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Abstract. An efficient full-configuration-interaction “nuclear orbital” treatment was developed as a benchmark quantum-
chemistry-like method to calculate, ground and excited, fermionic “solvent” wave-functions and applied to 3Hey clusters
with atomic or molecular impurities [J. Chem. Phys. (Communication) 125, 221101 (2006)]. The main difficulty in handling
doped 3Hey clusters lies in the Fermi-Dirac nuclear statistics, the wide amplitudes of the He-dopant and He-He motions, and
the hard-core He-He interaction at short distances. This paper overviews the theoretical approach and its recent applications
to energetic, structural and spectroscopic aspects of different dopant->Hey clusters. Preliminary results by using the latest
version of the FCI-NO computational implementation, to bosonic Cly (X )-(*He)y clusters, are also shown.
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INTRODUCTION

Helium nanodroplets are applied as a weak perturbing cryogenic matrix for high-resolution spectroscopic studies of
trapped molecular systems, extracting remarkable information on the quantum solvent as the manifestation of “He
(*He) superfluid (normal fluid) effects and highlighting the key role of bosonic (fermionic) statistical effects. The
paradigmatic infrared spectra of a host carbonyl sulfide (OCS) molecule, which depend on the isotope considered,
3He or “He, represents one of the experimentally most well-documented evidences of the unique properties of He
nanodroplets [1, 2]. When OCS is solvated in a bosonic “He-nanodroplet, the spectrum at 0.37 K is very similar
to that of the gas-phase OCS, as the molecule freely rotates. On the contrary, in *He-nanodroplets, and even at a
lower temperature of 0.15 K, the spectrum shows an unstructured broad shape as it occurs in normal liquids. After
the addition of a few tenths of *He atoms, the structured spectrum is recovered, which was considered as the first
experimental evidence for the appearance of microscopic superfluidity. Further spectroscopic probes of molecules in
rather small doped helium clusters provided insights into the number of *He atoms which are necessary for the onset
of microscopic superfluidity [3, 4, 5, 6, 7, 8]. As for example, Surin et al. [8] showed a non-classical behaviour of the
host molecule rotational constant as a function of the cluster size and suggested that the CO rotation is almost free in
clusters with more than 5 “He atoms, exploring its possible relationship with their clustering at the end of the dopant
molecule and the decoupling of the He motion from the molecular rotation.

Effective approaches to describe ground-state doped bosonic “He clusters include variational, diffusion and path-
integral Monte-Carlo methods [9, 10, 11, 12, 13]. Extensions of these methods also provide excited-state properties
[14, 15, 16, 17]. The most obvious difficulty in applying these techniques to fermionic clusters lies in the nodal
structure of the wave-function arising from the anti-symmetry condition imposed by the Fermi-Dirac statistics. The
fermionic sign problem is usually avoided by employing the the fixed-node Diffusion Monte-Carlo approximation
[18, 19]. Using the released-node technique, an estimation of the bias introduced can be obtained [20]. Despite these
handles to relieve the sign problem, there are only a few studies of fermionic doped He clusters using these methods
[21, 22]. In addition, ground-state energies and one-particle densities of bosonic, fermionic and mixed He nanodroplets
can be obtained through the orbital-free Density-Functional-Theory(DFT)-based treatment by, e.g., Barranco and col-
laborators [23]. Alternatively, wave-function-based electronic structure methods that consider >He atoms as “pseudo-

Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2010 (ICCMSE-2010)
AIP Conf. Proc. 1642, 69-80 (2015); doi: 10.1063/1.4906632

© 2015 AIP Publishing LLC 978-0-7354-1282-8/$30.00

69



electrons” and the dopant species as a structured “pseudo-nucleus” (i.e., replacing Coulomb interactions by He-He
and He-dopant pair potentials) was first proposed and implemented for cases of 1 and 2 3He atoms by Jungwirth and
Krylov [24] so that all the fermionic symmetry effects are automatically included and the know-how developed in
electronic structure theory can be applied. However, there are a number of differences with the electronic structure
problems that prevent the direct implementation of standard electronic structure methods, as for example, Hartree-
Fock. Thus, whereas the electron-electron interaction is repulsive and the electron-nucleus one is attractive, both the
He-He and the He-dopant interactions are sharply repulsive at short distances and weakly attractive at larger distances.
This hard-core He-He repulsion at short distances is the origin of unphysical, non-bound, Hartree-Fock solutions, apart
from the maximum spin cases in which the He atoms are already constrained to occupy different spatial one-particle
states. As originally proposed in the application of the Hartree approach to quantum crystals by, e.g., Bernardes and
Primakoff in the Sixties [25], this problem is usually overcome by softening the hard-core He-He interaction at short
distances [23, 26, 27]. Although, this truncation obviously makes these treatments parameter-dependent, it is worth
recalling that Hartree and Hartree-Fock results obtained for Br; and ICI as dopant species were able to explain the
key experimental results (i.e., the unstructured spectrum of the guest molecule for doped 3He nanodroplets and the
sharp profile in the “He ones) as caused by a high-energy degeneracy for the lowest solvent spin states in doped 3He
clusters, which is absent in the spinless “He case [26, 28, 29, 30, 31]. To take the next steps forward, it is important to
assess the accuracy of approaches with a softened He-He core as well as to establish benchmarks in the development
of new ones to describe excited solvent states. With this goal in mind, we developed a Full-Configuration-Interaction
(FCI) implementation in which, by extension of the quantum-chemistry (QC) notation, the one-particle He states are
called “nuclear orbitals” (NO). The FCI-NO treatment, as compared to other QC-like approaches, thus explicitly deals
with the hard-core problem, and captures fine short-range correlation effects. An outline of the implementation, in-
cluding methodological and computational aspects which have not previously published, is given in Section 2. In a
series of papers [32, 33, 34, 35, 36] the FCI-NO method was applied to 3He clusters containing Bry [32, 35] and Cl,
[33, 34, 36], in both the ground and the excited electronic states, as the dopant species, and using semiempirical T-
shaped as well as ab initio He-dopant with minima on both T-shaped and linear configurations [36]. They are systems
in which the He-dopant interaction dominates over the He-He one, with the host molecule embedded within the >He
cluster. Numerical tests were also carried out by multiplying the He-He potential in such a way that the strengths for
He-molecule and He-He interactions become similar [35]. A selection of results is overviewed in Section 3.

An enhanced version of the FCI-NO code was recently developed to also deal with bosonic systems so that doped
4He clusters can be handled on an equal footing. As an illustrative application, preliminary results on (*He)n-Cl(X)
clusters, with N < 4, are provided in Section 4.

THEORETICAL APPROACH

Quantum-Chemistry-like Approach

Considering the particular case of a diatomic molecule, AB, in the N 3He atom environment and working with satellite
coordinates (r, R) with r as the vector joining the atoms of the diatomic and Ry as the vector from its center of mass
to the different 3He atoms, a body-fixed (BF) coordinate system with the Z axis parallel to the molecular axis was

chosen. Keeping the diatomic bond length fixed, as in electronic structure problems, the Schrédinger equation of the
N 3He atoms clustering the diatomic molecule is first solved, e.g., [26];

H® — B ()] L3((Re}, {oii) =0 M

where S is the total spin angular momentum of the He atoms. H ™), the analog to the electronic Hamiltonian can be
written as:

N 2
= = h
HM =Y (Ke(Ri) + VB (R ) + Y VEH (R - R [) = — Y ViV, (2)
k=1 k<l MAB (<

H®™) thus comprises one-particle kinetic, Kj, and potential energy terms, VkAB_He, as well as two-particle potential,

Vk},{e_H", and kinetic energy coupling, Vi -V, terms. The r-dependent eigenvalues and eigenfunctions are labeled
according to the projection of the total He orbital angular momenta L=} y1; on the molecular axis A and S. For a
total angular momentum J=j+L+S (j being the diatomic angular momentum) with a projection onto the BF Z-axis
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Q = A+X (X being the projection of S on Z), omitting Coriolis couplings, the modified Hamiltonian of the dopant
molecule can be written as,

. hz 82
eff __ (N) 2 3
Hy~ = 2m or? +Uir) +EA’S (r)+ 2mr? (%) 3)

It should be noticed that there is an additional potential energy term coming from the r-dependent total energies of the
solvent states. The effect of the He environment is also reflected on the rotational molecular term (j?). Since L is not
a good quantum number, j® is averaged over the total helium wave-function,

() I +1)+868+ 1)+ (@LI{R}, {0} NILAOL) (R}, {0} 7)) — 2(A2 + 22 + AT). 4)

In turn, since the total angular momentum square is a two-particle property (i.e., the orbital angular momenta of
different He atoms are coupled) a wave-function-based method is needed to obtain it, or at least, approaches capable
of providing the second-order reduced density matrix. Explicitly,

(@UIRDILADI(RY)) = ¥ Ly LuTijua + Y L2 % ©)
ijkl ij

with I" and ¥ as the standard two-particle and one-particle reduced density matrices in the chosen one-particle basis
set, L;j and L%j being, respectively, the matrix representation of the total He angular momentum operator and its square

on that basis. The modified Schrodinger equation [H;',f f g JSAZ‘,} Xssazv(r) = 01s then solved to calculate the dopant

eigenvalues and rovibrational Raman spectra (see below). The ansatz for the total wave-function of the system can be
therefore written as,

9@?') = XJSA):v(V)‘I’ﬁ\Ag({Rk}a {0x}:7) Dt (¢r.6:,0) (6)

where _@A{,; (¢r, 6;,0) are Wigner rotation matrices depending on the r polar components in the space-fixed (SF) frame.

The main approximations involved in this QC-like model are therefore: (1) the pair-wise approach for the global
potential energy surface; (2) the adiabatic approach for the diatomic stretch mode; (3) the decoupling of the diatomic
rotation from the He motion. The validity of the pair-wise approach along with the adiabatic approximation has
been confirmed by ab-initio and variational calculations on complexes with two “He atoms [37, 38, 39, 40]. The
approximation of decoupling the molecular rotation has also been tested for heavy as well as light host molecules
[37, 38]. In any case, it is worth stressing that the Coriolis non-adiabatic coupling terms between quantum-chemistry-
like He states, induced by the molecular rotation, can be dealt with later within this approach, e.g. [41].

Full-configuration-interaction Nuclear Orbital Implementation

The hardest part of a practical calculation is obviously solving Eq. 1. As in typical electronic structure problems,
one-particle basis sets comprising spherical harmonics Yy,,(6,¢) were adopted. Instead of the common Gaussians we
employ radial functions that are obtained by numerically solving the Schrodinger equation of the He-AB triatomic
at fixed angular orientations 6. Explicit integral expressions in this one-particle representation have been provided in
Ref. 27. The integral evaluation program was interfaced to an efficient FCI code, which is a modified version of the
pynamic ci program [42]. This FCI program is based on configuration state functions (CSFs) and is optimized for a small
number of fermions. Expressions for the coupling coefficients in the CSF basis can be found, e.g., in Ref. 43.

In this one-particle (CFS) representation, the generic basis wave function of N fermions is

¥ = DA{¢1(R)$2(R2)... 9w (Ry) Eés (01,07, ..., 08)}, @)

where D is the normalization factor, A is the anti-symmetrization operator with respect to the interchange of both
spatial R; and spin o; coordinates; ¢; are spatial-only one-particle orbitals, ESy is the a — th spin function (CSF) for N
fermions corresponding to the total spin S and its projection X. In this implementation the CSFs are constructed in the
same way as in the MOLPRO program package [44]: they are genealogical wave functions, ordered according to an
inverse lexical order [45, 46].

The spatial one-particle functions, ¢ (R;), used to construct the CSFs are linear combinations of the original “atomic”
orbitals. A transformation of the integrals to these orbitals which are selected to provide better convergence of the
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iterative FCI procedure, is performed before the FCI run. In practice, starting with the smallest basis set size, the
initial orbitals are derived from the diagonalization of the Hamiltonian corresponding to an independent-particle
approximation. Next, we used an increasing-orbital-space technique in which the FCI vectors obtained for each cluster
size, spacial symmetry and spin value from the previous calculation with a smaller basis are projected on an expanded
representation space. These FCI vectors are used as initial guesses in the iterative diagonalization. We found that this
strategy significantly accelerates the convergence of the iterative FCI treatment.

Due to the large size of the FCI configuration space, it is only possible to use the so called “direct-CI” iterative
methods, where the matrix to diagonalize is never evaluated and stored, but rather its action on a given trial vector is
provided. In electronic structure calculations the Davidson method [47] is the most commonly used iterative eigen-
solver. Its advantage is that no additional matrix— vector operation is needed for a given iteration. The Davidson
algorithm belongs to the family of the Krylov-space methods. In these approaches, the current approximation v to the
eigenvector of Hamiltonian H is obtained by diagonalizing the Hamiltonian in the Krylov subspace {¥1,V2...V,}. The
current approximation to eigenvalue is given by £ = (V|H|v). Further, the Krylov subspace is expanded by adding
vector DF where 7 is a residual vector, 7 = (H — E)¥, and D is a pre-conditioning operator. In the standard Davidson
approach D is taken in a simple diagonal form,

D=0H:~E)"'Q, ®)
where O is the orthogonal projector, O = 1 — |#)(¥|, and Ay, is the diagonal of Hamiltonian in the basis used to express
vectors, Hy = diag(H). Note that if we would be able to solve a similar equation with full Hamiltonian instead of its

diagonal, V4| = (Q(FI —E )QA)H 7 or, equivalently

O(A —E)QVp1 =T, )

this would result in a method similar to the inverse iteration method, which is known to have extremely fast conver-
gence rate for nearly any type of matrix, and independently on the vector basis used. Unfortunately, the solution of this
linear equation is as difficult as the solution of the eigenvalue problem itself. The success of the Davidson algorithm
in QC problems is due to the typical strong diagonal dominance of the electronic Hamiltonian matrices, the diagonal
approximation to the Hessian, (H — E), being quite good and providing good convergence properties (20 to 30 iter-
ations). In contrast, due to the hard-core He-He interaction, very large off-diagonal Hamiltonian elements appear in
our case and, as a result, it was not possible to achieve convergence through the Davidson algorithm (even after 30000
iterations) [32, 33]. Recently, we showed that the hard-core repulsion does not represent a serious problem once the
Davidson algorithm is replaced by a Jacobi-Davidson modification. In the Jacobi-Davidson method, one solves the up-
dated equation, Eq. (9), iteratively for each Davidson macro iteration. It converges quickly (350 outer Jacobi-Davidson
iterations at the worst), the incorporation of the increasing-orbital-space technique providing even more rapid conver-
gence. In the FCI program, the iterative SYMMLAQ solver without any pre-conditioner was used [48]. This solver is
again of Krylov type and we found that it has somewhat superior convergence in our case as compared to the MINRES
[48] one.

For extremely large-scale FCI calculations it was found necessary to use a parallel implementation of the method.
The reason, apart from speeding up the calculations, is that the main memory storage available for a given single CPU
is not sufficient to store all the intermediate vectors and other quantities (sigma-vectors) required for the Davidson
algorithm. Therefore the mixed hand-coded paradigm was adapted with both memory and work distributed over
different CPUs. Both Cl-vectors, sigma-vectors and two-particle integrals are distributed over CPUs on a run-time
basis. Clearly, this creates noticeable overhead and requires fast inter-CPU network connection. A more efficient
solution consisted in using a mainframe computer with a large amount of RAM, and employ OPENMP optimized
versions of “blas” libraries. Since our Davidson algorithm is formulated in such a way that most of the work is
done using blas matrix multiplication routine (DGEMM) the OPENMP blas provides quite good parallelization.
This allowed the use of much larger basis sets [34]. Presently, the FCI-NO implementation allows the calculation
of different one- and two-particle properties as, for example, radial and angular pair density distributions, spin
densities, and magnitudes depending on the He angular momenta and its coupling with the dopant molecular rotation.
Methodological details for their calculations were provided in [34].
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Rovibrational Raman Spectra

In order to calculate the rovibrational Raman spectra, the same approach as in [26] was adopted. Hence, only the most

relevant aspects are kept for further discussion. We assume linearly polarized incident light, propagating along the SF

Y axis, and detection along the X axis. For a fixed energy of the incident photon, a Boltzmann distribution over ground

as well as excited solvent states at a given temperature and an average over the initial rotational states is considered.
Therefore, a line of intensity,

e~ (&/KT) 1 s @

I5(T) o< T o~ 211 ;Wo | (10

would appear at an energy i@y = hwy — (& — &) of the scattered photon, i (f) being a collective index denoting
the quantum numbers of the initial (final) state (i.e., {JSAXv}). The transition induced dipole moment u({ ' can

be expressed in terms of the spherical ayf; = (Ot({’i -+ 20&{ #)/3 and the anisotropic Bri= (ag"‘ - a]f *) parts of the
polarizability [49] as,

I s Ji 0 Js /J,» 0 Js Zﬁf’,‘ yoo2 Uy 7 2 g
Ho af”(—M,- 0 M,-) ‘\—Q,- 0 szf>+ 3 \-M o m)\-2 o o) (1D

with o’ = (xilowm|xf) and with o, as the diatomic polarizability. In contrast to previous studies using this approach

[26, 28, 31], the r-dependence of the EX‘S) eigenvalues in Eq. 3 was neglected. Since we focused on the vibrational
excitation v =1 <« 0 of the diatomic, the relevant r range being very narrow and the energy r-dependence being
very weak, this is a reasonable approximation. As in previous studies [26, 28, 31, 36], a vibrational pre-dissociation
mechanism (e.g., [5S0]) was assumed to be responsible of line broadening. First, the VP line broadening for the
He-molecule triatomic is obtained using the framework of an adiabatic angular model [51]. Hereafter, the VP line
broadening of a N-sized complex is assumed to be N times that of the triatomic, I'y/2 ~ N x I'; /2. This assumption
was further supported by the fact that quasi-linear dependences of the FCI total energies as a function of N were
obtained [33, 34, 35, 36]. Finally, the stick lines are dressed with Lorentztians of the calculated widths.

SHEy-DIATOMIC CLUSTERS WITH T-SHAPED INTERACTION POTENTIALS: AN
OVERVIEW

Recently the FCI-NO method was applied to fermionic clusters containing Cly(B) [33, 34], Cly(X) [36] and Bry(X)
[32, 35] as the dopant species, with typical high anisotropic He-impurity interactions, the minimum being located at
a T-shaped configuration and about four or five times deeper than the He-He minimum. We first studied convergence
properties upon increasing the basis set size, dealing with up to ~ 400 million configurations and 400 basis functions.
As a consequence of the hard-core He-He interaction at short distance and highly anisotropic He-dopant potential,
spherical harmonics comprising very high angular momentum values (4,4, > 8), with m,,,4; = £,,,4x, had to be included
to get convergence. Regardless what the dopant species is, a quasi-linear dependence of the ground-state total energies
with the cluster size was found as the lowest state of the triatomic would be N-times occupied. At first glance, this was

surprising because we are dealing with a fermionic system in which the 3He atoms are constrained to occupy excited
one-particle orbitals. This will be explained later.

A Natural Orbital Analysis

The robustness of the nuclear orbital approach was also tested by calculating the natural orbitals (i.e., the eigen-
vectors of the first-order reduced density matrix). The iso-probability surfaces for a cluster containing 4 He atoms
can be seen in Fig. 4 of [34]. Starting with the ring-like 10, orbital, the close-lying 17, and 16, excited orbitals
describe quantized rotations on the ring-plane, i.e. around the molecular axis. These natural orbitals depart slightly
from the independent-particle (IP) counterparts. In the IP representation, the lowest energy levels mimic rotational
energy levels of a rigid rotor on the perpendicular plane to the Z axis with energies approximatively given by Begx
& + EZ‘, where Befr is an effective rotational constant that is proportional to the expectation value (ﬁ> on the 1o,

state, with & as its energy, and £ is the orbital angular momentum projection on the Z axis. Overall, high fractional
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occupation numbers of the natural orbitals were obtained which reflected the strong He-He correlation and the high
multi-configurational character of the wave-function. Despite this, three He natural orbitals were enough to describe at
the very least 91% of the He population for the largest cluster size (N=4). This highlighted the adequacy of the nuclear
orbital approach.

Zeroth-order Approximation to the FCI Wave-function

By using natural orbitals, it was also found that the best representation of the FCI wave-function is obtained by
using cylindric coordinates and one-particle orbitals that can be written as,

1 1
Wv'pvzm(xy)77z) = —Ovva(p,Z)Ee‘mq’ (12)

VP
The orbitals o are orthonormal with respect to integration [)"dp [~ dz OvpvOvlyyy, = 6%%6‘,;3 v,» With vp and v, as
the assigned quantum numbers for vibrations along p and z, respectively. Using (vp.v;) notation, a given orbital is
symmetric with respect to inversion of z for even v;, and anti-symmetric for odd v,; independently on v,. It was found
that the wave-function part depending on p and z coordinates can be described by just one in-plane orbital, meaning
the ring plane perpendicular to the molecular axis and passing through its mass center, and one out-of-plane orbital
(hereafter referred to as the (0,0) and (0,1) orbitals, respectively). In particular, the spatial part of the wave-function
for the lowest-energy states, that are symmetric with respect to Z inversion, can be simplified to the expression:

(0,0)¥ ():, wr [ Al = imi 9 ] ) , where the in-plane orbital (0,0) would be occupied N-times and the azimuthal part can
be written as a sum of a few reference configurations expressed as simple products of complex exponentials for the
azimuthal angles of each He atom (see Table III in [34]). The same holds true for the low-lying antisymmetric-in-Z

states but now with a single-occupied out-of-plane orbital [i.e., (0,0)Y~1(0, 1)]. Considering the particular case of two
*He atoms, the zeroth-order wave-function for low-lying symmetric-in-Z states,

Y 1.
o= ~ oy (p1, : o+ .2 (9_)Zsx(01,02), 13
AS o1(p1,z1)o1(p2 Zz)me fu' (9-)Esz(01,02), (13)

contains an azimuthal term depending on the half sum of the azimuthal angles, ¢, describing the overall rotation
around the Z axis, a spin part Egy (written in terms of configuration state functions), and a term depending on the half
difference between the azimuthal angles of the two particles, ¢_, written as a sum of cosine [} (¢_) = cos(m¢_)] or
sine-type functions [f,, (¢—) = sin(m¢_)] depending on the symmetry with respect to ¢_ inversion, Py = =.

Similarly to previous studies by Villarreal et al. [52] and Herndndez et al. [53] for the “He isotope, the wave-function
structure in Eq. 13 can be understood by resorting to a reduced dimensional model for the half-sum and half-difference
of the azimuthal angles (i.e., averaging the Hamiltonian over the doubled occupied (0,0)? orbital),

(H"=2) 0.0y = {

— 9’ 9 He—He
4UR? >(070) [82¢+ + 32¢_} +(V (2¢*)>(0,0) (14)

where 1 is the reduced 3He-diatomic mass. In this way, the reduced Hamiltonian term depending on ¢, would
be correlated to quantized overall rotations around the Z-axis with a frequency ~ Begr/2. On the other hand, the
eigenvectors of the Hamiltonian term depending on ¢_, owing to the hard-core He-He interaction, mimic particle-in-
a-box states. This can be generalized to the larger cluster sizes considered: the azimuthal part of the wave-function
describes particle-in-a-box-like states along with overall quantized rotation around the Z axis.

A Pair Density Distribution Analysis: Short-range Correlation Effects

A pair density distribution analysis can reveal additional fine correlation effects and further clarify the wave-function
structure. By comparing, for example, Fig. 5 of [53] and the upper panel in Fig. 5 of [36], it can be seen how the angular
pair density distributions of the low-lying symmetric-in-Z states resemble the lowest- and the first-excited particle-in-
a-box-like state. However, the distributions have also a shoulder at a close angle (712 ~ 70°). This correlates with a
feature in the radial pair density distribution that enters a little bit on the attractive region of the He-He potential (see,
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e.g., Fig. 7 of [34]). As a consequence, the average He-He interaction is negative (see Fig. 1 (b) in [34]). As the cluster
size increases the shoulder becomes more pronounced, and a true local maximum for four 3He atoms (see Fig. 7 of
[34]). It was also found that the most probable structure is not the classical one of N *He atoms equally spaced on the
ring plane, but there is some sort of structural “pairing” of the 3He atoms on a plane containing the molecular axis and
the perpendicular plane to that axis, as well. The average He-He attractive energy scales as a power of 3 with a number
of *He atoms. Very similar rates were found for Brp(X) and Cly(X,B) host molecules. These results are interesting if
taking into account that the He-He potential does not support bound states in the fermionic case. In short: the impurity
is not only able of holding together the otherwise unbound 3He atoms but also of inducing their structural pairing to
benefit from the weak minimum of the He-He potential. The origin of the shoulder was further clarified by carrying
out a numerical test by multiplying the He-He interaction in such a way that the strengths for He-molecule and He-
He interactions become similar [35]: the peak of the pair density distributions shifted to the position of the shoulder,
highlighting the fact that its origin is at the minimum of the He-He potential (inset in Fig. 2 of [35]).

Global Analysis

Overall, the quasi-linear behaviour of the binding-energies as a function of the cluster size can be rationalized as
a balance between the progressively less attractive one-particle part, due to the filling of excited one-particle orbitals
that raises the global kinetic energy but keep the He-dopant interaction as N times the one for a single particle, and
the increasingly more attractive He-He part coming from long wave-function tails that penetrate into the minimum
region of the He-He potential. In all fermionic cases analysed, the ground states were found for X-type states. A
high degree of degeneracy was also found for the lowest spin states and that the larger the cluster size, the smaller
the promotion energies to the low-lying excited states. These lowest spin states share nearly identical one- and two
particle distributions. In fact, a further analysis shows that the excitation mode is mainly on the overall quantizied
rotation around the Z axis. As can be deduced by generalizing Eq. 14 to larger cluster sizes, the frequency for this
motion would be ~ Beg/IV, which obviously decreases as the cluster size increases. Conversely, the hard-core of the
effective He-He interaction is intensified when augmenting the number of *He atoms in such a way that the excited
particle-in-a-box-like levels become higher in energy. It is also worth mentioned that, as can be noticed from Eq. 14,
the spin term in the antisymmetric *He wave-function provides a less stringent constraint for the allowed global
rotational levels around the Z axis ¢/?+ than in the spin-less “He case. In order to analyze how these global results are
reflected on the rovibrational Raman spectra, a Cl, molecule in the ground electronic state was considered, by using
first a T-shaped model He-molecule potential function [36]. By comparing the spectra for different cluster sizes (see
Fig. 7 of [36]), it can be noticed that the profile is increasingly more congested as the cluster grows in size because
additional contributing lines appear, mainly coming from near degenerated spin multiplets, which gives rise to peaks
of comparable intensities. Actually, not only the lowest spin states contribute to the spectrum but also other low-lying
states describing quantized overall rotation around the Z axis. In any case, a decongested spectrum is recovered when
the temperature is lowered to 0.1 K and only the ground 'Eg' state contributes.

It is worth stressing that the main conclusion obtained by using a Hartree-Fock model with a softened He-He core
is corroborated by our FCI calculations. Thus, Hartree-Fock results predicted a high-degree of degeneracy for the
lowest-spin states [26, 30] and, then, qualitatively explain one of the crucial experimental findings at temperatures in
which doped *He nanodroplets are superfluid (i.e., a congested spectrum in doped *He clusters [54]). The qualitative
agreement is attributed to the fact that short-range correlation effects are very similar within the lowest-energy manifold
of states which, as a matter of fact, share almost identical pair densities. Quantitatively, Hartree-Fock energies were
found to be moderately underestimated, with the relative errors oscillating between 2 and 12% [35].

BOSONIC “HEy-CL,(X) CLUSTERS: PRELIMINARY RESULTS

Very recently, a FCI-NO implementation that also deal with bosonic systems was worked out [55]. The extension is
applied here to “He clusters containing Cl,(X) as the dopant species. The analytical form of the PES was obtained from
the CCSD(T) data reported by Cybulski and Holt [56] by using a Legendre polynomial expansion in 6 and a fitting to
Morse-var der Waals functions in R [57]. This PES comprises two minima (see inset panel of Fig. 1): a global minimum
of ~ —45.8 cm™! at a linear configuration (R,=4.16 A) and a secondary minimum at a T-shaped configuration of ~
—442 cm™! (R,=3.39 A). For comparison purposes, calculations for the *He case were also carried out.
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FIGURE 1. FClI energies (in cm™ ') of the ground *He and “He states in He-Cl>(X) clusters. Equiprobabilities density surfaces
between 0.01 x max{|p%|?} and 0.5 x max{|p**|?} are also depicted. Inset: Contour plots of the He-Cl,(X) PES as a function of
the distance of the He atom from the Cl; center of mass (R) and 6, the angle that R forms with the bond direction. Bottom panel:
Equiprobability density surfaces and occupation numbers of the relevant natural orbitals for N=4 and the “He isotope. Red and blue
colors indicate positive and negative lobes of the orbitals, respectively. The probability values have been selected to be the half the
maximum value attained at each natural orbital.

As can be seen in Fig. 1, the apparent global energetic aspects of the ground *He states do not differ too much when
compared to the fermionic case. Thus, ground-state energies behave quasi-linearly with the number of “He atoms and,
as expected due to the heavier mass of the *He isotope, are lower. The lowest-energy states are also of £ symmetry and
the average pair He-He energies are negative but scale with a larger constant rate for “He atoms. Actually, the energies
are a bit lower than N ground-state tri-atomics, in contrast with the fermionic case. This seems natural if considering
that pure “He clusters are bound, independently of the number of He atoms. Our results are in line with the previous
study carried out by Baci¢ et al.[58] on (*He)n-Clo(B) clusters (N < 3), using the Green'’s function Monte-Carlo
method, in which a simple additive model for the total energies, as a sum of independent N “He-Cl, and N(N — 1)/2
*He, oscillators, was proposed. The quasi-linear behaviour of ground-state energies was also found on (*He)y-Bra(X)
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clusters (N < 5) through a configuration-interaction treatment for J = 0 by Felker [59].

Let us now see how the impurity is solvated by the He atoms. Although the linear minimum of the He-dopant PES
is deeper, zero point energies reverse the order of stabilities in such a way that a belt around the molecular axis is filled
first (see Fig. 1). However for four He atoms and both isotopes, the ground-state density flows towards the chlorine
ends, in such a way that the dopant becomes fully coated. The transition to the full-coated regime is also apparent
when analysing the average He-He energy which no longer scales as a power of three with the number of He atoms but
quasi-linearly. In fact, it occurs when the increased average kinetic energy for ring-like states is not counterbalanced by
the higher He-He attractive interaction within the ring plane. Due to the lighter mass of the 3He isotope, the densities
are more delocalized and the clustering of the *He atoms at the Cl, ends is already apparent in excited solvent states
that are almost degenerated with the ground-state for N=3, as the one whose density is represented in Fig. 1 along with
the ring-shaped density corresponding to the lowest-energy state.

The FCI wave-function make-up of bosonic clusters was also analyzed, after rotating it to the basis of natural
orbitals. Independently of the cluster size, the main contribution comes from the permanent (i.e., a symmetrized
Hartree product of one-particle orbitals) where all the bosons reside in the first natural orbital (i.e., the 10, orbital). The
absolute values of the associated coefficients, however, decrease rapidly from ~ 0.9 for N=2 to ~ 0.5 for N=4. In fact,
for N=4, the contribution from the (1(55,)2 (26&,)2 and (log)3 (2crg)1 permanents becomes already significant (~ 0.3 and
0.2, respectively). The fragmentation of the condensed solution, with all the 4He occupying the same orbital, reflects,
on the one hand, the transition to the full-coated regime, which is also apparent from the mixing of the independent-
particle (10,) and (20,) orbitals (see Fig. 1). The depletion of the 1o, orbital also takes places through the promotion
to the 17, orbital (see Fig. 1), with an occupation number that increases from 0.24 for N=2 to 0.92 and 0.94 for N=3
and 4, respectively. In an effective one-particle picture this could be explained by taking into account that the on-site
interaction on the ring-like 10, orbital is increasingly more repulsive as the ring becomes more crowded.

Rovibrational Cl,(X) Raman Spectra in “He Clusters

In order to perform the spectra simulations, temperatures of 2 and 0.37 K were considered, including values for the
total angular momentum J < 10 to achieve convergence. Accurate Cl(X) polarizabilities, assumed to be unchanged
by the presence of He atoms, were taken from the work carried out by Maroulis [60]. The more intense Q (AJ = 0)
branches are shown in Fig. 2, which displays continuum profiles of the scattered photon intensity as a function of
the energy loss between the incident and the exiting photons, iwg - Awy;, measured with respect to the bare dopant
forbidden transition (/,v)=(0,1) < (0,0), 554.37 cm~!. The main lines contributing to the different profiles are specified
as (J,Q) where J=J;. Note that Q=A for “He zero-spin atoms. Focussing on the spectra at T=2 K, it can be observed
that although the most intense lines are associated to the lowest Z states [e.g., the one with (J,Q2)=(0,0)], the intensities
of the lines coming from Q > O states are clearly significant and, therefore, the spectra appear rather congested. This
seems to be in contrast with previous results by using the Hartree method [26, 28, 31], where a decongested spectrum
was obtained for that temperature in (*He)y-Br2(X) clusters. From our viewpoint, this apparent discrepancy is due to
the fact that excited He states with Q > 0 were not included in the simulations with the Hartree method. In fact, as
can be seen in Fig. 2, if the temperature is lowered to 0.37 K (the temperature at which microscopic superfluidity was
probed in ‘He nanodroplets [1]) and for N > 2, only the lowest ¥ states with Q=0 contribute to the spectra (i.e., the
Q # 0 states are not populated) and pure Lorentzian profiles are obtained. Moreover, as was found in [26, 28] and
can be deduced from Eq. 11, when Q; = Q; = 0, branches with AJ = £ 1 (P and R branches) become forbidden and
diatomic-like selection rules, AJ =0, -+ 2, are recovered, quite in line with both experimental finding and Hartree-based
calculations [1, 26].

Before closing this section, the reliability of the approach of omitting the Coriolis couplings will be addressed,
which arise from the JYL~ +J L* term of j? in the bosonic case (i.e., inducing a mixing between Q and Q + 1
solvent states). For example, let us consider the coupling between the lowest £, and II, states (i.e., the (X¢|L™|IT,)
term). Absolute values of 0.021, 0.032 and 0.00084 a.u. were obtained. for N=2, 3 and 4, respectively. Interestingly,
these values decrease very significantly when the transition to the full-coated regime takes place. The same holds
true for the remaining calculated Coriolis couplings: they are reduced to as little as a factor of five. This is in line
with experimental studies [8] and path-integral Monte Carlo simulations [6, 61, 62], showing an interplay between the
appearance of He density at the ends of a dopant molecule and the decoupling of the He angular momentum from the
molecular motion. When considering the heavier Cl, dopant species, however, the decoupling is apparent before the
the transition to the full-coated regime since the magnitude of the Coriolis couplings are very small anyway. For any
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FIGURE 2. (color online) Main Q branch of the (v=1 < 0) rovibrational Raman spectra of (*He)n-Clo(X) clusters at T=2 and
0.37 K.

size, with J < 10, the mixing percentage between He states is smaller than 7%, stressing the validity of the approach
of decoupling the He motion from the molecular rotation.

SUMMARY AND OUTLOOK

Methodological and computational aspects of a FCI-NO implementation to calculate ground and excited-state wave-
functions of fermionic solvent species in weakly bound doped clusters has been briefly described and its application
to a microscopic description of small doped 3He clusters has been overviewed in this paper. Preliminary results for
doped “He clusters by applying a FCI-NO implementation which deals with bosonic systems have also been presented.
The global analysis of the results reveal that classical quantum chemical wave-function-based treatments to study the
electronic structure of molecular systems can be properly adapted for a microscopic description of small He clusters
and stress the powerful one-particle picture of these strongly correlated many-body systems. Work is in progress
to make the FCI-NO treatment more efficient by implementing an optimized one-particle basis set (i.e., by using
two-dimensional (p,z) functions and standard complex exponentials e~m9) to anisotropic He-dopant potentials. The
extension to mixed fermionic/bosonic systems and the work on less time-consuming but still precise methods as
the multi-reference CI is also underway. The other candidates among the efficient and accurate quantum-chemistry
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methods are obviously those based on coupled-cluster (CC) theory [63], provided the standard Hartree/Hartree-Fock
solution is replaced by a stable zeroth-order wave function (i.e., tailored to the hard-core He-He interaction problem).
Very recently, methods based on CC theory have been implemented to calculate anharmonic vibrational states [64, 65].

As a future prospect, the development of embedding schemes that have been proposed, for example, in the
framework of electronic structure problems [66] to link less computationally expensive methods such as DFT to
the FCI-NO treatment is considered (i.e., to allow the description of nanodroplets). The adaptation of the FCI-NO
method to treat molecular or atomic species embedded in another quantum clusters is also an objective for future
work. In particular, one interesting issue would be to perform a FCI wave-function analysis of ground and excited
para-hydrogen (pHj) states (i.e., considering pH, molecules as spin-less bosons) of molecule-(pH)y clusters inside
He droplets, in connection with the recent evidences of microscopic superfluidity for certain cluster sizes [67, 68].
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