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Abstract—The cognitive prognosis of acquired brain injury
(ABI) patients is a valuable tool for an improved and personalized
treatment. In this paper, we explore the task of automatic
cognitive prognosis of ABI patients via machine learning tech-
niques. Based on a set of pre-treatment assessments, distinct
classifiers are trained to predict whether the patient will improve
in one or any of three cognitive areas: attention, memory, and
executive functioning. Results show that variables such as the
age at the moment of the injury, the patient’s etiology, or
the neuropsychological evaluation scores obtained before the
treatment are relevant for prognosis and easily yield statistically
significant accuracies. Additionally, the prognostic relevance of
these and other variables is studied by means of standard feature
selection methodologies. The outputs of the present paper add
to the discussion on current cognitive rehabilitation practices
and push towards the exploitation of existing technologies for
improving medical evaluations and treatments.

Keywords—machine learning; brain injury; prognosis; classi-
fiers; cognitive rehabilitation; neuropsychological evaluations.

I. INTRODUCTION

Acquired brain injury (ABI) is a leading cause of death
and disability worldwide [24]. It is considered one of the
most common neurological disorders and, for survivors, it is
widely regarded as a very debilitating condition [13]. ABI
patients experience multiple impairments, specially physical
(e.g., mobility, vision, sleep) and/or cognitive (e.g., attention,
memory, executive function, language) impairments.

Cognitive impairments are particularly problematic, since
they can limit daily activities and restrict participation in com-
munity, employment, recreation, and social relationships [11].
In particular, disturbances in basic cognitive functions such
as attention and memory may cause or exacerbate additional
disturbances in executive functioning, communication, and
other relatively more complex cognitive functions. Attention is
defined as a set of multifaceted processes including abilities to
select relevant stimuli, manipulate and contain mental images
and modulate responses to the environment [23]. Memory is
the process of encoding, storing and retrieving information.
Executive functions are those functions that allow us to func-
tion effectively and adaptively succeed within our social con-
texts [23]. Cognitive measures are among the most important
predictors of patients’ return to work and independent living,
even among those with good medical recoveries [6].

The design of therapies for improving or potentially re-
covering the cognitive abilities of ABI patients is still an open

issue [4]. Determining the appropriate method and timing of
treatment for an individual with ABI depends on a number
of factors, including severity of injury, stage in recovery, and
premorbid, comorbid and environmental conditions, unique to
each individual [15]. Although there is substantial evidence
for cognitive rehabilitation treatments, additional research is
required to guide the development of better clinical practices,
particularly with respect to selecting the most effective treat-
ment for a particular patient [4], [15].

A valuable tool for a more effective treatment of ABI
patients is prognosis [18], i.e., anticipating the treatment’s
outcome from the usual course of the disease and/or the pecu-
liarities of each individual case. Outcome prediction and early
identification of reliable prognostic factors is of paramount
importance to direct treatments, shape general policies, identify
critical subjects, adapt treatment protocols to specific indi-
viduals, perform a more exhaustive monitoring of selected
patients, and much else [18]. However, predictive modeling is
particularly difficult when considering the numerous complex
clinical elements that occur after ABI and their interplay.

In this paper, we exploit machine learning techniques [9],
[10], [16] to predict the expected cognitive outcome of ABI
patients using pre-treatment diagnosis data (prognosis). A
number of studies employ machine learning techniques for
the automatic prognosis of ABI patients [2], [3], [17], [19],
[21]. Decision trees are the most common choice [2], [3], [17],
[19], but also neural networks [17], [21] or different regression
models [2], [17], [21] are used. Overall, these studies focus
on determining survival, predicting gross outcome, and/or
identifying predictive factors of a patient’s condition after
traumatic brain injury (TBI; usually acute TBI). In addition,
to the best of our knowledge, no studies focus on long-term
cognitive rehabilitation and, in particular, on the neuropsy-
chological evaluations that are commonly used for assessing
improvements at the cognitive level [23].

Our study shows that pre-treatment diagnosis data is pre-
dictive of ABI patients’ response to cognitive rehabilitation.
Specifically, we show that initial neuropsychological evalu-
ations, and also their combination with generic information
such as the patient’s age, studies, or the cause of the injury,
have a considerable power for predicting treatment responses.
Moreover, our results suggest that such predictive power relies
on the data itself, as similar accuracies are obtained by a
number of machine learning algorithms based on different
principles. An additional goal of our study is to see whether
our specific results add to current knowledge of relevant risk



TABLE I. SUMMARY OF DIAGNOSIS DATA (SEE TEXT). PRE-EVALUATION SCORES CORRESPOND TO: NO IMPAIRMENT (0), MILD IMPAIRMENT (1),
MODERATE IMPAIRMENT (2), SEVERE IMPAIRMENT (3), AND VERY SEVERE IMPAIRMENT (4). THE LETTER υ DENOTES MEAN ± STANDARD DEVIATION.

Demographic data Pre-evaluation tests ([0,4]) Pre-evaluation diagnosis ([0,4])
Gender {‘male’, ‘female’} 1 Digit span forward WAIS Spec. 1 Categorization
Studies {‘no studies’, ‘primary’, 2 Trail marking test, part A Spec. 2 Divided attention

‘secondary’, ‘degree’} 3 Stroop word Spec. 3 Flexibility
Age at injury [17, 76]; υ = 40.6± 14.5 4 Stroop color Spec. 4 Inhibition
Age treatment [17, 76]; υ = 41.2± 14.5 5 Stroop word-color Spec. 5 Planning
Delay treatment [0, 31]; υ = 1.1± 2.8 6 Digit symbol WAIS Spec. 6 Sequencing
Treatment weeks [1, 77]; υ = 17.5± 12.8 7 Block design WAIS Spec. 7 Selective attention
Sessions per week [1, 5]; υ = 3.0± 1.3 8 Digit span backward WAIS Spec. 8 Sustained attention
Etiology (specific) {‘TBI’, ‘multiple sclerosis’, 9 Letter-number sequencing WAIS Spec. 9 Working memory

‘hemorrhagic stroke’, 10 RAVLT short-term memory Spec. 10 Verbal memory
‘ischemic-thrombotic stroke’, 11 RAVLT long-term memory Spec. 11 Visual memory
‘ischemic-embolic stroke’, 12 RAVLT recognition Gen. 1 Attention
‘ischemic undetermined stroke’, 13 Trail marking test, part B Gen. 2 Executive functions
‘other non-TBI’, ‘other’} 14 WCST categories Gen. 3 Memory

Etiology (general) {‘stroke’, ‘TBI’, ‘other’} 15 WCST perseverative errors
16 Stroop interference
17 PMR maximally produce words

factors or help in assessing critical values of the considered
pre-treatment data.

The remainder of the paper is organized as follows. We
first present our methodology (Sec. II), including a description
of the considered data (Sec. II-A), our feature pre-processing
steps (Sec. II-B), the machine learning tools we use (Sec. II-C),
and the followed evaluation strategy (Sec. II-D). We next show
the obtained results and discuss them to some detail (Sec. III).
A brief summary section concludes the paper (Sec. IV).

II. MATERIALS AND METHODS

A. Diagnosis data

The considered data comes from PREVIRNEC c©, a web-
based tele-rehabilitation platform conceived as a tool to en-
hance cognitive rehabilitation [22]. Every participant consid-
ered in this analysis underwent a pre-treatment evaluation in-
volving the three main cognitive functions (attention, memory,
and executive functions) by means of a standard tests battery
detailed below. After treatment, participants were again evalu-
ated using the same tests battery to measure improvement/non-
improvement in the respective functions. A pool of 503 pa-
tients is considered: all of them were assessed in attention
(299 improved), 496 in memory (317 improved), and 501 in
executive functions (334 improved). We additionally consider
a further category, any, where we assess whether there is an
improvement in, at least, one cognitive function, and no wors-
ening in any of the others (503 assessments, 368 improved).
In total, we face four binary classification [16] problems (two
classes: improvement/non-improvement in attention, memory,
executive functions, and any). As input variables we dispose
of (Table I):

• Demographic data: gender, level of studies, and the patient’s
age at the time of the injury (denoted by age at injury).

• Clinical data: this includes a general etiology description and
a more specific one. It also includes a neuropsychological
assessment battery consisting of 17 tests across the three
main cognitive functions [23]. The obtained test scores are
combined into 11 specific diagnosis scores, representing the
respective sub-functions of attention (sustained, selective,

divided), memory (visual, verbal, working), and executive
functions (inhibition, planning, flexibility, sequencing, cate-
gorization). Specific diagnosis scores are further summarized
into 3 general diagnosis scores, corresponding to the 3
main cognitive functions (attention, executive functions, and
memory).
• Treatment data: the patient’s age at the time of starting the

treatment (denoted by age treatment), the delay between
injury and treatment (in years, named delay treatment), the
treatment duration (in weeks, named treatment weeks), and
the number of sessions per week.

B. Feature pre-processing

The previous data comprises qualitative as well as quan-
titative variables (nouns/text and numbers, respectively). As
quantitative variables are majority, we first convert qualita-
tive variables into quantitative features. In particular, binary
variables are directly coded as binary features and m-level
qualitative variables are coded as vectors of m binary fea-
tures [10]. For instance, with our data, gender = {‘male’,
‘female’} becomes gender = {0, 1} and studies = {‘no
studies’, ‘primary’, ‘secondary’, ‘degree’} becomes studies =
{{1,0,0,0}, {0,1,0,0}, {0,0,1,0}, {0,0,0,1}}. For dates, we use
only the integer corresponding to the year, and thus, e.g., date
= ‘1998/04/27’ becomes date = 1998. Fields with integer or
real values are kept as they are.

Before training our classifiers we normalize all features to
a common range, considering a low and a high percentile for
each feature. Specifically, we re-scale individual features so
that their values at the 5 and 95 percentiles correspond to 0 and
1, respectively. These percentile values are kept for applying
the same normalization at the testing stage. To avoid ties in
feature vectors we add a small jitter η after normalization,
η = 10−6ξ, where ξ is a Gaussian random number generator
with zero mean and unit variance.

A few missing values are present in our data. A fraction
of patients have not performed pre-evaluation tests 14 (≈5%),
15 (≈5%), and 16 (≈0.4%). In addition, we do not dispose of
the age at injury and, consequently, of the delay treatment
for approximately 4% of the patients. In all these missing



value cases we opt for distribution-based imputation [20]. For
pre-evaluation tests, we impute distribution means, directly
computed from the other patients that have completed the
corresponding evaluation test. For age at injury and delay
treatment we proceed similarly.

C. Machine learning tools

To show that the predictive power of the considered fea-
tures is generic and not biased towards a specific classification
scheme, we employ basic algorithms exploiting four different
machine learning principles [10], [16]: decision tree learning,
instance-based learning, probabilistic learning, and support
vector machines. The implementations we use come from the
scikits-learn package (version 0.10: http://scikit-learn.org) and,
unless stated otherwise, their default parameters are taken. In
total we use six implementations [10], [16]:

• Tree: Classification and regression tree (CART) classifier.
We use the Gini coefficient as the measure of node impurity
and an arbitrarily set minimum number of 7 instances per
leaf.

• KNN: k-Nearest neighbor classifier. We use the Euclidean
distance and an arbitrary value of k = 9.

• NB: Naive Bayes classifier. We loosely employ a Gaussian
function to estimate the likelihood of all of features.

• SVM: Support vector machine. We consider a linear kernel
(SVML), a polynomial kernel of degree 2 (SVMP), and a
radial basis function kernel (SVMR).

Apart from classification performance, we also apply some
alternative/complementary techniques to assess the importance
of individual features and groups of them. For this part of
the analysis we use balanced data samples (same number
of instances per class) from the full data set and resort to
the Weka package [9] (version 3.6.6: http://www.cs.waikato.
ac.nz/ml/weka/) for algorithm implementations, also taking
the default parameters, if not stated otherwise. Depending
on the required assessment, we look at the binary splits of
the tree-based classifier [16], the feature weights assigned by
SVML [8], or the feature rankings produced by χ2 feature
evaluation [9]. Additionally, we consider class-conditioned
feature distributions [10].

D. Evaluation measure and statistical significance

We measure binary classification performance with the
out-of-sample percentage of correctly classified instances. We
perform a 20 times 10-fold cross-validation on balanced data
(same number of instances per class in train and test sets;
two classes) and take the average accuracy [10]. For space
reasons we omit confusion matrices and class/label-dependent
accuracies (in the big majority of cases we obtained rather
even confusion matrices and thus very similar accuracies for
improvement or non-improvement classes).

To assess the merit of the classifiers’ predictions we run
the same experiment with a randomized data set with shuffled
feature values. This way, we maintain the same distribution
for each feature and keep the original dimensionality of the
problem. The accuracies for this random baseline, always
around 50%, can then be used to assess the statistical signifi-
cance of the increment provided by the original features under

the same classification algorithm. For determining statistical
significance we employ the Wilcoxon signed-rank test [12]
on the 200 individual accuracy values obtained for each fold.
The Wilcoxon signed-rank test is a non-parametric statistical
hypothesis test used when comparing two related samples (or
two repeated measurements on a single sample) in order to
assess whether their population mean ranks differ. We use a
two-tailed p-value of 0.01 but apply the Bonferroni adjustment
to compensate for multiple tests [1]. Considering 6 classifiers,
4 cognitive functions, and a number of data trials below 50 we
have a final p∗-value of p∗ = 0.01/(6 · 4 · 50) = 8.33 · 10−6.
Notice that the combined use of a non-parametric test for
related samples together with the aforementioned Bonferroni
adjustment represents a strict and conservative criteria for
determining statistical significance (cf. [1], [5]). Therefore, it
enforces a high standard for reporting that a set of accuracies
for a given classifier, test label, and data trial is better than
another.

III. RESULTS AND DISCUSSION

We start looking at the predictive power of individual
concepts (Table II). We see that gender never achieves a single
statistically significant accuracy. Hence, when taken alone, it
can be regarded as irrelevant for prognosis. The level of studies
presents some controversy. Although this concept is frequently
used as a proxy for cognitive reserve [14], we obtain few
statistically significant accuracies, and these are usually below
55%. Thus, we cannot strongly confirm its use as a proxy. In
future work we plan a deeper study of this issue.

According to our results, two highly prognostic concepts
are age at injury and age treatment, with statistically significant
accuracies above 55% most of the time (notice that they
are highly correlated: ρ = 0.98, p < 10−6). A tree split
analysis (Sec. II-C) for these two individual concepts reveals
two thresholds at which the possibilities for any improvement
relatively diminish: below 37 years old we find more recoveries
than non-recoveries and above 57 years old we find more
non-recoveries than recoveries. The time elapsed between the
injury and the beginning of the treatment (delay treatment)
is not much predictive of the patient’s improvement after
treatment. However, we could assume some prognostic value
in the case of attention, where all classifiers report statistically
significant accuracies (Table II, top left). Indeed, with the class-
conditioned distributions for attention we see a slight tendency
towards non-improvement for delays larger than 1 or 2 years.
In the future, we will consider days or weeks instead of years
as units, so that a better refinement is possible.

Clearly, the most informative concepts are specific and
general etiologies and pre-evaluation tests and diagnoses (Ta-
ble II). In particular, we see that they all reach statistically
significant accuracies beyond 55% most of the time, inde-
pendently of the classifier used (Table II, middle rows). A
further inspection with the χ2 feature ranker considering all
etiologies deems the general etiologies ‘stroke’ and ‘other’ as
very relevant, together with the specific etiology ‘other’. The
SVML weights also point to ‘strokes’ as a relevant general
etiology for prognosis, and specially to ‘schemic-thrombotic
stroke’ and ‘undetermined stroke’ specific etiologies. These
two are usually associated with improvement.



TABLE II. CLASSIFICATION ACCURACIES FOR DIFFERENT CONCEPTS, FUNCTIONS, AND CLASSIFIERS. FOR EASE OF VISUALIZATION, ONLY
STATISTICALLY SIGNIFICANT ACCURACIES ARE SHOWN (BASELINE RANDOM ACCURACY IS CLOSE TO 50%, SEE SEC. II-D). THE LARGEST ACCURACIES

FOR EACH COGNITIVE FUNCTION AND CLASSIFIER ARE SHOWN IN BOLD. THE FIRST ROWS OF EACH TABLE CORRESPOND TO SINGLE CONCEPTS AND THE
LAST ONES TO A COMBINATION OF CONCEPTS.

Data Attention Memory
Tree KNN NB SVML SVMP SVMR Tree KNN NB SVML SVMP SVMR

Gender
Studies 51.8 53.8 53.5 50.8 50.2 54.7 55.0
Age at injury 58.2 58.1 56.7 58.0 53.4 53.1 57.1 56.8 56.6 56.5
Age treatment 58.5 58.5 56.8 56.0 57.6 57.1 56.7
Delay treatment 53.7 53.6 54.0 56.3 53.9 55.7 50.9
Treatment weeks 54.5 57.3 57.8 51.4
Sessions per week 51.0 50.2
Etiology (specific) 51.9 52.6 55.4 55.1 55.9 54.1 54.3 60.7 60.1 59.9
Etiology (general) 56.5 57.1 57.1 56.5 55.2 59.6 59.7 59.7 59.5
Pre-evaluation (tests) 53.5 53.4 55.8 54.6 61.4 64.1 67.8 65.7 66.1 66.3
Pre-evaluation (specific diagnoses) 52.8 55.4 55.2 55.7 56.0 55.1 61.9 65.2 66.5 65.5 64.8 66.4
Pre-evaluation (general diagnoses) 54.4 54.6 55.5 62.1 64.7 68.3 66.9 62.9 66.9
Etiology (specific+general) 55.7 56.8 56.0 53.2 54.9 55.7 60.7 59.4 59.2
Pre-evaluation (all diagnoses) 52.8 56.5 54.8 55.1 55.3 61.8 65.3 67.1 65.3 64.2 65.6
Pre-evaluation (tests+diagnoses) 54.7 54.7 54.5 54.9 56.1 55.8 62.5 64.9 67.0 65.8 66.0 66.7
Etiology (gen.) + Pre-eval (diag.) 53.9 55.7 56.4 58.3 58.8 58.0 62.3 65.1 66.9 66.1 65.8 66.1
Etiol(g)+Pre-eval(d)+AgeInj+Delay 55.3 57.0 56.7 59.8 58.6 58.5 60.2 65.0 67.4 66.0 65.2 66.1
Informative mixture (see text) 55.1 57.9 52.6 60.8 58.1 61.0 60.6 64.0 60.6 66.5 64.8 67.7

Data Executive Functions Any
Tree KNN NB SVML SVMP SVMR Tree KNN NB SVML SVMP SVMR

Gender
Studies 50.4 50.4 55.6 56.0
Age at injury 57.4 57.2 56.8 56.8 57.7 58.0 57.7 58.6
Age treatment 56.9 57.7 56.9 57.9 52.7 58.1 57.9 58.5 58.9
Delay treatment 55.8 54.5 52.7 55.2 52.7
Treatment weeks 52.9 53.5 51.7 54.1 51.2
Sessions per week
Etiology (specific) 53.0 56.3 56.7 57.2 55.5 56.2 59.8 58.3 58.6
Etiology (general) 55.8 57.0 56.3 55.2 58.7 57.1 58.9 58.5
Pre-evaluation (tests) 56.0 60.4 57.3 58.8 58.5 57.5 61.1 62.3 61.4 62.2 63.0
Pre-evaluation (specific diagnoses) 55.9 56.4 60.8 58.2 59.6 59.3 58.3 60.9 62.1 62.9 62.0 63.5
Pre-evaluation (general diagnoses) 56.8 57.9 61.3 59.7 58.3 59.4 58.1 60.9 62.5 64.3 61.8 62.7
Ethiology (specific+general) 53.9 53.0 54.7 57.0 53.2 55.5 55.3 59.0 58.8 59.6
Pre-evaluation (all diagnoses) 56.9 56.5 61.5 57.6 59.5 58.9 60.0 60.3 62.6 63.0 62.3 63.6
Pre-evaluation (tests+diagnoses) 55.5 57.7 61.2 55.9 58.7 58.0 57.2 60.6 62.8 59.8 62.5 62.4
Etiology (gen.) + Pre-eval (diag.) 57.0 57.2 61.6 59.3 60.6 60.4 58.9 61.3 64.0 63.1 62.7 63.4
Etiol(g)+Pre-eval(d)+AgeInj+Delay 57.3 59.2 61.2 60.2 59.8 59.9 59.9 61.5 62.9 62.9 63.1 63.1
Informative mixture (see text) 55.7 56.6 60.1 60.8 60.2 60.2 57.8 60.8 59.0 64.5 64.2 64.8

The best accuracies though are achieved by pre-evaluation
tests and diagnoses, which generally score around or above
60%. The only cognitive function that could be an exception
is attention. For this, perhaps etiology is more predictive. In
general, accuracies for individual pre-evaluations are around
55% for attention, 66% for memory, 59% for executive func-
tions, and 61% for any. Noticeably, we find that the predictive
power of pre-evaluation scores (tests and diagnoses) comes
from very high or very low values. In fact, looking at the
decision trees and the class-conditioned distributions we see
that, in general, score values below 2 (moderate impairment)
tend to indicate improvement, whereas score values above 3
(severe impairment) tend to indicate non-improvement.

Overall, the combinations of general and specific etiolo-
gies, or general and specific pre-evaluation scores, do not
increase accuracy significantly (Table II, middle rows). This
was somehow expected, as the information of the general pre-
evaluation diagnosis is derived from the specific pre-evaluation
diagnosis which, in turn, is derived from the pre-evaluation

test scores (see Sec. II-A). A similar reasoning can be made
with general and specific etiologies. However, by combining
etiologies or pre-evaluations themselves, we generally see that
a larger number of classifiers reach statistically significant
accuracies. Thus, we could say that their predictive power is
somehow reinforced.

When we do see an accuracy increment is when mixing
these two concepts (etiologies and pre-evaluation scores), or
when further considering other slightly predictive concepts
such as age at injury or delay treatment (Table II, bot-
tom rows). The best results are probably achieved by an
arbitrary combination of different concepts, excluding some
non-significant and some correlated ones. The “informative
mixture” result in Table II corresponds to combining all
diagnosis pre-evaluations with general etiology, age at injury,
age treatment, treatment weeks, and studies. Notice that the
fact that some concepts are non-significant/correlated when
taken individually does not imply that they are useless for
classification when combined with other features [7]. The



TABLE III. TEN MOST INFORMATIVE FEATURES ACCORDING TO THE CHOSEN FEATURE RELEVANCE ANALYSIS METHODS (FROM A TOTAL OF 52
FEATURES). FEATURES CHOSEN BY AT LEAST TWO METHODS ARE HIGHLIGHTED IN BOLD. WE SEE THAT METHODS AGREE IN MANY OF THEM.

REPEATEDLY CHOSEN FEATURES THAT DO NOT DIRECTLY MATCH THE GENERAL COGNITIVE FUNCTION ARE HIGHLIGHTED WITH THE ? SYMBOL.

Attention Feature relevance analysis method
Tree SVML χ2

1 Pre-eval. test 7 (exec. func.)? Pre-eval. test 16 (exec. func.) Pre-eval. diag. spec. 6 (exec. func.)?

2 Pre-eval. diag. spec. 6 (exec. func.)? Treatment weeks Pre-eval. diag. spec. 2 (attention)
3 Age treatment Pre-eval. test 7 (exec. func.)? Pre-eval. test 13 (attention)
4 Treatment weeks Pre-eval. test 15 (exec. func.) Pre-eval. diag. spec. 8 (attention)
5 Pre-eval. test 8 (memory) Age treatment Age treatment
6 Pre-eval. diag. gen. 1 (attention) Pre-eval. test 3 (attention) Delay treatment
7 Pre-eval. test 12 (memory) Age at injury Pre-eval. test 7 (exec. func.)?

8 Pre-eval. test 10 (memory) Delay treatment Pre-eval. diag. gen. 1 (attention)
9 Pre-eval. diag. spec. 2 (attention) Pre-eval. test 2 (attention) Pre-eval. test 10 (memory)

10 Studies 1 (primary) Pre-eval. diag. spec. 8 (attention) Etiology spec. 8 (TCE)

Memory Feature relevance analysis method
Tree SVML χ2

1 Pre-eval. diag. gen. 3 (memory) Pre-eval. test 17 (exec. func.)? Pre-eval. diag. gen. 3 (memory)
2 Pre-eval. diag. spec. 9 (memory) Pre-eval. test 13 (attention) Pre-eval. test 2 (attention)?

3 Sessions per week Pre-eval. test 5 (attention)? Pre-eval. diag. spec. 11 (memory)
4 Pre-eval. diag. spec. 6 (exec. func.) Etiology spec. 3 (exec. func.) Pre-eval. diag. spec. 10 (memory)
5 Pre-eval. test 2 (attention)? Pre-eval. diag. spec. 1 (attention) Pre-eval. diag. spec. 9 (memory)
6 Pre-eval. test 5 (attention)? Pre-eval. test 6 (attention)? Pre-eval. test 5 (attention)?

7 Pre-eval. test 17 (exec. func.)? Pre-eval. diag. spec. 8 (attention) Pre-eval. test 12 (memory)
8 Studies 1 (primary) Pre-eval. test 16 (attention) Pre-eval. test 4 (attention)?

9 Age treatment Pre-eval. test 4 (attention)? Pre-eval. test 3 (attention)
10 Treatment weeks Gender Pre-eval. test 6 (attention)?

Executive Feature relevance analysis method
functions Tree SVML χ2

1 Pre-eval. diag. spec. 10 (memory)? Etiology spec. 1 (multiple sclerosis) Pre-eval. diag. spec. 5 (exec. func.)
2 Pre-eval. diag. spec. 5 (exec. func.) Delay treatment Pre-eval. diag. gen. 2 (exec. func.)
3 Treatment weeks Pre-eval. test 12 (memory)? Pre-eval. diag. spec. 4 (exec. func.)
4 Pre-eval. diag. gen. 2 (exec. func.) Pre-eval. test 5 (attention) Pre-eval. diag. spec. 6 (exec. func.)
5 Age at injury Etiology spec. 5 (undetermined stroke) Pre-eval. test 9 (exec. func.)
6 Etiology spec. 1 (multiple sclerosis) Pre-eval. test 8 (memory)? Pre-eval. diag. spec. 11 (memory)
7 Pre-eval. test 12 (memory)? Pre-eval. test 15 (exec. func.) Pre-eval. diag. spec. 10 (memory)?

8 Pre-eval. test 1 (memory)? Etiology spec. 6 (other non-TBI) Pre-eval. test 8 (memory)?

9 Pre-eval. test 17 (exec. func.) Pre-eval. test 4 (attention) Pre-eval. test 1 (memory)?

10 Delay treatment Pre-eval. test 2 (attention) Pre-eval. test 17 (exec. func.)

Any Feature relevance analysis method
Tree SVML χ2

1 Pre-eval. diag. spec. 10 (memory) Pre-eval. diag. spec. 8 (attention) Pre-eval. diag. gen. 3 (memory)
2 Etiology gen. 2 (other) Etiology spec. 3 (ischemic-thrombotic stroke) Pre-eval. diag. spec. 11 (memory)
3 Pre-eval. diag. gen. 3 (memory) Pre-eval. test 5 (attention) Pre-eval. diag. spec. 10 (memory)
4 Age treatment Pre-eval. test 11 (memory) Pre-eval. test 12 (memory)
5 Pre-eval. test 2 (attention) Pre-eval. test 15 (exec. func.) Pre-eval. test 2 (attention)
6 Pre-eval. diag. spec. 5 (exec. func.) Pre-eval. diag. spec. 1 (exec. func.) Pre-eval. test 5 (attention)
7 Age at injury Pre-eval. test 2 (attention) Pre-eval. diag. spec. 4 (exec. func.)
8 Pre-eval. diag. spec. 8 (attention) Pre-eval. test 3 (attention) Pre-eval. diag. spec. 8 (attention)
9 Pre-eval. diag. spec. 6 (exec. func.) Pre-eval. test 9 (exec. func.) Pre-eval. diag. spec. 9 (memory)

10 Pre-eval. diag. gen. 1 (attention) Etiology gen. 2 (other) Pre-eval. diag. spec. 5 (exec. func.)

accuracies achieved by combining concepts are practically
always above 60% in all cognitive functions. The highest ones
correspond to 61% for attention, 67% for memory, 61% for
executive functions, and 64% for any. Combining all concepts
did not yield to any notable improvement over the other
combinations shown in Table II.

We finally perform a brief feature relevance analysis. From
the pool of all available features, we run the chosen feature
relevance analysis methods (Sec. II-C) and show the 10 best
ranked features for each one (Table III). As expected, we see
that pre-evaluation scores (both tests and diagnoses) are the
majority among the most relevant features. Additionally, we
see that age treatment and delay treatment appear frequently
among the 10 best features.

For every cognitive function we find some ‘obviously
selected’ pre-evaluations. For instance, general diagnosis 1,
which evaluates attention, is selected in attention, or specific
diagnosis 9, which corresponds to working memory, is selected
for memory. There are a number of these rather obvious
correspondences. However, we see some pre-evaluations that
do not directly match the cognitive function they help to
predict. The full account of such pre-evaluations can be
gathered from Table III. We now enumerate some of them:
regarding attention, we find test 7 (block design WAIS, execu-
tive functions), test 10 (RAVLT short-term memory, memory),
and specific diagnosis 6 (sequencing, executive functions);
regarding memory, we find test 2 (trail marking test part
A, attention), test 5 (stroop word-color, attention), and test



6 (digit symbol WAIS, attention); finally, regarding executive
functions, we find test 1 (digit span forward WAIS, attention),
test 8 (digit span backward WAIS, memory), and test 12
(RAVLT recognition, memory).

From our point of view, all these emerging associations
between tests/diagnoses and cognitive functions only highlight
the interconnectedness of our brain and, therefore, the large
dependencies that exist between different cognitive functions.
If these associations acquire support or show some persistence
in future investigations, one could potentially think of addi-
tionally considering them for the assessment of those cognitive
functions whose improvement they help to predict. As shown,
machine learning techniques can bring valuable guidance in
discovering such hidden connections.

IV. CONCLUSION

In this paper, we provide an application of machine
learning techniques to assess acquired brain injury data. In
particular, we focus on automatic cognitive prognosis, i.e., the
task of predicting whether the patient will improve in a
number of cognitive functions using only pre-treatment data.
Our contribution shows that variables such as age at injury,
etiology, or neuropsychological evaluation scores are relevant
for prognosis, yielding statistically significant prediction ac-
curacies. Importantly, the obtained results are independent of
the classification scheme, what stresses the predictive power of
the considered variables. Finally, machine learning techniques
also prove capable of discovering hidden and emerging rela-
tions involving pre-evaluation tests and the studied cognitive
functions. Overall, these are largely unexplored areas with a
high and valuable potential.

In future work we plan to include treatment data to our
analysis. This way, combining treatment with diagnosis data,
we may be able to advance the outcome of a new patient
from a pool of previous patients. In particular, considering both
diagnosis data and the performance of the treatment activities
that have been already carried out, similar machine learning
techniques could be trained to assess whether the patient is
correctly responding to treatment or whether such treatment
needs to be revised.

ACKNOWLEDGMENTS

We thank all the patients and staff from Institut Guttmann
who cooperated in data collection. This work has been partially
funded by TIN-2012-38450-C03-03 from the Spanish Govern-
ment (all authors), JAEDOC069/2010 from Consejo Superior
de Investigaciones Cientı́ficas (J.S.), and 2009-SGR-1434 from
Generalitat de Catalunya (J.S. and J.Ll.A.).

REFERENCES

[1] H. Abdi. “Bonferroni and Sidak corrections for multiple comparisons”.
In N. J. Salkind, editor, Encyclopedia of Measurement and Statistics,
pages 103–107. SAGE Publications, Thousand Oaks, USA, 2007.

[2] P. J. D. Andrews et al. “Predicting recovery in patients suffering from
traumatic brain injury by using admission variables and physiological
data: a comparison between decision tree analysis and logistic regres-
sion”. Journal of Neurosurgery, 2002, 97:326–336.

[3] A. W. Brown et al. “Clinical elements that predict outcome after
traumatic brain injury: a prospective multicenter recursive partitioning
(decision-tree) analysis”. Journal of Neurotrauma, 2005, 22(10):1040–
1051.

[4] K. D. Cicerone et al. “Evidence based cognitive rehabilitation: updated
review of the literature from 2003 through 2008”. Archives of Physical
Medicine and Rehabilitation, 2011, 92(4):519–530.

[5] J. Demsar. “Statistical comparison of classifiers over multiple data sets”.
Journal of Machine Learning Research, 2006, 7:1–30.
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