss
io

n
s

c
ir

c
u
la

r
3

li
n
e
a
l

fi
ss

u
re

s
n
o
n
e

R
e
ta

m
a

re
ti

c
u
la

r
m

e
d
iu

m
m

e
d
iu

m
/
sm

a
ll

tr
ia

n
g
u
la

r
3

d
e
p
re

ss
io

n
s

c
ir

c
u
la

r
3

li
n
e
a
l

fi
ss

u
re

s
n
o
n
e

C
a
rd

u
u
s

d
e
n
se

p
ri

c
k
le

s
th

ic
k
+

d
e
n
se

p
ri

c
k
le

s
m

e
d
iu

m
/
la

rg
e

c
ir

c
u
la

r
3

p
ro

tu
b

e
ra

n
c
e
s

c
ir

c
u
la

r
p
ro

tu
b

e
ra

n
c
e
s

n
o
n
e

A
st
e
r

p
ri

c
k
le

s
th

ic
k
+

p
ri

c
k
le

s
m

e
d
iu

m
/
sm

a
ll

c
ir

c
u
la

r
3

ti
n
y

d
e
p
re

ss
io

n
s

c
ir

c
u
la

r
3

li
n
e
a
l

fi
ss

u
re

s
n
o
n
e

H
e
li
a
n
th

u
s

p
ri

c
k
le

s
th

ic
k
+

la
rg

e
p
ri

c
k
le

s
m

e
d
iu

m
c
ir

c
u
la

r
3

ti
n
y

d
e
p
re

ss
io

n
s

c
ir

c
u
la

r
3

li
n
e
a
l

fi
ss

u
re

s
n
o
n
e

T
e
u
c
r
iu

m
sm

o
o
th

th
ic

k
p

o
le

s
m

e
d
iu

m
o
v
a
l

3
ta

m
p

o
n
s

tr
ia

n
g
u
la

r
tw

o
ta

m
p

o
n
s

n
o
n
e

C
y
ti
su

s
tr

a
n
sp

a
re

n
t

th
in

+
n
o
n

re
ti

c
u
la

r
m

e
d
iu

m
/
sm

a
ll

tr
ia

n
g
u
la

r
3

th
in

o
p

e
n
in

g
s

rh
o
m

b
o
id

a
l

rh
o
m

b
u
s

o
p
p

o
si

te
si

d
e
s

n
o
n
e

E
r
ic
a
ce
a
e

tr
a
n
sp

a
re

n
t

th
ic

k
+

n
o
n

re
ti

c
u
la

r
m

e
d
iu

m
/
la

rg
e

te
tr

a
h
e
d
ra

l
T

ri
-l

o
b

e
d

te
tr

a
h
e
d
ra

l
q
u
a
/
b
i-

lo
b
u
la

te
d

n
o
n
e

C
a
st
a
n
ea

tr
a
n
sp

a
re

n
t

n
o
n

re
ti

c
u
la

r
sm

a
ll

c
ir

c
u
la

r
3

d
e
p
re

ss
io

n
s

O
v
a
l

se
v
e
ra

l
d
e
p
re

ss
io

n
s

n
o
n
e

C
a
m
p
a
n
u
la
ce
a

tr
ic

k
le

s
th

in
+

ti
n
y

p
ri

c
k
le

s
sm

a
ll

c
ir

c
u
la

r
3

ti
n
y

d
e
p
re

ss
io

n
s

O
v
a
l

3
sm

a
ll

d
e
p
re

ss
io

n
s

p
o
la

r

P
r
u
n
u
s

m
a
in

ly
st

ri
a
te

d
o
u
b
le

+
st

ri
a
te

m
e
d
iu

m
/
la

rg
e

tr
ia

n
g
u
la

r
3

o
p

e
n
in

g
s

O
v
a
l

c
e
n
tr

a
l

+
la

rg
e

p
o
la

r

s
m
a
ll

∼
1
0
−

2
5
µ
m

·
m
e
d
iu
m

∼
2
5
−

5
0
µ
m

·
la
r
g
e
∼

5
0
−

1
0
0
µ
m

14



CATEGORY DESCRIPTOR ANNOTATION TOTAL DESCRIPTORS

Morphological
Area, Perimeter, Shape, 6 features

6
Eccentricity, Fullness, Contour Profile (3 eccentricities)

Statistical

1st Order 13 features 13

2nd Order Haralick
distance = 1, 3, 5

19x3x4 = 241
direction = 0◦, 45◦, 90◦, 135◦

Transformed space LBP mean, variance, asymmetry and kurtosis 4

Moments Hu 7 moments 7

Space-frequency

Fourier 4 scales 241x4 = 964

Wavelets 4 scales (3 orientations) 241x4 = 964

Gabor 4 scales (6 orientations) 241x4 = 964

Table 3: List of descriptors grouped in testing categories.

4.1. Morphological Descriptors237

The binary masks described in the previous section establish an appropri-238

ate framework to compute morphological features related to pollen’s contour239

and area.240

4.1.1. Area241

This descriptor can be calculated as the sum of pixels in the binary mask242

of size MxN given B ∈ (0, 1):243

Area =
N∑
n=1

M∑
m=1

B(m,n) (1)

4.1.2. Perimeter244

This descriptor is the number of pixels that belong to the object and245

which have at least one neighbor belonging to the background.246
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247

Perimeter =
∑N

n=1

∑M
m=1 P (n,m)

P (m,n) =


1 if ∃ B(m± 1, n± 1) = 1

0 otherwise

(2)

4.1.3. Shape248

This descriptor measures the elongation of an object. For a circle its value249

is equal to 1. It is calculated in the following way:250

Shape =
4 · π · Area
Perimeter2

(3)

4.1.4. Eccentricity251

these descriptors also reflect elongation but in relation with the object’s252

center of mass, also called centroid and defined as:253

(mc, nc) =

 1

Area

∑
(m,n)∈Area

m ·B(m,n),
1

Area

∑
(m,n)∈Area

n ·B(m,n)

 (4)

The first Eccentricity1 is defined as a quotient of the maximum and min-254

imum distance between the centroid and object’s border, also called outer255

and inner circumference radius.256

Eccentricity1 =
Outerradius

Innerradius
(5)

Similarly Eccentricity2, is calculated as quotient of the semi-axes of the257
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Mean µ =
∑H−1
i=0 i · h(i)

Mode i = argmax(h(i))

Variance σ =
∑H−1
n=0 (i− µ)2 · h(i)

1st Quartile µq1 =
∑H
i=3dH/4e i · h(i)

2nd Quartile µq2 =
∑3dH/4e
i=2dH/4e i · h(i)

3rd Quartile µq3 =
∑2dH/4e
i=dH/4e i · h(i)

Interquartile Range µq3 − µq1
Minimum min(h(i))

Maximum max(h(i))

Range max(h(i))−min(h(i))

Entropy
∑H−1
i=0 h(i) · log(h(i))

Asymmetry 1
σ3

∑H−1
n=0 (i− µ)3 · h(i)

Kurtosis 1
σ4

∑H−1
n=0 (i− µ)4 · h(i)

Histogram h(i) , bins number H, floor operator d e .

Table 4: First order statistical descriptors.

best fitting ellipse for the object and Eccentricity3 is a ratio of the inertia258

moments of the two semi-axes of the best fitting ellipse (see forwards for a259

description of moments).260

4.1.5. Fullness261

is the ratio of the object area to bounding rectangle area.262

4.2. Statistical Descriptors263

4.2.1. 1st-order Statistical: histogram264

These descriptors, listed in Tab. 4, measure typical statistics in image265

histogram h(i). These group of descriptors are sensible to global variation of266

gray pixel levels, but they ignore their local correlation.267
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4.2.2. 2st-order Statistical (Haralick): co-ocurrence matrix268

These descriptors, listed in Tab. 5, measure statistics in co-ocurrence ma-269

trix c(m,n) defined as the distribution of co-occurring neighbor gray values.270

For a complete guide to statistical description consult [15].271

4.3. Contour Profile Descriptor272

In this section we introduce a novel descriptor to describe micro structures273

present along the perimeter of grains. As described in Tab. 2, some pollen274

types have reticular exines, which is translated into corrugated contours at275

the zenithal microscope view. In computer vision terms this means that the276

variance of gray levels along the pollen contour is higher than in pollen with277

no reticular surface. Although this measure could not classify by itself one278

specific pollen type, it can work as an efficient support tool for discriminating279

among pollen groups of highly, medium and low reticular exines.280

The first step uses the center of mass of binary masks described in Sec. 3281

to accomplish square cropping. One simple way of making this calculation282

is by means of moment equations described in Sec. 4.5. After that Cartesian283

coordinates (x, y) are transformed into polar logarithmic coordinates ρ =284

log(
√

(m−mc)2 + (n− nc)2), 0 ≤ ρ ≤ ρmax and ω = arctan((m−mc)/(n−285

nc)), 0 ≤ ω ≤ 2π [23]. See in Fig. 6-(b) and (e) a couple of examples of polar286

logarithmic transformations.287

The second step computes a snake algorithm from the bottom of the288

polar transformed images (outskirts in Cartesian coordinates), i.e. from the289

maximum radius. Starting from a horizontal line, each location (pixel) of that290

line is moved upwards if the gray level at the current location is higher than a291

given threshold (we used 30% of the maximum graylevel). When a dark gray292
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Energy
∑H−1
i=0

∑H−1
j=0 c(i, j)2

Variance
∑H−1
i=0

∑H−1
j=0 (i− µ)2 · c(i, j)

Contrast
∑H−1
n=0 n

2
(∑H−1

i=0

∑H−1
j=0 c(i, j)

)
, |i− j| = n

Dissimilarity
∑H−1
i=0

∑H−1
j=0 |i− j| · c(i, j)

Correlation 1
σxσy

∑H−1
i=0

∑H−1
j=0 i · j · c(i, j)− µxµy

Autocorrelation
∑H−1
i=0

∑H−1
j=0 i · j · c(i, j)

Measure of Correlation 1 T−HXY 1
max(HX,HY )

Measure of Correlation 2 (1− exp[2 · (HXY 2− T )])
0.5

Cluster Shade
∑H−1
i=0

∑H−1
j=0 (i+ j − µx − µy)3 · c(i, j)

Cluster Prominence
∑H−1
i=0

∑H−1
j=0 (i+ j − µx − µy)4 · c(i, j)

Maximum Probability max(c(i, j)), i = [0...H − 1], j = [0...H − 1]

Entropy T = −
∑H−1
i=0

∑H−1
j=0 c(i, j) · log(c(i, j))

Sum Average
∑2(H−1)
i=0 i · cx+y(i)

Sum Entropy
∑2(H−1)
i=0 cx+y(i) · log(cx+y(i, j))

Sum Variance −
∑2(H−1)
i=0 (i− SumEntropy)2 · cx+y(i)

Difference Entropy −
∑H−1
i=0 cx−y(i) · log(cx−y(i, j))

Difference Variance
∑H−1
i=0 i2 · cx−y(i)

Homogeneity 1
∑H−1
i=0

∑H−1
j=0

c(i,j)
1+|i−j|

Homogeneity 2
∑H−1
i=0

∑H−1
j=0

c(i,j)
1+(i−j)2

H bins number, HX and HY entropy of px and py.

µx =
∑H−1
i=0

∑H−1
j=0 i · c(i, j); µy =

∑H−1
i=0

∑H−1
j=0 j · c(i, j)

cx(i) =
∑H−1
j=0 c(i, j); cy(j) =

∑H−1
i=0 c(i, j)

σx =
√∑H−1

i=0 cx(i)(i− µx)2; σy =
√∑H−1

j=0 cy(i)(i− µy)2

cx+y(k) =
∑H−1
i=0

∑H−1
j=0 c(i, j); i+ j = k, k = [0...2(H − 1)]

cx−y(k) =
∑H−1
i=0

∑H−1
j=0 p(i, j); |i− j| = k, k = [0...H − 1]

HXY 1 = −
∑H−1
i=0

∑H−1
j=0 c(i, j)log(cx(i) · cy(j))

HXY 2 = −
∑H−1
i=0

∑H−1
j=0 cx(i) · cy(j) · log(cx(i) · cy(j))

Table 5: Second order statistical descriptors (Haralick).
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Algorithm 1: Contour Profile Descriptor

Transform image into polar coordinates PIMAGE(radius, angle);
SNAKE(angle) = radiusmax;
radius = radiusmax;
while angles exist and are not anchored do

if [(SNAKE(angle± 1) < aCurvature) and
(PIMAGE(SNAKE(angle) + 1, angle) > aThreshold)] then

SNAKE(angle) = radius− 1;
else

anchor SNAKE(angle) = radius;

pixel is found it may belong highly probably to the pollen contour and the293

snake at that point is fixed. Some elastic properties are given to the snake,294

so that it can fit to the curved contour. We used 1 pixel maximum curvature.295

Previously the polar image is smoothed by a 5 × 5 uniform filter to remove296

spurious values and outskirts debris. Such contours found by snakes do not297

necessarily match with those binary contours found in Sec. 3 for the binary298

masks. Other descriptors that operate globally in a given region could not299

require a segmented region extremely precise. However this contour profile300

descriptor in concrete requires a path as much precise as possible. In any case301

such snaked-contours could be also applied for all descriptors as some studies302

revealed some improvements [10]. Considering the snake as a uni-dimensional303

function, the whole algorithm is described in Algorithm 1.304

The third and final step draws a profile of gray levels along the snake305

and measures its variance in relation to the mean local value obtained by306

smoothing in our case the gray profile with a 21-bin uniform filter. See307

Fig. 6-(c) and (f). A high contour profile variance will indicate that the308

grain contour, the exine, is probably reticulated and a low variance means309
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(a) (b) (c)

(d) (e) (f)

Figure 6: Reticular descriptor of contour profile (exine). (a) olea and (d) echium samples,
(b) and (e) polar transformation, (c) and (f) gray level profile and variance measurement
(blue line) and local mean obtained with a 21-bin uniform filter (black dotted line).

no reticulation.310

4.4. Local Binary Patterns311

The Local Binary Pattern (LBP) operator [24] is based on the idea that312

textural properties within homogeneous regions can be mapped into patterns,313

which represent micro-features. It uses a 3 × 3 square mask called “tex-314

ture spectrum,” to compare masked values with their central pixel, those315

ones lesser are labeled with “0” otherwise with “1”. The labeled pixels316

are multiplied by a fixed weighting function and summed to obtain a label:317

LBP (gc) =
∑7

p=0 s(gp − gc)2p, where {gp|p = 0, . . . , 7} are the neighbors of318
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gc and the comparison function is defined as: s(x) =


1 if x ≥ 0

0 otherwise

319

Ojala et al. [25] improved their proposal by including a circular mask320

denoted by the subscript (P,R) where P is the number of sampling points321

and R is the radius of the neighborhood. If sampling coordinates, (xp, yp) =322

(xc + R cos(2πp
P

), yc − R sin(2πp
P

)), do not fall at integer positions, then the323

values are bilinearly interpolated. Furthermore, they observed that over324

90% of patterns can be described with few LBP patterns, so, they intro-325

duced a uniformity measure U(LBPP,R(gc)) = |s(gP−1 − gc) − s(g0 − gc)| +326 ∑P−1
p=1 |s(gp − gc)− s(gp−1 − gc)|, which corresponds to the number of tran-327

sitions (0/1) in the labeled LBP.328

In this way, the uniform-LBP (LBP uni
P,R) can be obtained as:329

LBP uni
P,R (gc) =


∑P−1

p=0 s (gp − gc) if U (LBPP,R (gc)) ≤ 2

P + 1 otherwise

(6)

After this process is completed a labeled image is generated and the pixel-330

wise information is encoded as a histogram, so that it can be interpreted as a331

fingerprint or a signature of the analyzed object. LBP uni
P,R produces (P + 2)-332

bin histograms [26]. Then from all statistical descriptors only mean, variance,333

asymmetry and kurtosis are computed assuming a studied trade-off between334

overloaded dimensionality vs. accuracy impairment [27].335
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4.5. Hu Moments336

Image moments, originally proposed by [28], describe not only invariant337

morphological features of shapes but also high order statistical features. They338

are formulated as follows:339

µpq =
∑
m

∑
n

(m−mc)
p · (n− nc)q · g(m,n) (7)

Where mc = r10

r00
and nc = r01

r00
.340

4.6. Space-frequency Descriptors341

These do not really constitute descriptors themselves but transformations342

where features, somehow hidden, arise with higher visibility. It is in this343

transformed domains where features are measured by applying the mathe-344

matical previously introduced descriptors, in our case the statistical descrip-345

tors. For every sub-band there are 241 statistical descriptors (13 1st-order346

statistical plus 19 2nd-order statistical with 3 distances and 4 orientations)347

and for the whole transformed domain with 4 scales the total number of348

descriptors is 964, see Sec. 4.2.349

4.6.1. Fourier Transform350

It is the first formal proposal to analyze spectral contain of a signal where351

2D frequencies arise in this context from graylevel variations along features352

like contour, edges, stripes and other periodic structures like textures. The353

Fourier spectrum is split in octave bands apart and averaged as follows:354

Fourierl =

1

2l−1∑
r= 1

2l

360∑
θ=0

|I(r, θ)| drdθ, , l ∈ {1, .., L} (8)
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Where I is the Fourier transform of the image in polar coordinates and355

L the number of levels. For the experiments we selected 4 decomposition356

levels, which is a common value in most computer vision algorithms. Note357

the continuous DC-component (luminance) is disregarded and binary mask358

cannot be used here since the spatial dimension is lost.359

4.6.2. Wavelet Transform360

Although some pollen types present stationary structures (textures) through361

their inner regions, they mostly present a different spectral content not only362

along the interior but also along their contour. The Fourier transform loses363

the space localization where this happens and frequencies from different areas364

are mixed. In the late 80’s wavelets were firstly proposed with Daubechies365

and Mallat as main precursors [29]. We used the overcomplete version and 5366

stem long of Daubechies basis to build our descriptors as the energy on every367

scaled level as follows:368

Waveletl =
3∑
o=1

U,V∑
u=1,v=1

|Wl,o(u, v) ·B(u, v)|, , l ∈ {1, .., L} (9)

Where W is the wavelet transform of the image for the scale l and ori-369

entation o whose vertical and horizontal coordinates extend to U = M and370

V = N . Based on preliminary observations, the number of scales was set371

to L = 4. Note that to achieve orientation invariance all bands in the same372

scale must be summed, i.e the vertical, horizontal and diagonal bands. The373

residual DC-component was discarded. As previously stated, prior to this374

wavelet average the coefficients are masked by the corresponding contour375

and inner binary masks B(u, v).376
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4.6.3. LogGabor Transform377

Firstly proposed by Dennis Gabor in 1946 [30], the Gabor filters are dif-378

ferent versions of a Gaussian-shaped window modulated by a sinusoid. The379

result is the partition of the Fourier plane into bands modulated in orien-380

tation and octave bands apart in frequency. Gaussian shape ensures an381

optimum spreading in both dimensions, i.e. space location vs. frequency382

discrimination, while one weakness of wavelets is the pronounced frequency383

overlapping. In addition, the Gaussian envelop is modulated by a complex384

exponential with odd and even phases, which is effective for analyzing fea-385

tures with odd phase like ridges and even phase like edges. In this study386

we used the overcomplete implementation of logGabor filters proposed by387

Fischer et al. [31] never tested before for this task. Similarly to wavelets, the388

logGabor descriptor is formed by calculating the energy at every scaled level:389

Gaborl =
∑O

o=1

∑U,V
u=1,v=1 |F−1 (Glo · I) ·B(u, v)|, , l ∈ {1, .., L}

Glo = exp

(
−1

2

(
ρ−ρl
σρ

)2)
exp

(
−1

2

(
θ−θpl
σθ

)2) (10)

Where F−1 is the inverse Fourier transform, Glo is the logGabor filter with390

L scales and O orientations in log-polar coordinates (ρ, θ) and (σρ, σθ) are391

the angular and radial bandwidths, see [31] for more implementation details.392

Again L = 4, O = 6 and the residual DC-component is discarded.393

25



5. Discriminant Analysis394

In case of task-specific methods like this study, descriptors are either395

chosen after a comprehensive literature review study but also after empirical396

experiment feedback. With a generalized descriptor extraction, the large397

set of image descriptors provides an extensive numeric description of the398

image content [32]. However, descriptors that are discriminant for one specific399

dataset may not be discriminant for others, probably because they describe400

features that are widely spread along all classification groups or because they401

are redundant (correlated) with respect to other descriptors. In that case402

such descriptors provide useless information that moreover will likely degrade403

the classification performance not only in terms of accuracy but also in terms404

of speed due to the higher dimensionality [33, 34]. To reduce the number of405

irrelevant descriptors, discriminant analysis minimizes the classification error406

for the smallest possible subset of descriptors. Thousands of descriptors are407

extracted from the methods here described and it is a fact widely studied408

that beyond a certain limit an increasing number of descriptors not only409

provokes an increasing computational time but also impairs classification [35].410

Therefore a feature selection process is then required to remove redundant411

information.412

5.1. Floating Selection413

A preliminary study was carried out to elucidate which are individually414

the most discriminant descriptors. For that we employed the Sequential415

Forward Feature Selection (SFFS) [36]. It constructs an incremental priority416

subset of descriptors by adding the descriptor in the excluded subset that417
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1 L asimmetry LBP.Org 26 S Dissi 1 135.Org 51 S Dissi 3 0.KEx 76 S Contr 5 0.Org

2 L curtosis LBP.Org 27 S Dissi 1 90.Org 52 S Dvarh 5 135.KEx 77 S Entro 3 0.Org

3 M Perimeter.Org 28 S Dissi 1 45.Org 53 S Denth 5 45.Org 78 S Denth 3 0.KEx

4 M Area.KEx 29 S Denth 1 135.Org 54 S Dissi 3 45.Org 79 S Denth 1 135.KEx

5 M Area.Org 30 S Dvarh 3 0.KEx 55 S Denth 5 90.Org 80 S Dissi 3 135.KEx

6 M EquivDiameter.Org 31 S Denth 3 0.Org 56 S Denth 5 135.Org 81 S Dissi 3 45.KEx

7 M EquivDiameter.KEx 32 S Dissi 1 0.KEx 57 S Entro 1 0.Org 82 G OrgS Gbf6

8 M Perimeter.KEx 33 S Denth 1 90.Org 58 S Dissi 1 90.KEx 83 S Denth 1 0.KEx

9 S Entropy.Org 34 S Dissi 3 90.Org 59 S Dissi 1 45.KEx 84 S Denth 1 90.KEx

10 S Entropy.KEx 35 S Dvarh 5 0.KEx 60 S Dissi 1 135.KEx 85 S Entro 3 90.Org

11 S Dvarh 3 0.Org 36 S Dvarh 3 45.KEx 61 S Dissi 5 90.Org 86 S Denth 3 45.KEx

12 S Dvarh 1 135.Org 37 S Denth 1 0.Org 62 G OrgS Gbf26 87 S Denth 1 45.KEx

13 S Dvarh 3 135.Org 38 S Dvarh 3 135.KEx 63 S Entro 1 135.Org 88 S Denth 5 0.KEx

14 S Dvarh 3 90.Org 39 S Dvarh 3 90.KEx 64 S Contr 3 135.Org 89 S Denth 3 135.KEx

15 S Dvarh 3 45.Org 40 S Denth 1 45.Org 65 S Dvarh 1 90.KEx 90 S Denth 3 90.KEx

16 S Dvarh 5 0.Org 41 S Denth 3 45.Org 66 S Contr 3 90.Org 91 S Contr 3 45.Org

17 G OrgS Gbf2 42 S Dvarh 1 135.KEx 67 S Dissi 5 0.KEx 92 S Contr 1 0.Org

18 G OrgS Gbf14 43 S Denth 3 90.Org 68 S Entro 1 90.Org 93 S Contr 5 90.Org

19 S Dissi 1 0.Org 44 S Dissi 3 135.Org 69 S Entro 1 45.Org 94 G OrgS Gbf8

20 S Dvarh 5 45.Org 45 S Denth 3 135.Org 70 G OrgS Gbf12 95 S Denth 5 45.KEx

21 S Dvarh 5 90.Org 46 S Dvarh 5 45.KEx 71 G OrgS Gbf4 96 S Contr 1 45.Org

22 S Dvarh 1 90.Org 47 S Denth 5 0.Org 72 S Dvarh 1 45.Org 97 S Dissi 5 90.KEx

23 G OrgS Gbf1 48 S Dvarh 5 90.KEx 73 S Contr 1 135.Org 98 S Denth 5 90.KEx

24 S Dvarh 5 135.Org 49 S Dissi 5 0.Org 74 S Dissi 3 90.KEx 99 S Denth 5 135.KEx

25 S Dissi 3 0.Org 50 S Contr 3 0.Org 75 G OrgS Gbf10 100 S Entro 3 135.Org

Table 6: The 100 most discriminant descriptors listed in order of importance. L stands
for LBP, M for morphological, S for statistical and G for logGabor. Extension Org means
that the descriptor was calculated in the pollen kernel and KEx in the outer exine.

increments the highest the classification rate. For every step the priority418

subset is re-arranged and re-examined in case of one of the descriptors impairs419

classification with the new formed group. As a result this algorithm often420

converges to a ordered list by discrimination capacity. In Tab. 6 there is421

such a list for the first 100 features. The percentage of LBPs descriptors422

is only 2% although they are on the top. The percentage in that list of423

morphological descriptors is 6%, logGabor 9% and the statistical descriptors424

83%. Although this is an interesting list for elucidating some discriminant425

descriptors, one should bear in mind that later on their contribution will be426

altered by the LDA transformation (see Sec. 5.3).427
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5.2. Correlation428

Some overloaded features like Fourier, wavelets and Gabor are treated429

like new domains themselves where the whole bank of statistical descriptors430

can be calculated and extracted from each decomposition band. This means431

that the total number of descriptors becomes 4 times larger given a 4-level432

decomposition transform. This approach increases the workload to a cuttered433

extend to be easily computable. Therefore, for these feature groups of space-434

frequency transform we decided to remove those statistical variables that are435

highly correlated.436

To remove redundant information we firstly used the correlation coef-437

ficient as the similarity measure between two or more features. Hence, a438

threshold value must be defined for determining the correlation value from439

which features are considered redundant. This measure has been commonly440

adopted for unsupervised feature selection [37]. In our study, an empirical441

threshold of 98% was adopted. Such a decision reduced the number of de-442

scriptors in such a way that for instance a 4-level Fourier bands with 964443

initial descriptors gets shortened to 224, 4-level wavelet decomposition from444

964 to 143 or the actual statistical descriptors from 964 to 147. In summary445

with this technique it is achieved an overall 75-80% dimensionality reduction446

and the corresponding computing time. In return classification accuracy,447

according to calculations shown afterwards, is insignificantly affected.448

5.3. Linear Discriminant Analysis449

Since the previous methods generate high dimensional feature vectors and450

a limited dataset is available in our context, Linear Discriminant Analysis451

(LDA) [38] constitutes an efficient tool for dimensionality transformation.452
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Since oversized spaces crowd together classes which impairs classification,453

LDA transforms the original space into an orthogonal and linear space where454

feature vectors are prioritized in order of importance while others are rejected.455

This implies that classes must be linearly separated which is not always456

fulfilled. LDA also requires unimodal Gaussian likelihoods which was so457

validated.458

6. Training & Classification Techniques459

Dimensionality reduction is a fundamental step in any classification prob-460

lem. In most cases we cannot assume parameter independence, which pre-461

vents from separately assessing each parameter from the rest. This issue is462

the so called Model Selection Problem (MSP). In this case we validated nor-463

mal distributions by means of normality test of K.S. normality test, Levene’s464

homocedasticity and the analysis of variance (ANOVA) [39, 40].465

10-fold cross-validation is a simple and yet widely employed method for466

model evaluation that randomly splits up data into 10 disjoint subsets of467

approximately equal size. Each fold is then classified separately by using the468

remaining 9 subsets to train the model. In the end the average of all folds469

provides an estimation of the classification accuracy of the model. A similar470

procedure was exercised with groups of 1 element, also called leave-one-out.471

Both training methods threw similar results and for the sake of simplicity472

only leave-one-out will be presented in the experiments.473

Although many classifiers can be found and some of them could signifi-474

cantly improve accuracy rates, it is not the main purpose here to carry out475

a thorough analysis of classifiers’ performance, but again to discover which476
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descriptor or combination of descriptors better discriminate between pollen477

types. Hence, although we do compare an extensive bank of classifiers like478

nearest-neighbor, k -means, Parzen classifier, decision tree, neural networks,479

quadratic Bayes normal classifier, Fisher classifier, linear discriminant or sup-480

port vector machine, we selected here three representative ones, which in turn481

were three of the best classifiers tested.482

6.1. Fisher classifier483

Fisher’s linear classifier finds a linear discriminant function by minimizing484

the errors in the least square sense [35]. This linear discriminant is based on485

finding a direction in the feature space such that the projection of the data486

minimizes Fisher’s criterion, i.e., the ratio of the squared distance between487

the class means and averaged class variances. The linear classifier is then488

perpendicular to this projection.489

6.2. Support Vector Machine490

Support Vector Machines (SVM) finds a discriminant function by max-491

imizing the geometrical margin between positive and negative samples [41].492

Thus, the space is mapped so that examples from different classes are sepa-493

rated by a gap as wide as possible. Besides linear classification, SVMs act as494

a non-linear classifier by using the so-called kernel trick. This trick can be495

considered a mapping of the inputs onto a high-dimensional feature space in496

which classes become linearly separable. SVMs minimize both training error497

and geometrical margin. The latter accounts for the generalization abilities498

of the resulting classifier. SVMs are one of the best classifiers available and499

have been applied to many real-world problems.500
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6.3. Random Forest501

A Decision Tree (DT) is a conceptually simple, yet robust, and widely502

used tool for decision support in which classification is performed through503

a tree graph [42]. The classification starts from an initialization node (root504

node) from which a given test sample is tested at each stage (internal node)505

of the classification, all the way down to the end of a tree branch (leaf or506

terminal node) [43]. The path followed by the sample depends on threshold-507

based conditions associated to each internal node.508

To select the optimal threshold-based conditions, DT algorithms make509

use of a brute force method, which consists of testing all potential variables510

and selecting the variable that maximizes a given criterion. When building511

the DT, this criterion characterizes the quality of the split created by the512

transition from an internal node to its associated leaves [43].513

To improve classification accuracy and robustness, the Random Forest514

(RF) classifier, built upon an ensemble of DTs, learn from different subsets of515

the training dataset and no pruning is performed after their construction [42].516

Each DT is built using the values of random feature vectors in a way that517

all DTs from the RF possesses the same distribution. The random feature518

vectors may be generated using several techniques, such as bagging [42],519

random split selection [44] and the so-called random subspace technique [45].520

When classifying an unknown sample, its feature vector is tested using all521

DTs of the RF. Their outputs constitute votes for the most popular class,522

which in turn is the RF prediction. Nowadays, the RF classifier is considered523

as one of the most accurate learning algorithms and its performance has been524

proven on many datasets [46].525
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7. Results526

Given the total number of descriptors is 6 320, considering that space-527

frequency, moments, LBPs and statistical descriptors are duplicated due to528

the contour-interior pollen segmentation. Given also the feature reducing529

and transformation algorithms (correlation and LDA) and the three selected530

classifiers (Fischer, SVM and Random Forest), the number of possible ex-531

periments is considerable. We organized the results in several experiments532

to show concrete aspects of descriptors and classifiers.533

Although the experiments are driven according to the best accuracy/error534

rates, one should bear in mind that the obtained absolute values could be535

hardly compared quantitatively to other studies due to discrepancies in fea-536

ture vector, dimensionality reduction and/or classifiers. One example case537

could be [14] with an astonishing number of particles/grains and classifi-538

cation rate around 98.5%, but not comparable because 1) 3D information539

is additionally incorporated 2) pollen grains were only 12% of the training540

date set and 3) allergenic pollen is not necessarily the same pollen than for541

beekeeping.542

7.1. Experiment 1: whole and contour+inner segmentation.543

Descriptors were tested here according to their mathematical definition544

type. At the same time descriptors were compared when applied for both545

segmentation cases: whole-segmented grain and contour+inner segmenta-546

tion. In order to simplify the case study, the same classifier was used for547

all of them, in this case Fisher but with no particular reason, except for its548

accurate performance behavior. Albeit similar results can be observed with549
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the remaining classifiers.550

From the plot in Fig. 7 most descriptors lead to similar classification er-551

ror around ε ∼ 0.3 when they operate individually. Two of them are above552

0.7 though, i.e. LBP and moments. This corroborates that macro-features553

derived form morphology descriptors already provide competitive accuracy554

on a par with local micro-feature analysis performed by (spatio)-frequential555

descriptors. We have no plausible explanation for the lower rates delivered556

by LBP and moments. Note that although some LBPs had an important dis-557

criminant capacity in Fig. 6, all together combined do not perform as high558

as other texture descriptors. This could be to the reason that the number559

of LBP descriptors 4 is not actually enough for the current database. The560

McNemar’s significance test [47] provides a confidence value to accept that561

methods are statistically significant provided a minimum threshold typically562

chosen 95% of confidence. That value is found by projecting the classifi-563

cation discrepancies of both methods through a chi-quadratic function as a564

expectation model for binomial distributions. McNemar’s threshold delivered565

here a more than amply averaged value T = 230.98 > χ2
1,0.95 = 3, 84 except566

for 5 pairs which can not be considered significative: Wavelets vs. Fourier,567

morphological and statistical; Fourier vs. statistical and morphological vs.568

statistical on averaged T = 1.95.569

Another favorable observation reveals a significant improvement when570

computing doubly but separately for contour and inner pollen regions, as we571

hypothesized. Overall, one can observe a drastic decline of errors achieving572

an overall accuracy improvement of 50% (T = 344.62). Note that morpho-573

logical descriptors have no counterpart for contour+inner segmentation. All574
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Figure 7: Comparing descriptors types under the Fisher classification error.

subsequent experiments will consider exclusively contour-inner segmentation.575

To justify the rejection of the space-frequency descriptors above a 98%576

correlation threshold (see Sec. 5.2), the classification error obtained for in-577

stance with logGabor is ε = 0.124, while with the 100% of descriptors a578

similar error is obtained ε = 0.128 and the significance test is low T = 0.78.579

7.2. Experiment 2: descriptor types combinations.580

The combination of different types of descriptors can strengthen the dis-581

crimination capacity. In Fig. 8 morphological and statistical descriptors con-582

stitute a baseline for comparison since they provided high accuracy rates583

and bring together the two main discriminant features: shape and texture.584

From this chart, when statistical descriptors are combined with morpho-585

logical descriptors provided together an improvement of 51.1%. Adding to586

these two groups the space-frequency descriptors separately provided an over-587
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Figure 8: Accuracy performance of Morphological+Statistical (MS) and remaining de-
scriptors with contour+inner segmentation.

all accuracy improvement of 34% (averaged T = 81.31), while the logGa-588

bor+morphological+statistics are the most accurate with ε = 0.05. Note589

that moments and LPB produces slight impairments. Significance test be-590

tween pairs delivered an averaged value (T = 23.63), except for Fourier vs.591

Wavelets (T = 1.35) and Moments vs. LBP (T = 1.04). This tendency is592

confirmed in Fig. 9 where morphological+statistical combined with space-593

frequency descriptors achieve the lowest error rates. Particularly the combi-594

nation of morphological+statistical+all space-frequency descriptors provided595

the lowest error rate ε = 0.032 (T = 31.05 averaged with comparative cases).596

Note also that neither LBP nor moments barely affect performance.597

7.3. Experiment 3: LDA dimensionality reduction.598

In previous Figs. 8 and 9 already compared the improvement achieved by599

LDA. All combinations of descriptors augmented their accuracy significantly600

and reduced the overall classification error around 70% (averaged T = 89.54).601
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Figure 9: Accuracy performance (contour+inner segmentation) of Morphologi-
cal+Statistical (MS) and combinations of remaining descriptors: Wavelets (W), Fourier
(F), logGabor (G), Moments (M), LBP (L). Note that the vertical dashed line corresponds
to previous logGabor+MS error rate 0.05.

This suggests that, besides unimodal Gaussian likelihoods tested in advance,602

most descriptors can be linearly separated. Now most combinations classify603

with less than 2% error and an outstanding case is the combination of mor-604

phological, statistical descriptors with the three space-frequency descriptors605

achieving 99.4% accuracy rate (ε = 0.006), see its confusion matrix in Tab. 7.606

Note also that LDA successfully deals with the addition of LBP and moments607

achieving a similar error ε = 0.008 and low significant difference T = 0.35608

for these two cases.609

7.4. Experiment 4: Classifiers610

In Fig. 10 Fisher classifier was compared with SVM and Random Forest611

by using four reference groups of descriptors. Although there is a slight612

improvement tendency in favor of Random Forest, outcomes did not show613

preference in all groups, nor even for other groups not shown here. Thus no614
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Aster 120 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Brassica 0 119 0 0 0 0 0 0 0 0 1 0 0 0 0
Campanula. 0 0 118 0 0 0 2 0 0 0 0 0 0 0 0
Carduus 0 0 0 119 0 0 0 0 0 0 0 1 0 0 0
Castanea 0 0 0 0 120 0 0 0 0 0 0 0 0 0 0
Cistus 0 0 0 0 0 120 0 0 0 0 0 0 0 0 0
Cytisus 0 0 0 0 0 0 120 0 0 0 0 0 0 0 0
Echium 0 0 0 0 0 0 0 120 0 0 0 0 0 0 0
Ericaceae 0 0 0 0 0 0 0 0 120 0 0 0 0 0 0
Helianthus 6 0 0 0 0 0 0 0 0 114 0 0 0 0 0
Olea 0 1 0 0 0 0 0 0 0 0 119 0 0 0 0
Prunus 0 0 0 0 0 0 0 0 0 0 0 120 0 0 0
Quercus 0 0 0 0 0 0 0 0 0 0 0 0 120 0 0
Salix 0 0 0 0 0 0 0 0 0 0 0 0 0 120 0
Teucrium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 120

Table 7: Confusion matrix for the best case combining Morphologi-
cal+Statistical+Fourier+Wavelets+logGabor descriptors and LDA.

pair of group and classifier revealed evident superiority here. This leads to615

the point that descriptors and classifiers must be selected as two parts that616

work together accordingly.617

8. DISCUSSION: Grain features, limits and possibilities618

Several important contributions have been made in this work. A consid-619

erable data base of pollen grains has been elaborated. It was compound of 15620

pollen types and 120 samples per type manually cropped. Grains have been621

automatically segmented (manually revised) to make binary masks. A bench622

of the state of the art in morphological, statistical and texture descriptors to-623

gether with a new contour profile descriptor has been exhaustively tested for624

classifying the 15 pollen types. Some of them like texture descriptors have625

not been evaluated before in this field. Furthermore we proposed a novel626

contour+inner segmentation which provided an overall 50% improvement up627
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Figure 10: Performance comparison of classifiers Fisher, SVM and Decision Tree
with Group1 (MS), Group2 (MS+F+W) and Group3 (MS+G+W+F) and Group4
(MS+W+F+G+M+L).

to 99.4% accuracy. We concluded that the traditional morphological and sta-628

tistical descriptors together with space-frequency representations, specifically629

logGabor, provided the best classification accuracy rates. Moreover the di-630

mensionality reduction with LDA improved classification by 70%. Along this631

research we also come across with other several challenging issues addressed632

in the following.633

After long conversations with palynologists, they argue that the geomet-634

ric shape and number of apertures are the first aspects they look for in a635

preliminary screening. Although size is an effective feature to discriminate636

between broad groups of pollen types, this should be taken carefully since637

size could vary more than 10 microns in some circumstances like the sub-638

strate conditions or how much water received the plant. Thus it could be639

recommended to simplify the size in two classes: small and medium-large.640

Other morphological refinement would consider triangularity, rhomboicity or641
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even more complex shapes adapted to the wide range of shapes exhibited by642

the pollen. After that, depending on the possible pollen types according to643

their morphology, the search would resume for some other details like retic-644

ular texture, spikes, apertures, exine width,... etc. This leads again to the645

idea of a hierarchical-tree classification.646

Unfortunately some pollen types are almost equal even for experts which647

shows up the difficulty of this task. For instance Cruciferae and Olea are648

similar except for the polar area and apertures. Retama and Cytisus belong649

to the same family Fabaceae and are consequently similar except for the650

almost negligible aperture and triangular view of the former.651

In addition to the obvious place of origin, the first and effective way of652

classifying pollen is the color ball. Bees rarely harvest pollen of different653

types in the same ball, therefore the knowledge of a given color drastically654

reduces the number of possible candidates. Such a description can be easily655

incorporated in an automatic recognition software by displaying a color chart656

where the user could select the most similar ball tonality. This pre-processing657

stage could help computer vision tasks not only by reducing computation658

time but also reducing error classification rates (decision tree). As previously659

indicated, the color ball is not consistent with the color later observed through660

the microscope and furthermore we found no evidence that color could have661

any discriminant capacity beyond this point, therefore images were converted662

to grayscale.663

A pollen type may present different appearances according to their view664

with respect to the z-view and consequently their morphological and also665

statistical descriptors can drastically vary. Although it is still unclear how666
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to handle such a difficulty, three alternatives are discussed. Multimodal clas-667

sifiers deal with complex probability distributions functions made of several668

monomodal pdf’s. This could be the case of some morphological descriptors669

like ’circularity’ (and related) that clearly present two or more probability670

means depending on the view. This approach is more database consistent,671

although increases the complexity. Another approach could split those multi-672

appearance types in two or more different subclasses (polar, meridian,...)673

which refines database description and simplifies classification, however this674

doubles the effort for labeling each pollen type and collecting more training675

samples. Hybrid tree-monomodal classification or decision rule could also be676

employed for classifying in two steps. Firstly the monomodal classifiers could677

be used for those descriptors not affected by the z-laying and secondly for678

those sensible to view, without making separated classes for each z-laying.679

This alternative demands a smaller training dataset than the previous option,680

however it needs for a decision rule adjustment and still needs for tedious681

polar/meridian/others labeling.682

Precise segmentation is a critical point for the whole classification pro-683

cess. Some studies using snakes and other computer vision techniques showed684

remarkable results [48]. Effectively segmentation should be done accurately,685

although our purpose in the current study focuses on comparing descriptor’s686

discriminant capacity while optimum classification rates remain a secondary687

goal. Therefore we do not pursue perfect binary masks, but suitable enough688

to be equally shared by all descriptors. However since one of the main con-689

tributions here is the strategy of splitting grains in contour and inner parts,690

therefore segmentation techniques will require a further study.691
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In a real scenario there is a need for an ’unknown’ class, also known as692

outlier detection. This class contains samples that do not belong to any of the693

trained classes. Furthermore rejection class is also required to embrace those694

ambiguous samples due to malformations or a bad cropping. Considering a695

commercial software the goal is to discover the origin of the harvested balls696

and a pollen ball contains hundreds of grains whose majority belongs to the697

same pollen type due to a smart habit of bees. In this scenario it is not698

therefore so critical the ratio of false-negative (attributed to a outlier-class),699

since there are hundreds of attempts to find out the principal pollen type.700

Instead false-positive ratio should be minimized as much as possible. In other701

words, once a pollen grain is considered to belong to a certain class, one must702

be highly confident on that assertion. Such a confident threshold has to be703

modeled according to not only the classification error but also according to704

population ratio present in every pollen ball or slice preparation.705

9. Appendix:706

Description of the main features of the 15 pollen types studied in this707

paper.708

Aster - isopolar, radially symmetric, medium size (P = 22− 31µm, E =709

20−29µm), spheroidal to prolate (elliptic), in equatorial view (P/E = 0.96−710

1.20), circular or trilobulate in polar view, 3-zonocolporate, ornamentation711

echinate-perforate.712

Brassica - isopolar, radially symmetric, medium size (P = 21−30µm, E =713

27−27µm), oblate spheroidal to prolate (elliptic) in equatorial view (P/E =714

0.90− 1.28), circular or trilobulate in polar view, 3-zonocolpate, ornamenta-715

41



tion reticulate.716

Campanulaceae - isopolar, radially symmetric, small or medium size (P =717

18 − 29µm, E = 20 − 34µm), oblate spheroidal to spheroidal in equatorial718

view (P/E = 0.80 − 0.96), subtriangular in polar view, 3-zonoporate, orna-719

mentation echinate.720

Carduus - isopolar, radially symmetric, medium to big size (P = 31 −721

50µm, E = 31 − 51µm), oblate spheroidal to prolate (elliptic) in equato-722

rial view (P/E = 0.85 − 1.20), trilobulate in polar view, 3-zonocolporate,723

ornamentation echinate-perforate-finely reticulate.724

Castanea - isopolar, radially symmetric, small size (P = 14− 15µm, E =725

9−11µm), prolate (elliptic) in equatorial view (P/E = 1.27−1.55), triangular726

in polar view, 3-zonocolporate, ornamentation rugulate.727

Cistus ladanifer - isopolar, radially symmetric, small to medium size728

(P = 41 − 55µm, E = 50 − 53µm), spheroidal to prolate spheroidal in729

equatorial view (P/E=0.91-1.19), circular in polar view, 3-zonocolporate, or-730

namentation reticulate.731

Cytisus - isopolar, radially symmetric, medium to small size (P = 20 −732

33µm, E = 15 − 29µm), spheroidal to prolate spheroidal (elliptic or sub-733

rhomboid) in equatorial view (P/E = 0.86− 1.55), circular to trilobulate in734

polar view, 3-zonocolporate, ornamentation finely reticulate.735

Echium - heteropolar, radially symmetric, small size (P = 13−25µm, E =736

8−15µm), prolate (pyriform) in equatorial view (P/E = 1.30−1.87), trilob-737

ulate in polar view 3-zonocolporate, perforate-finely reticulate.738

Ericaceae - tetragonal tetrads, medium to big size (P = 27 − 67µm),739

pollen 3-zonocolporate, ornamentation psilate to verrucate.740
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Helianthus - isopolar, radially symmetric, medium size (P = 27−31µm, E =741

27 − 33µm), oblate spheroidal to spheroidal in equatorial view (P/E =742

0.90−1.00), circular in polar view, 3-zonocolporate, ornamentation echinate-743

perforate.744

Olea - isopolar, radially symmetric, small to medium size (P = 20 −745

27µm, E = 19 − 31µm), spheroidal to prolate (elliptic) in equatorial view746

(P/E = 1.05 − 1.31), circular or trilobulate in polar view, 3-zonocolporate,747

ornamentation reticulate-verrucate.748

Quercus - isopolar, radially symmetric, medium size (P = 19−33µm, E =749

15−34µm), oblate to prolate (elliptic) in equatorial view (P/E = 0.86−1.35),750

circular or triangular in polar view, 3-zonocolpate, ornamentation granulate-751

verrucate.752

Rubus - isopolar, radially symmetric, small to medium size (P = 16 −753

28µm, E = 14 − 24µm), spheroidal to prolate (elliptic) in equatorial view754

(P/E = 1.00 − 1.57), circular or trilobulate in polar view, 3-zonocolporate755

or 3-zonocolporoidate, ornamentation reticulate.756

Salix - isopolar, radially symmetric, small to medium size (P = 16 −757

27µm, E = 16− 23µm), prolate (elliptic) in equatorial view (P/E = 1.10−758

1.20), subtriangular in polar view, 3-zonocolporate, ornamentation reticulate.759

Teucrium - isopolar, radially symmetric, medium to big size (P = 35 −760

66µm, E = 26 − 45µm), spheroidal to prolate (elliptic) in equatorial view761

(P/E = 1.05 − 1.65), circular or triangular in polar view, 3-zonocolpate,762

ornamentation echinate-perforate.763
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