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Convergent genetic and expression data implicate immunity in
Alzheimer’s disease
International Genomics of Alzheimer’s Disease Consortium (IGAP)y
Abstract Background: Late-onset Alzheimer’s disease (AD) is heritable with 20 genes showing genome-wide
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association in the International Genomics of Alzheimer’s Project (IGAP). To identify the biology un-
derlying the disease, we extended these genetic data in a pathway analysis.
Methods: The ALIGATOR and GSEA algorithms were used in the IGAP data to identify associated
functional pathways and correlated gene expression networks in human brain.
Results: ALIGATOR identified an excess of curated biological pathways showing enrichment of as-
sociation. Enriched areas of biology included the immune response (P5 3.27! 10212 after multiple
testing correction for pathways), regulation of endocytosis (P5 1.31! 10211), cholesterol transport
(P5 2.96! 1029), and proteasome-ubiquitin activity (P5 1.34! 1026). Correlated gene expres-
sion analysis identified four significant network modules, all related to the immune response (cor-
rected P 5 .002–.05).
Conclusions: The immune response, regulation of endocytosis, cholesterol transport, and protein
ubiquitination represent prime targets for AD therapeutics.
� 2015 Published by Elsevier Inc. on behalf of The Alzheimer’s Association.
Keywords: Alzheimer’s disease; Dementia; Neurodegeneration; Immune response; Endocytosis; Cholesterol metabolism;
Ubiquitination; Pathway analysis; ALIGATOR; Weighted gene co-expression network analysis
1. Background

Alzheimer’s disease (AD) affects more than five million
Americans: one in eight at the age of .65 years and repre-
sents .60% of the six million dementia cases in Europe
[1–3]. It is the commonest cause of dementia and imposes
a large socioeconomic burden on individuals, their
families, and society. Prevalence is estimated to treble by
2050; thus, understanding the mechanisms underlying this
disease and developing treatments for it are essential. This
study uses the largest genome-wide association study
(GWAS) sample yet assembled for late-onset AD [4] and
is the first to combine GWAS and expression data in a sys-
tematic search for the biological pathways underlying the
genetic susceptibility to this disorder.
s of the International Genomics of Alzheimer’s Dis-
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Much of our current understanding of the mechanisms
that contribute to AD derives from the genetics of Mendelian
forms of the disease: mutations in APP, PSEN1, and PSEN2
cause early-onset forms of AD and underpin the amyloid
cascade hypothesis [5]. Although amyloid deposition is
diagnostic of AD, its etiologic contribution to the majority
of common late-onset AD (LOAD) is unclear, and therapeu-
tic strategies addressing the amyloid cascade hypothesis
have been unsuccessful [6]. Therefore, other therapeutic av-
enues must be identified and targeted.

LOAD is genetically complex with 56% to 79% herita-
bility [7]. In the Genetic and Environmental Risk in Alz-
heimer’s Disease data set [8], approximately 20% of the
total trait variance was accounted for by single-
nucleotide polymorphisms (SNPs) on the GWAS chip
outside the APOE region [9], with the ε4 allele of the
APOE gene [10] accounting for a similar amount [9,11].
However, a substantial proportion of the genetic variance
of late-onset AD is not accounted for by the 20 susceptibil-
ity genes currently identified [11]. The remaining genetic
e Alzheimer’s Association.
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variance is likely to be due to both susceptibility genes of
small effect that current sample sizes are insufficient to
detect and rare variants, such as the coding variants in
TREM2 [12], that are poorly tagged by common variants
in GWAS panels. In addition, individual genome-wide sig-
nificant (GWS) genes identified in such studies may them-
selves not form good therapeutic targets, and the areas of
biology that they highlight may only give a partial view
of the potential therapeutic landscape. To gain the
maximum useful information about causative pathways
that may underpin LOAD and be prime targets for pharma-
ceutical intervention, we performed a robust pathway and
integrated gene expression analysis using the largest avail-
able GWAS for AD [4].
2. Methods

2.1. Samples and genetic data

The sample comprised 17,008 AD cases and 37,646 con-
trol subjects in the primary GWAS analysis, with 8752 AD
cases and 11,312 control subjects in the replication/exten-
sion sample and is described in detail elsewhere [4]. Only
selected SNPs were genotyped in the replication/extension
sample (see Online Methods).
2.2. Pathway analyses

We explored whether particular biological pathways were
enriched for genetic associations [13,14] in the International
Genomics of Alzheimer’s Project (IGAP) data [4]. We used
ALIGATOR [13,14] to test whether genes containing signals
below the genome-wide significance threshold contribute to
a pathway signal. ALIGATOR defines significant genes as
having a best single-SNP P value less than a preset
threshold. The resulting list of significant genes is compared
with replicate gene sets generated by sampling SNPs
randomly (thereby correcting for gene size). The method
also controls for linkage disequilibrium (LD) between genes
and multiple testing of nonindependent pathways (see
Online Methods). Brown’s method [15] was used to test
pathway enrichment in the replication data. This method
combines multiple SNPs together, explicitly correcting for
both linkage disequilibrium (LD) between SNPs and the
Table 1

Significant excess of enriched pathways remain after removing APOE and the ge

Genes removed (number of genes)

Enrichment P , .05

Number of pathways P

None 542 ,.0002

APOE 1 1 Mb (77) 446 .0002

APOE 1 1 Mb 1 GWS (98) 402 .0020

APOE 1 1 Mb 1 GWS11 Mb (552) 336 .0094

Abbreviations: GWS, genome-wide significant; SNP, single-nucleotide polymo

NOTE. Genes containing a SNPwith P, 8.32! 1024 were counted as significa

when no genes are removed. The zero-kilobase window was used to assign SNPs
number of SNPs per gene (see Online Methods). Thus,
correction for gene size was applied at both stages of the
analysis. We interrogated the externally curated gene
ontology and KEGG and MSigDB functional pathway col-
lections (see Online Methods).

2.3. Expression correlation analyses

We used the expression data from Gibbs et al. [16] and
performed weighted gene correlation network analysis
(WGCNA) using the WGCNA package [17], separately on
each tissue type to identify clusters of highly correlated
genes called “modules.” These modules were then tested
for enrichment of genome-wide association signal in ALI-
GATOR.
3. Results

The sub-GWS variation in the IGAP data contains genetic
signal, manifest by a significant excess of SNPs at all signif-
icance threshold up to P 5 .05 (Supplementary Table 1).
This signal is unlikely to be due to uncorrected stratification
because each of the individual Caucasian GWAS samples in
the IGAP meta-analysis was corrected for ethnic variation
using principal components [18].

We first identified a significant excess of biological
pathways enriched for association signal in the IGAP
data (Table 1 and Supplementary Table 2). Using the
most significant 18,472 SNPs (P , 8.32 ! 1024) from
IGAP [4], covering the top 5% of genes, 177 significantly
enriched (P , .01) curated pathways were identified by
ALIGATOR. To ensure that the excess of pathways was
not an artifact of LD with genes of strong effect, we per-
formed secondary enrichment analyses removing all
genes that lay in the LD region of APOE or any of the
GWS genes from the IGAP [4] study. A significant excess
of enriched pathways remained (Table 1), showing that
the pathways showed significant enrichment independent
of the “known” AD genes. Likewise, a significant excess
of enriched pathways was observed when the P-value cri-
terion for defining significant SNPs and genes was varied
(Supplementary Table 3).

Many of the 177 pathways with P , .01 in ALIGATOR
are still significantly enriched after removing the APOE
nome-wide significant genes

Enrichment P , .01 Enrichment P , .001

Number of pathways P Number of pathways P

177 ,.0002 40 ,.0002

131 .0006 28 .0008

116 .0008 23 ,.0002

93 .0066 22 .0018

rphism.

nt. This corresponds to the top 5% of genes (ranked bymost significant SNP)

to genes.
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region and genes within 1 Mb of a GWS SNP (Table 2 and
Supplementary Table 4). They remain significantly enriched
under a range of P-value criteria for defining significant
SNPs and are also significant under a GSEA analysis
[19,20]. This robustness to analysis parameters and
methods gives confidence that the enrichments observed
by ALIGATOR are genuine.

Of the 177 pathways significant at P, .01 in the ALIGA-
TOR analysis of the IGAP GWAS, 119 are significant
(P , .05) in the replication sample. This is more than that
expected by chance (see Online Methods), a further confir-
mation that the pathways highlighted by the ALIGATOR
Table 2

Clusters of significant pathways in combined IGAP GWAS and replication data (

Cluster Pathway number Number of genes Number of sig P value

1 GO: 2455 32 5 3.27 ! 1

1 GO:50776 421 29 3.24 ! 1

1 GO: 2684 421 31 3.95 ! 1

1 GO:50778 271 21 1.55 ! 1

1 KEGG 4664 78 13 5.76 ! 1

2 GO:60627 140 20 1.31 ! 1

2 GO:30100 88 14 6.76 ! 1

2 GO:45806 19 6 3.91 ! 1

2 GO:48261 6 3 3.89 ! 1

2 GO:48259 30 6 6.19 ! 1

3 GO:30301 41 8 2.96 ! 1

3 GO:43691 16 5 3.90 ! 1

3 GO:15918 42 8 3.91 ! 1

3 GO:34366 8 2 6.40 ! 1

4 KEGG 4640 81 11 1.05 ! 1

5 GO:32434 40 5 1.34 ! 1

5 GO:51437 70 9 2.60 ! 1

5 GO:51439 76 9 3.82 ! 1

5 REACT 440 108 11 3.89 ! 1

5 GO:51443 77 9 9.62 ! 1

6 REACT 539 261 25 2.95 ! 1

7 GO:30131 31 7 1.20 ! 1

7 GO:30119 32 7 1.53 ! 1

7 GO:44433 301 31 1.01 ! 1

7 GO:30122 9 4 1.29 ! 1

7 GO:30118 39 7 1.35 ! 1

8 GO: 6457 200 12 1.60 ! 1

Abbreviations: IGAP, International Genomics of Alzheimer’s Project; GWAS,

NOTE. To obtain themost strongly enriched pathways in the entire data set (IGA

ing the top 5% of genes as significant) were combined with those from the replicati

samples were corrected for multiple testing of 9816 pathways using the Sidak for

number of genes common to both sets divided by the number of genes in the sma

it and the gene sets already in the cluster was greater than 0.4. If it was not possib

procedure was carried out recursively, in descending order of enrichment significa

pathways are significant, only the fivemost significant pathways in each cluster are

analysis of the IGAP GWAS data is given in Supplementary Table 4. “No GWS” re

(P , 5 ! 1028) in the IGAP GWAS data set (and thus expected to be strongly

replication data.
analysis contain genuine signals. Notably, pathway SNPs
had significantly lower replication P values than nonpath-
way SNPs even after correcting for their P values in the orig-
inal IGAP GWAS (two-sided P 5 .0237, see Online
Methods). Thus, the pathway analyses highlighted which
among a set of associated, but not GWS, SNPs are likely
to replicate and therefore be enriched for true signals. To
obtain the most strongly enriched pathways in the entire
data set, the P values from the ALIGATOR analysis were
combined with those from the replication study using the
Fisher method and corrected for multiple testing of 9816
pathways using the Sidak formula. Forty-five pathways
Sidak-corrected P value ,.05)

P value no GWS Description

0212 5.72 ! 1021 Humoral immune response mediated by

circulating immunoglobulin

029 1.57 ! 1024 Regulation of immune response

029 2.11 ! 1024 Positive regulation of immune system

process

027 6.65 ! 1024 Positive regulation of immune response

024 2.18 ! 1022 Fc epsilon RI signaling pathway

0211 2.00 ! 1021 Regulation of vesicle-mediated transport

0210 1.06 ! 1021 Regulation of endocytosis

027 1.77 ! 1022 Negative regulation of endocytosis

026 9.82 ! 1021 Negative regulation of receptor-mediated

endocytosis

025 1.00 Regulation of receptor-mediated endocytosis

029 2.51 ! 1021 Cholesterol transport

029 2.78 ! 1021 Reverse cholesterol transport

029 3.15 ! 1021 Sterol transport

027 N/A Spherical high-density lipoprotein particle

028 4.91 ! 1021 Hematopoietic cell lineage

026 1.00 Regulation of proteasomal ubiquitin-

dependent protein catabolic process

023 2.60 ! 1023 Positive regulation of ubiquitin-protein ligase

activity involved in mitotic cell cycle

023 3.82 ! 1023 Regulation of ubiquitin-protein ligase

activity involved in mitotic cell cycle

023 3.89 ! 1023 REACTOME_CELL_

CYCLE_CHECKPOINTS

023 9.62 ! 1023 Positive regulation of ubiquitin-protein ligase

activity

025 6.93 ! 1022 REACTOME_HEMOSTASIS

023 9.13 ! 1021 Clathrin adaptor complex

023 9.54 ! 1021 AP-type membrane coat adaptor complex

022 1.00 Cytoplasmic vesicle part

022 1.00 AP-2 adaptor complex

022 1.00 Clathrin coat

023 1.00 Protein folding

genome-wide association study; GWS, genome-wide significant.

P GWAS and replication), theP values from the ALIGATOR analysis (count-

on study using the Fisher method. The resulting P values from the combined

mula. For each pair of gene sets, an overlap measure K was defined as the

ller data set. A gene set was assigned to a cluster if the average K between

le to assign a gene set to an existing cluster, a new cluster was started. This

nce. Clusters containing a significant pathway are listed here, and where.5

shown. A complete list of pathways significant at P, .01 in the ALIGATOR

fers to analyses in which genes containing an SNP genome-wide significant

significant in the replication data set) are removed from the analysis of the
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were significant after multiple testing correction (Sidak
P, .05) in the combined data set. These pathways are listed
in Table 2, grouped into clusters by gene membership such
that pathways with.40% of genes in common are gathered
in a cluster.

This multiple testing correction may be considered con-
servative because it assumes that the pathways are indepen-
dent, whereas in fact, there is considerable genetic overlap
between them. Sidak-corrected P values for the combined
IGAP GWAS and replication data sets are therefore given
in Supplementary Table 4 for all 177 pathways significant
at P , .01 in the ALIGATOR analysis of the IGAP
GWAS. Redundant pathways (i.e., those with high genetic
overlap with other pathways) were not pruned from our anal-
ysis because it is not clear a priori which pathways will give
the most significant enrichment and should thus be retained.
Pruning a posteriori (i.e., by choosing the most significant
pathways) will bias the significance of the combined discov-
ery and replication P values (making the correction for mul-
tiple testing of pathways anticonservative). The pathway
clusters given in Table 2 and Supplementary Table 4 are in-
tended to aid interpretation of our results in light of shared
gene membership between pathways, by highlighting areas
of biology rather than individual pathways.

The clusters of multiple pathways were related to the
broad categories of immune response, regulation of endo-
cytosis, cholesterol transport, protein ubiquitination, and
clathrin, with the first three of these being particularly
strongly enriched for signal. Because one would expect
SNPs showing strong association to be significant on repli-
cation regardless of biology, the analysis was repeated
removing genes containing a GWS SNP in the IGAP
GWAS from the analysis of the replication data. From
Table 2, it can be seen that the immune-related and ubiqui-
tination pathways are still highly significant. Sidak-
Fig. 1. The pathways highlighted by ALIGATOR ontology analyses are related. T

identified in ALIGATOR only. Bubble size (and label font size) reflects the freque

reflects pathway P value. Similar GO terms are linked by edges (lines) in the netwo

line length is arbitrary. Strong relationships are revealed between negative regulat

related to the immune response process.
corrected P values for all 177 pathways significant at
P , .01 in the ALIGATOR analysis are shown in
Supplementary Table 4. The relationship between the en-
riched pathways is shown by their shared gene membership
(Fig. 1). Table 3 lists genes in the clusters identified in
Table 2 that are counted as significant (best single-SNP
P , 8.32 ! 1024) in the ALIGATOR analysis of the
IGAP GWAS and also gene-wide significant (gene-wide
P , .05) in both the IGAP GWAS and the replication
data. P values for all genes counted as significant in the
ALIGATOR analysis from the 177 pathways enriched at
P , .01 are given in Supplementary Table 5.

In contrast to ALIGATOR, GSEA uses all genes (rather
than using a threshold) and weights these by their signifi-
cance so may highlight different biological signals. We
therefore performed a secondary analysis of all pathways us-
ing GSEA. Pathways significant under GSEA but not ALI-
GATOR are shown in Supplementary Table 6. Most of
these pathways relate to areas of biology already highlighted
in the ALIGATOR analysis, the exceptions being synapse,
neuronal differentiation, and calcium signaling
(Supplementary Table 6). Genes contributing to these
pathway signals that are significant in both the IGAP
GWAS and the replication studies are listed in
Supplementary Table 7. Notably, these pathways contain
large genes. In addition to the differences between ALIGA-
TOR and GSEA described previously, the Simes correction
for gene size used by GSEA is less stringent for large genes
than that used by ALIGATOR, thereby explaining the
discrepancy in the results between the methods.

In the ALIGATOR analysis, 73.2% of the top 5% of genes
mapped to a pathway, leaving a substantial minority of genes
unannotated: in addition, many annotated genes may possess
other functions not currently annotated. Genes with corre-
lated expression patterns display functional similarities,
he network was generated in ReVIGO [32] using gene ontology processes

ncy of the gene ontology (GO) term in the GOA database and bubble color

rk in which line width reflects the degree of similarity between pathways but

ion of endocytosis and cholesterol transport, and many of the pathways are



Table 3

Genes in the significant ALIGATOR pathway clusters

Entrez ID Gene symbol Best P (IGAP) Gene-wide P (IGAP) Best P (REP) Gene-wide P (REP)

Cluster 1: immune response

1191 CLU 2.48 ! 10217 5.14 ! 10215 1.06 ! 10210 2.60 ! 1028

1378 CR1 3.65 ! 10215 3.46 ! 1027 3.82 ! 10211 5.06 ! 1028

2206 MS4A2 3.28 ! 10210 3.68 ! 1029 1.81 ! 1024 6.54 ! 1026

3117 HLA-DQA1 3.38 ! 1029 1.20 ! 1025 5.33 ! 1025 8.89 ! 1023

3123 HLA-DRB1 1.24 ! 1028 6.54 ! 1026 5.80 ! 1025 1.13 ! 1022

3127 HLA-DRB5 2.87 ! 1027 4.78 ! 1025 4.56 ! 1024 5.23 ! 1023

1380 CR2 9.35 ! 1027 2.99 ! 1022 5.76 ! 1025 6.41 ! 1023

3119 HLA-DQB1 2.97 ! 1026 3.88 ! 1025 3.58 ! 1024 6.45 ! 1023

3635 INPP5D 6.62 ! 1026 3.33 ! 1023 9.93 ! 1026 1.02 ! 1024

102 ADAM10 1.45 ! 1024 2.90 ! 1022 1.13 ! 1022 2.71 ! 1022

Cluster 2: endocytosis

274 BIN1 3.72 ! 10216 4.75 ! 1026 3.15 ! 10211 5.27 ! 1029

8301 PICALM 1.91 ! 10212 1.20 ! 1028 2.57 ! 1027 2.97 ! 1027

2206 MS4A2 3.28 ! 10210 3.68 ! 1029 1.81 ! 1024 6.54 ! 1026

1265 CNN2 1.19 ! 1026 3.07 ! 1023 2.91 ! 1024 2.11 ! 1023

Cluster 3: cholesterol transport

1191 CLU 2.48 ! 10217 5.14 ! 10215 1.06 ! 10210 2.60 ! 1028

10,347 ABCA7 1.70 ! 1029 3.00 ! 1027 1.43 ! 1026 1.02 ! 1026

Cluster 4: hematopoietic cell lineage

1378 CR1 3.65 ! 10215 3.46 ! 1027 3.82 ! 10211 5.06 ! 1028

3123 HLA-DRB1 1.24 ! 1028 6.54 ! 1026 5.80 ! 1025 1.13 ! 1022

3127 HLA-DRB5 2.87 ! 1027 4.78 ! 1025 4.56 ! 1024 5.23 ! 1023

1380 CR2 9.35 ! 1027 2.99 ! 1022 5.76 ! 1025 6.41 ! 1023

Cluster 5: protein ubiquitination

1191 CLU 2.48 ! 10217 5.14 ! 10215 1.06 ! 10210 2.60 ! 1028

5702 PSMC3 3.70 ! 1026 3.04 ! 1025 1.55 ! 1022 1.15 ! 1022

5434 POLR2E 1.94 ! 1025 6.93 ! 1023 1.08 ! 1023 1.26 ! 1024

6827 SUPT4H1 1.94 ! 1024 2.26 ! 1022 2.27 ! 1022 2.27 ! 1022

5706 PSMC6 2.98 ! 1024 1.25 ! 1022 3.99 ! 1022 3.79 ! 1022

6878 TAF6 4.22 ! 1024 1.66 ! 1022 6.41 ! 1024 6.41 ! 1024

Cluster 6: hemostasis

1191 CLU 2.48 ! 10217 5.14 ! 10215 1.06 ! 10210 2.60 ! 1028

3635 INPP5D 6.62 ! 1026 3.33 ! 1023 9.93 ! 1026 1.02 ! 1024

Cluster 7: clathrin/AP2 adaptor complex

1191 CLU 2.48 ! 10217 5.14 ! 10215 1.06 ! 10210 2.60 ! 1028

8301 PICALM 1.91 ! 10212 1.20 ! 1028 2.57 ! 1027 2.97 ! 1027

9179 AP4M1 2.16 ! 1024 2.13 ! 1023 3.74 ! 1024 1.57 ! 1024

Cluster 8: protein folding

1191 CLU 2.48 ! 10217 5.14 ! 10215 1.06 ! 10210 2.60 ! 1028

664618 HSP90AB4 4.62 ! 1024 2.30 ! 1023 2.19 ! 1022 4.48 ! 1022

Abbreviation: IGAP, International Genomics of Alzheimer’s Project; REP, replication.

NOTE. Gene-wide P values were calculated using the Brown method (see Online Methods). Genes shown are those counted as significant (best

P , 8.32 ! 1024) in the ALIGATOR analysis of the IGAP GWAS data that are also significant (gene-wide P , .05) in the replication data. Genes in

the vicinity of APOE are not included in this table because this region was not genotyped in the replication sample. Such genes were highly significant

in the meta-analysis (P , 1 ! 10210) and comprise APOC1/2 in cluster 2; APOE and APOC1/2/4 in cluster 4; APOE, PVRL, BCL3, and PVR in cluster

7; APOE in cluster 8.
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and Zhang et al. [21] highlighted modules of co-expressed
genes as being important in the etiology of LOAD. There-
fore, to overcome the annotation gap and access biologically
related signal across the entire genome, we created modules
of brain co-expressed genes and tested them for enrichment
of association signal in the IGAP GWAS. The data set we
used consisted of gene expression data from four brain re-
gions in a sample of approximately 150 control brains [16]
and was independent from that used by Zhang et al. [21].
We used control individuals rather than AD cases so that cor-
relations between expression levels would not be
confounded by neuron loss. AWGCNA [17] gave 117 mod-
ules of co-expressed genes in these data (see OnlineMethods
and Supplementary Table 8): these 117 modules were tested
for enrichment of association signal in the IGAP GWAS us-
ing ALIGATOR. Four modules were found to be signifi-
cantly enriched after correcting for multiple testing, and
these enrichments were robust to varying P-value criteria
and analysis methods (Supplementary Table 9). The four
significantly enriched modules, one from each brain region,



Fig. 2. The immune response is enriched in gene co-expression modules from human brain. (A) Venn diagram indicating the number of genes in common

across the four modules that were found to be significantly enriched in the IGAP GWAS using ALIGATOR after correcting for multiple testing. Each sig-

nificant module originates from a different brain region as indicated here. Colored nodes indicate a multiterm cluster: the related terms represented by each

node are given in B, in increasing significance order. Sources of the functional terms are BP 5 GOTERM_BP_FAT: gene ontology biological processes in

DAVID’s GO Fat Database; CC5GOTERM_CC_FAT: cellular component terms in DAVID’s GO Fat Database; SP5 SP_PIR_KEYWORDS: keywords in

the UniProt (Swiss-Prot/Protein Information Resource) database; SEQ5UP_SEQ_FEATURE: UniProt sequence annotation feature. The full data are avail-

able in Supplementary Table 8. (C) Network showing the pathways significantly enriched for gene membership among the 151 genes present in at least two of

the four most significantly enriched expression modules: the principal biological themes were derived fromDAVID [33,34] analysis. Terms from the analysis

were filtered at 0.05% false discovery Rate (FDR), progressively clustered according to average gene similarity at a threshold of 90% and rendered on

Cytoscape with the Enrichment Map plugin [35,36]. The diagram shows only the principal (lowest FDR) term for each of the clusters, and white nodes

indicate a single term that does not cluster with other groups. (D) Network showing the strongest correlations in expression (.0.9 in at least one brain

area) between genes present in at least two of the four most significantly enriched expression modules. Cb, cerebellum; FC, frontal cortex; TC, temporal

cortex.
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are related to the immune response and have overlapping
gene membership (Fig. 2).

The extent to which the overlap in gene membership be-
tween these modules is related to the GWAS signal was
investigated by examining genes that occurred in multiple
modules and testing these for enrichment using ALIGA-
TOR and GSEA (Supplementary Table 10). It can be seen
that the set of 151 of 294 genes that are present in two or
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more modules consistently showed the most significant
enrichment of IGAP signal across a variety of test criteria.
Conversely, the set of 143 genes present in only one module
showed no significant enrichment for association signal,
highlighting the utility of using multiple data sets to pro-
duce meaningful co-expression modules. Fig. 2 shows the
strongest correlations (.0.9 in at least one brain area) be-
tween the 151 genes present in two or more modules. It
can be seen that the TYROBP gene highlighted by Zhang
et al. [21] as an important causal regulator is also a hub
gene in this network. Pathways significantly enriched in
the 151 genes present in two or more modules are shown
in Fig. 2, clustered by gene membership. Many of the en-
riched pathways are immune related, but some are related
to fatty acid metabolism and lipoprotein, further corrobo-
rating the results of our analysis of the IGAP GWAS
data. A list of the 151 genes is shown in Supplementary
Table 11.

We also directly tested the modules described by Zhang
et al. [21] for enrichment of association signal in the IGAP
GWAS data (Supplementary Table 12). No single module
was significantly enriched after correction for multiple
testing of modules (“corr P” , .05), but the most signifi-
cantly enriched modules are immune related. Interestingly,
the immune/microglia module highlighted by Zhang et al.
[21] (#1, yellow) did not show significant enrichment for
association signal in the IGAP GWAS under ALIGATOR
analysis, although it did show moderate enrichment under
GSEA. However, the 108 genes common to both this mod-
ule and the set of 151 genes present in two or more of the
four most significantly enriched modules in our analysis
do show enrichment, which becomes progressively more
significant as increasingly stringent criteria are used to
select significant SNPs and genes (Supplementary
Table 13). The genes that are in the Zhang module but
not our set of 151 genes show no significant enrichment
for association signal under either ALIGATOR or GSEA
analysis.
4. Discussion

This analysis reveals pathways etiologically related to
AD in addition to those identified previously [14,22]. The
present sample [4] is larger than any used before and was
imputed on a dense reference panel, giving improved
gene coverage, and is therefore likely to be more powerful
to detect real associations than any previous study. A larger
set of pathways has been analyzed than previously and an-
notations have changed, so gene membership of pathways
is not identical to previous studies, although a substantial
proportion of genes still fall into the annotation gap and
are not currently mapped to any pathway. In the present
analysis, we also clustered genes that were within 1 Mb
of each other together in ALIGATOR to prevent counting
a single signal more than once. Secondary analyses were
also performed removing genes in the APOE LD region
and within 1 Mb of the GWS genes. This was done to pre-
vent pathway enrichments being biased by LD between
pathway genes and neighboring genes of strong effect
and to test whether there were significant pathway enrich-
ments independent of “known” AD genes. Such enrich-
ments would increase the interest of novel pathways and
genes highlighted by the main analysis. Despite these dif-
ferences, many of the pathways previously identified [14]
show enrichment in the IGAP data set (Supplementary
Table 14). These include cholesterol transport, immunity,
and the synaptic transmission, cholinergic pathway, the
latter being the target of the cholinesterase class of drugs
widely used in AD.

We used both GWAS and expression data to detect func-
tional pathways associated with AD. ALIGATOR analysis
of combined IGAP-GWAS and replication samples high-
lights four main areas of biology: the immune response,
regulation of endocytosis, cholesterol transport, and pro-
tein ubiquitination. The immune response is particularly
significant in the replication sample, even when GWS
genes from the IGAP GWAS are excluded. The replication
SNPs were not chosen for pathway membership and do not
survey the genome randomly, so the lack of significance in
some pathway clusters once the GWS genes are removed
does not mean that there is no excess signal in these path-
ways: this may simply not have been measured. However,
these data indicate that further genes that are involved in
the immune response are likely to be implicated in
LOAD. Both regulation of endocytosis and cholesterol
transport are functions also implicated by the GWS genes,
whereas the immune response and protein ubiquitination
contain fewer GWS signals [4]. The most significant sig-
nals in the GSEA analysis relate to the same biology but
add some additional categories related to neurologic
biology including the synapse and neuronal projection
development along with calcium-related signaling, not re-
vealed by ALIGATOR. It is notable that these areas of
biology are linked by common gene membership (Fig. 1),
and their interdependence may also be important in suscep-
tibility to AD.

The additional immune response genes implicated in
cluster 1 (Table 3) are plausible AD risk genes: CR2 en-
codes complement receptor 2, which is present on subsets
of B-cells as is the GWS CR1. HLA-DQB1 is in the chro-
mosome 6 HLA locus in common with several GWS loci.
INPP5D is GWS once replication analyses are taken into
account [4]. As well as being annotated as having immune
system activity, ADAM10 has been proposed as a candi-
date a-secretase that cleaves amyloid precursor protein
to prevent the production of b-amyloid [23]. The protein
ubiquitination cluster 5 (Table 3) includes two ATPase
subunits of the 19S proteasome, PSMC3 and PSMC6,
and three proteins involved in transcriptional control,
POLR2E, SUPT4H1, and TAF6. CNN2, encoding calpo-
nin 2, believed to regulate the actin cytoskeleton [24] ap-
pears in the endocytosis cluster, although it can also
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regulate phagocytosis in macrophages [25]. The addi-
tional genes from GSEA include CHRNA2 encoding the
neuronal cholinergic receptor, nicotinic, a 2 and RAPSN,
the receptor-associated protein of the synapse, both of
which appear in the synaptic transmission, cholinergic
pathway (Supplementary Table 13). CAV1 encodes caveo-
lin 1, which can interact with apoE [26] and is found in
caveolae, areas of cholesterol-rich lipid raft involved in
endocytosis. CACNA1D encodes the calcium channel,
voltage-dependent, L-type, a 1D subunit, one of a series
of a subunits that confer channel-specific properties; in-
fluences insulin secretion; and is a risk gene for type 2
diabetes [27]. Finally, APP itself is highlighted in this
analysis: it is annotated in both the synapse and neuronal
clusters. Recent findings show that there is at least one
rare protective coding variant in APP seen in late-onset
AD [28], and this signal may reflect this or other rela-
tively rare variants.

Convergent evidence for the importance of the immune
response in AD susceptibility was obtained by performing
WGCNA on expression data from four brain regions. The
four modules that were significantly enriched for associa-
tion in the IGAP GWAS after multiple testing correction
were related to the immune response and shared multiple
genes in common: INPP5D is GWS [4] and was the only
GWS gene found in these modules. The enrichment for as-
sociation was driven by genes that occurred in two or more
of these modules. None of the modules from Zhang et al.
[21] was significantly enriched for genetic association after
multiple testing correction, although the immune-related
modules in their study gave the strongest signal. However,
although the microglia module highlighted by Zhang et al.
[21] did not show significant enrichment for association,
the genes shared in common with our significant expression
modules did, highlighting the utility of using multiple
expression data sets in generating biologically meaningful
modules. The TYROBP gene highlighted by Zhang et al. as
an important causal regulator is also a hub gene in this
network [29].

Regulation of endocytosis, cholesterol transport, and
ubiquitination were not strongly represented in our
WGCNA modules, which may relate to the large size of
the modules and the use of only brain gene expression. In
addition, coordinated gene expression in brain may well
reflect differences in distribution of specific cell types or
subtypes [30]. The brain expression signatures we used
came from nonneurologically compromised brains, but it
is likely that changes in microglial composition or fate in
response to inflammation or infection in these subjects
could propagate such coordinate changes in gene expres-
sion. TREM2 is one of the 151 genes that occur in two or
more expression modules (Fig. 2), and rare variants in
TREM2 are associated with a significant increase in AD
susceptibility [12]. TREM2 regulates the phenotype of mi-
croglia controlling their downstream activation to an in-
flammatory or phagocytotic fate, believed to promote or
inhibit AD pathogenesis, respectively [31]. Thus, the
expression signature we detect through genome-wide
association may also be a marker for changes in microglial
phenotypes that act to enhance or inhibit the susceptibility
of individuals to AD.

As the main motivation for genetic analysis of complex
traits is to understand the biology of disease and inform
the search for treatments, interpretation of genetic signals
in a biologically meaningful way is essential. Pathway ana-
lyses that integrate multiple dense sources of data provide a
means of starting to do this. Identifying strong susceptibility
targets also highlights potential drug targets. Although
expression analyses alone can provide important clues about
etiology of disease, integrating them with genetic data that
identify causative factors underlying susceptibility to dis-
ease ensures that the gene expression signatures revealed
are related to disease etiology rather than secondary effects,
making the pathways highlighted by the analysis primary
targets for therapy. This study implicates regulation of endo-
cytosis and protein ubiquitination, in addition to cholesterol
metabolism, as potential therapeutic targets in AD. It
strongly reinforces the critical role of the immune system
in conferring AD susceptibility: gaining a detailed mecha-
nistic understanding of the events within the immune system
that predispose to AD and investigating how to address these
mechanisms should now be a priority for AD research.
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RESEARCH IN CONTEXT

1. Systematic review: As themainmotivation for genetic
analysis of complex traits is to understand the biology
of disease and inform the search for treatments, inter-
pretation of genetic signals in a biologically meaning-
ful way is essential. Pathway analyses that integrate
multiple dense sources of data provide a means of
starting to do this. Identifying strong susceptibility tar-
gets also highlights potential drug targets.

2. Interpretation: Although expression analyses alone
can provide important clues about etiology of dis-
ease, integrating them with genetic data that identify
causative factors underlying susceptibility to disease
ensures that the gene expression signatures revealed
are related to disease etiology rather than secondary
effects, making the pathways highlighted by the anal-
ysis primary targets for therapy. This study impli-
cates regulation of endocytosis and protein
ubiquitination, in addition to cholesterol metabolism,
as potential therapeutic targets in Alzheimer’s dis-
ease (AD). It strongly reinforces the critical role of
the immune system in conferring AD susceptibility.

3. Future directions: A detailed mechanistic under-
standing of the events within the immune system
that predispose to AD and investigating how to
address these mechanisms should now be a priority
for AD research.
References

[1] Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA. Alzheimer

disease in the US population: prevalence estimates using the 2000

census. Arch Neurol 2003;60:1119–22.

[2] Plassman BL, Langa KM, Fisher GG, Heeringa SG, Weir DR,

Ofstedal MB, et al. Prevalence of dementia in the United States: the

aging, demographics, and memory study. Neuroepidemiology 2007;

29:125–32.

[3] Wilson RS,Weir DR, Leurgans SE, Evans DA, Hebert LE, Langa KM,

et al. Sources of variability in estimates of the prevalence of Alz-

heimer’s disease in the United States. Alzheimer’s & dementia. The

Journal of the Alzheimer’s Association 2011;7:74–9.

[4] Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R,

Bellenguez C, et al. Meta-analysis of 74,046 individuals identifies

11 new susceptibility loci for Alzheimer’s disease. Nat Genet 2013;

45:1452–8.

[5] Hardy J. The amyloid hypothesis for Alzheimer’s disease: a critical re-

appraisal. J Neurochem 2009;110:1129–34.

[6] Giacobini E, Gold G. Alzheimer disease therapy–moving from amy-

loid-beta to tau. Nature Reviews Neurology 2013;9:677–86.

[7] Gatz M, Reynolds CA, Fratiglioni L, Johansson B, Mortimer JA,

Berg S, et al. Role of genes and environments for explaining Alz-

heimer disease. Arch Gen Psychiatry 2006;63:168–74.
[8] Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A,

Hamshere ML, et al. Genome-wide association study identifies vari-

ants at CLU and PICALM associated with Alzheimer’s disease. Nat

Genet 2009;41:1088–93.

[9] Lee SH, Harold D, Nyholt DR, , Consortium ANInternational

Endogene C, Genetic, et al. Estimation and partitioning of polygenic

variation captured by common SNPs for Alzheimer’s disease, multiple

sclerosis and endometriosis. Hum Mol Genet 2013;22:832–41.

[10] Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE,

Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4

allele and the risk of Alzheimer’s disease in late onset families. Sci-

ence 1993;261:921–3.

[11] So HC, Gui AH, Cherny SS, Sham PC. Evaluating the heritability ex-

plained by known susceptibility variants: a survey of ten complex dis-

eases. Genet Epidemiol 2011;35:310–7.

[12] Guerreiro R, Wojtas A, Bras J, Carrasquillo M, Rogaeva E,

Majounie E, et al. TREM2 variants in Alzheimer’s disease. The

New England Journal of Medicine 2013;368:117–27.

[13] Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, Sklar P,

et al. Gene ontology analysis of GWA study data sets provides insights

into the biology of bipolar disorder. Am J Hum Genet 2009;85:13–24.

[14] Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V,

Ivanov D, et al. Genetic evidence implicates the immune system and

cholesterol metabolism in the aetiology of Alzheimer’s disease. PloS

One 2010;5:e13950.

[15] Brown MB. Method for Combining Non-Independent, One-Sided

Tests of Significance. Biometrics 1975;31:987–92.

[16] Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA,

Lai SL, et al. Abundant quantitative trait loci exist for DNA methyl-

ation and gene expression in human brain. PLoS Genetics 2010;

6:e1000952.

[17] Langfelder P, Horvath S. WGCNA: an R package for weighted corre-

lation network analysis. BMC Bioinformatics 2008;9:559.

[18] Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA,

Reich D. Principal components analysis corrects for stratification in

genome-wide association studies. Nat Genet 2006;38:904–9.

[19] Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S,

Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative

phosphorylation are coordinately downregulated in human diabetes.

Nat Genet 2003;34:267–73.

[20] Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL,

Gillette MA, et al. Gene set enrichment analysis: a knowledge-based

approach for interpreting genome-wide expression profiles. Proceed-

ings of the National Academy of Sciences of the United States of

America 2005;102:15545–50.

[21] Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J,

Podtelezhnikov AA, et al. Integrated systems approach identifies ge-

netic nodes and networks in late-onset Alzheimer’s disease. Cell

2013;153:707–20.

[22] Lambert JC, Grenier-Boley B, Chouraki V, Heath S, Zelenika D,

Fievet N, et al. Implication of the immune system in Alzheimer’s dis-

ease: evidence from genome-wide pathway analysis. Journal of Alz-

heimer’s disease. J Atten Disord 2010;20:1107–18.

[23] O’Brien RJ,Wong PC. Amyloid precursor protein processing and Alz-

heimer’s disease. Annu Rev Neurosci 2011;34:185–204.

[24] Wu KC, Jin JP. Calponin in non-muscle cells. Cell Biochem Biophys

2008;52:139–48.

[25] HuangQQ, HossainMM,WuK, Parai K, Pope RM, Jin JP. Role of H2-

calponin in regulating macrophage motility and phagocytosis. The

Journal of Biological Chemistry 2008;283:25887–99.

[26] YueL,BianJT,GrizeljI,CavkaA,PhillipsSA,MakinoA,etal.Apolipopro-

tein E enhances endothelial-NO production by modulating caveolin 1

interactionwithendothelialNOsynthase.Hypertension2012;60:1040–6.

[27] Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B,

LyssenkoV, et al. The human L-type calcium channel Cav1.3 regulates

insulin release and polymorphisms in CACNA1D associatewith type 2

diabetes. Diabetologia 2013;56:340–9.

http://refhub.elsevier.com/S1552-5260(14)02492-3/sref1
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref1
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref1
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref2
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref2
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref2
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref2
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref3
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref3
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref3
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref3
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref4
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref4
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref4
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref4
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref5
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref5
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref6
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref6
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref7
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref7
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref7
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref8
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref8
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref8
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref8
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref9
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref9
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref9
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref9
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref10
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref10
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref10
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref10
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref11
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref11
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref11
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref12
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref12
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref12
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref13
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref13
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref13
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref14
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref14
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref14
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref14
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref15
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref15
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref16
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref16
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref16
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref16
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref17
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref17
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref18
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref18
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref18
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref19
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref19
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref19
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref19
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref20
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref20
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref20
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref20
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref20
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref21
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref21
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref21
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref21
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref22
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref22
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref22
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref22
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref23
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref23
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref24
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref24
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref25
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref25
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref25
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref26
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref26
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref26
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref27
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref27
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref27
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref27


International Genomics of Alzheimer’s Disease Consortium (IGAP) / Alzheimer’s & Dementia 11 (2015) 658-671 667
[28] Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson PV, Bjornsson S,

et al. A mutation in APP protects against Alzheimer’s disease and age-

related cognitive decline. Nature 2012;488:96–9.

[29] Langfelder P, Mischel PS, Horvath S. When is hub gene selection bet-

ter than standard meta-analysis? PloS one 2013;8:e61505.

[30] Kuhn A, Thu D, Waldvogel HJ, Faull RL, Luthi-Carter R. Population-

specific expression analysis (PSEA) reveals molecular changes in

diseased brain. Nature Methods 2011;8:945–7.

[31] Forabosco P, Ramasamy A, Trabzuni D, Walker R, Smith C, Bras J,

et al. Insights into TREM2 biology by network analysis of human brain

gene expression data. Neurobiol Aging 2013;34:2699–714.

[32] Supek F, BosnjakM, Skunca N, Smuc T. REVIGO summarizes and vi-

sualizes long lists of gene ontology terms. PloS One 2011;6:e21800.
[33] Huang da W, Sherman BT, Lempicki RA. Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Na-

ture Protocols 2009;4:44–57.

[34] Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment

tools: paths toward the comprehensive functional analysis of large

gene lists. Nucleic Acids Res 2009;37:1–13.

[35] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D,

et al. Cytoscape: a software environment for integrated models of

biomolecular interaction networks. Genome Res 2003;

13:2498–504.

[36] Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map:

a network-based method for gene-set enrichment visualization and

interpretation. PloS One 2010;5:e13984.

http://refhub.elsevier.com/S1552-5260(14)02492-3/sref28
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref28
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref28
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref29
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref29
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref30
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref30
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref30
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref31
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref31
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref31
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref32
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref32
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref33
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref33
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref33
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref34
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref34
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref34
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref35
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref35
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref35
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref35
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref36
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref36
http://refhub.elsevier.com/S1552-5260(14)02492-3/sref36


Appendix: International Genomics of Alzheimer’s
Disease Consortium (IGAP)

Lesley Jones,a,1 Jean-Charles Lambert,b,c,d,1 Li-
San Wang,t,1 Seung-Hoan Choi,I Denise Harold,ffffff Alexey
Vedernikov,a Valentina Escott-Price,a Timothy Stone,a Alex-
ander Richards,a C�eline Bellenguez,b,c,d Carla A. Ibrahim-
Verbaas,e Adam C. Naj,f Rebecca Sims,a Amy Gerrish,a

Gyungah Jun,g,h,I Anita L.DeStefano,I JoshuaC. Bis,j GaryW.
Beecham,f,k Benjamin Grenier-Boley,b,c,d Giancarlo Russo,l

Tricia A. Thornton-Wells,m Nicola Jones,a Albert V. Smith,n,o

Vincent Chouraki,b,c,d Charlene Thomas,a M Arfan Ikram,p,q

Diana Zelenika,r Badri N. Vardarajan,g Yoichiro Kamatani,s

Chiao-Feng Lin,t Helena Schmidt,u Brian W. Kunkle,f Mela-
nie L. Dunstan,a Agustin Ruiz,v Marie-Th�er�ese Bihoreau,r

Christiane Reitz,w,x Florence Pasquier,c,y Paul Hollingworth,a

Olivier Hanon,aa Annette L. Fitzpatrick,j,bb Joseph D. Bux-
baum,cc,dd,ee Dominique Campion,ff Paul K. Crane,gg Tim
Becker,hh Vilmundur Gudnason,n,o Carlos Cruchaga,ii David
Craig,jj Najaf Amin,kk Claudine Berr,ll Oscar L. Lopez,mm

Philip L. De Jager,nn,oo Vincent Deramecourt,b,y Janet A.
Johnston,jj Denis Evans,pp Simon Lovestone,qq Luc Lette-
neur,rr Johanes Kornhuber,ss Llu�ıs T�arraga,v David C. Ru-
binsztein,tt Gudny Eiriksdottir,o Kristel Sleegers,uu,vv Alison
M. Goate,ii Nathalie Fi�evet,b,d Matthew J. Huentelman,ww

Michael Gill,xx Valur Emilsson,n,o Kristelle Brown,yy M Ilyas
Kamboh,zz,aaa Lina Keller,bbb Pascale Barberger-Gateau,rr

Bernadette McGuinness,jj Eric B. Larson,gg,ccc Amanda J.
Myers,ddd Carole Dufouil,rr Stephen Todd,jj David Wallon,ff

Seth Love,eee Pat Kehoe,eee Ekaterina Rogaeva,fff John Galla-
cher,ggg Peter St George-Hyslop,fff,hhh Jordi Clarimon,iii,jjj Al-
berti Lle�o,iii,jjj Anthony Bayer,ggg Debby W. Tsuang,kkk Lei
Yu,lll Magda Tsolaki,mmm Paola Boss�u,nnn Gianfranco Spal-
letta,nnn Petra Proitsi,qq John Collinge,ooo Sandro Sorbi,ppp,qqq

Florentino Sanchez Garcia,rrr Nick Fox,sss John Hardy,ttt Ma-
ria Candida Deniz Naranjo,rrr Cristina Razquin,aaaaaa Paola
Bosco,uuu Robert Clarke,vvv Carol Brayne,www Daniela Ga-
limberti,xxx Michelangelo Mancuso,yyy MRC CFAS,www Sus-
anne Moebus,zzz Patrizia Mecocci,aaaa Maria del Zompo,bbbb

Wolfgang Maier,cccc Harald Hampel,dddd Alberto Pilotto,eeee

Maria Bullido,ffff,gggg,hhhh Francesco Panza,iiii Paolo Caffar-
ra,jjjj,kkkk Benedetta Nacmias,ppp,qqq John R. Gilbert,f,llll Man-
uel Mayhaus,mmmm Frank Jessen,cccc Martin Dichgans,dddddd

Lars Lannfelt,nnnn Hakon Hakonarson,oooo Sabrina Pi-
chler,mmmm Minerva M. Carrasquillo,pppp Martin Ingels-
son,nnnn Duane Beekly,qqqq Victoria Alavarez,rrrr Fanggeng
Zou,pppp Otto Valladares,t Steven G. Younkin,pppp Eliecer Co-
to,rrrr Kara L. Hamilton-Nelson,f IgnacioMateo,ssssMichael J.
Owen,a Kelley M. Faber,tttt Palmi V. Jonsson,uuuu Onofre
Combarros,ssss Michael C. O’Donovan,a Laura B. Cantwell,t

Hilkka Soininen,vvvv,wwww Deborah Blacker,xxxx,zzzz, Simon
Mead,ooo Thomas H. Mosley, Jr.,bbbbb David A. Ben-
nett,lll,bbbbb Tamara B. Harris,ccccc Laura Fratiglioni,ddddd,eeeee

Clive Holmes,fffff Renee FAG. de Bruijn,ggggg Peter Passmor-
e,jj Thomas J. Montine,hhhhh Karolien Bettens,uu,vv Jerome I.
Rotter,iiiii Alexis Brice,jjjjj,kkkkk Kevin Morgan,yy Tatiana M.

Foroud,tttt Walter A. Kukull,lllll Didier Hannequin,ff John F.
Powell,qq Michael A. Nalls,mmmmm Karen Ritchie,ll Kathryn
L. Lunetta,I John SK. Kauwe,tt Eric Boerwinkle,nnnnn,ooooo

Matthias Riemenschneider,ppppp Merc�e Boada,qqqqq Mikko
Hiltunen,vvvv,wwww Eden R. Martin,f,k Pau Pastor,bbbbbb,cccccc

Reinhold Schmidt,rrrrr Dan Rujescu,sssss Jean-François Darti-
gues,rr,ttttt Richard Mayeux,w,x Christophe Tzourio,uuuuu Al-
bert Hofman,p,q Markus M. N€othen,vvvvv Caroline
Graff,wwwww,eeeee Bruce M. Psaty,j,eeeeee Jonathan L. Hai-
nes,m,xxxxx Mark Lathrop,r,s,yyyyy Margaret A. Pericak-Van-
ce,f,k Lenore J. Launer,ccccc Lindsay A. Farrer,g,h,I,yyyy,zzzzz

CorneliaM. vanDuijn,kk Christine VanBroeckhoven,uu,vv Al-
fredo Ramirez,z GerardD. Schellenberg,t Sudha Seshadri,zzzzz

Philippe Amouyel,b,c,d,y,1,* Julie Williams,a,1,* Peter A. Hol-
mans,a

1These authors contributed equally

aInstitute of Psychological Medicine and Clinical Neuro-
sciences, Cardiff University, Hadyn Ellis Building, Maindy
Road, Cardiff, CF24 4HQ

bInserm U744, Lille, 59000, France
cUniversit�e Lille 2, Lille, 59000, France
dInstitut Pasteur de Lille, Lille, 59000, France
eDepartment of Epidemiology, Clinical Genetics and

Neurology, Erasmus MC University Medical Center, Rotter-
dam, 3015 CE, The Netherlands

fThe John P. Hussman Institute for Human Genomics,
University of Miami, Miami, FL, 33124, USA

gDepartment of Medicine (Biomedical Genetics), Boston
University School of Medicine, Boston, MA, 02218, USA

hDepartment of Ophthalmology, Boston University
School of Medicine, Boston, MA, 02215, USA

IDepartment of Biostatistics, Boston University School of
Public Health, Boston, MA, 02118, USA

jCardiovascular Health Research Unit, Department of
Medicine, University of Washington, Seattle, WA, 98101,
USA

kDr. John T. Macdonald Foundation Department of Hu-
man Genetics, University of Miami, Miami, FL, 33124,
USA

lFunctional Genomics Center, Zurich, 8038, Switzerland
mDepartment of Molecular Physiology and Biophysics,

Vanderbilt University, Nashville, TN, 37212, USA
nUniversity of Iceland, Faculty of Pharmaceutical Sci-

ences, Reykjavik, 525-4000, Iceland
oIcelandic Heart Association, Kopavogur, 525-4000, Ice-

land
pDepartments of Epidemiology, Neurology and Radi-

ology, Erasmus MC University Medical Center, Rotterdam,
3015 CE, The Netherlands

qNetherlands Consortium for Healthy Aging, Leiden, The
Netherlands

rCentre National de Genotypage, Institut Genomique,
Commissariat �a l’�energie Atomique, Evry, 91300, France

sFondation Jean Dausset- CEPH, Paris, 75010, France

International Genomics of Alzheimer’s Disease Consortium (IGAP) / Alzheimer’s & Dementia 11 (2015) 658-671668



tDepartment of Pathology and LaboratoryMedicine, Uni-
versity of Pennsylvania Perelman School of Medicine, Phil-
adelphia, PA, 19104, USA

uInstitute for Molecular Biology and Biochemistry, Med-
ical University of Graz, Graz, 8010, Austria

vMemory Clinic of Fundaci�o ACE. Institut Catal�a de
Neuroci�encies Aplicades, Barcelona, 8029, Spain

wTaub Institute on Alzheimer’s Disease and the Aging
Brain, Department of Neurology, Columbia University
New York, NY, 10027, USA

xGertrude H. Sergievsky Center, Columbia University,
Department of Neurology, Columbia University, New
York, NY, 10027, USA

yCentre Hospitalier R�egional Universitaire de Lille, Lille,
59000, France

zDepartment of Psychiatry and Psychotherapy and Insti-
tute of Human Genetics, University of Bonn, Bonn, 53113,
Germany

aaUMR 894 Inserm, Facult�e de M�edecine, Universit�e
Paris Descartes, Paris, 75014, France

bbDepartments of Epidemiology and Global Health, Uni-
versity of Washington, Seattle, WA, 98101, USA

ccDepartment of Neuroscience, Mount Sinai School of
Medicine, New York, NY, 10027, USA

ddDepartment of Psychiatry, Mount Sinai School of Med-
icine, New York, NY, 10027, USA

eeDepartments of Genetics and Genomic Sciences, Mount
Sinai School of Medicine, New York, NY, 10027, USA

ffINSERM U614, Facult�e de M�edecine, Centre Hospital-
ier du Rouvray, Rouen, 76000, France

ggDepartment of Medicine, University of Washington,
Seattle, WA, 98195, USA

hhGerman Center for Neurodegenerative Diseases
(DZNE, Bonn) and Institute for Medical Biometry, Infor-
matics and Epidemiology, University of Bonn, Bonn, Ger-
many, 53113

iiDepartment of Psychiatry and Hope Center Program
on Protein Aggregation and Neurodegeneration, Washing-
ton University School of Medicine, St. Louis, MO, 98122,
USA

jjAgeing Group, Centre for Public Health, School of Med-
icine, Dentistry and Biomedical Sciences, Queen’s Univer-
sity Belfast, BT7 1NN, UK

kkDepartment of Epidemiology, Erasmus MC University
Medical Center, Rotterdam, 3015 CE, The Netherlands
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