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Abstract

This paper proposes a method to combine linear Model Predictive Control (MPC), a Constraint Satisfaction Problem
(CSP) formulation and a Network Aggregation Method (NAM) for the predictive operational control of water pumping
in DWNs. The proposed method can produce optimal pumping strategies for complex DWNs in short computation
times, while avoiding the need for non-linear programming techniques to cater for non-linear flow-head equations.
The proposed approach is simulated using Epanet to represent the hydraulic DWNs. The D-Town benchmark water
network is used as a case study.
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1. Introduction

Limited supplies as well as the complex infrastructure and, possibly, parametric uncertainty make water manage-
ment a challenging problem. The use of non-linear models in DWNs is essential for the operational control which
involves manipulating not only flow but also pressure head models [1]. No general-solution exists for the non-linear
programming problem when it is non-convex [3]. Plenty of optimization approaches rely on a simplified network
hydraulic model [8, 10, 11, 13], which is often unacceptable in practice. Other authors employ discrete dynamic pro-
gramming [12, 14–18], which is mathematically sound but only applicable to small networks. The MPC method has
been successfully applied to control and optimize linear flow model of DWNs [21, 22] but the computation burden of
MPC will increase with size of network when the non-linear pressure head model is considered.

Solving the non-linear problem of DWNs by the combined of linear MPC and CSP aims to maintain optimality
and feasibility with the added linear constraints [4]. The real hydraulic behavior of the DWNs is simulated by means
of Epanet [6]. As shown in Figure 1, the whole controlling methodology works in a three-layer structure as initially
proposed in [7]: the original DWN is firstly simplified into a conceptual network using NAM in the first layer, CSP
is the second step of this methodology and it is used for converting the non-linear pressure head constraints into
linear MPC constraints. MPC is the lower layer producing optimal set-points for controlling actuators according to
the defined objective functions. The continuous flow set-points in the lower layer are translated to ON-OFF pump
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operation using the Pump Scheduling Algorithm (PSA), which optimizes the difference between optimal pump flow
Vĉ and the simulated pump flow Vt [2].
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Figure 1: The multi-layer control scheme

2. Control-Oriented Modelling Methodology

2.1. Flow Model

2.1.1. Reservoirs and Tanks.
The mass balance expression of these storage elements relating the stored volume V , the manipulated inflows qi, j

in
and outflows qi,l

out for the ith storage element can be written as the discrete-time difference equation

Vi(k + 1) = Vi(k) + ∆t

∑
j

qi, j
in (k) −

∑
l

qi,l
out(k)

 , (1)

where ∆t is the sampling time and k denotes the discrete-time instant. The physical constraint related to the range of
admissible water in the ith storage element is expressed as

V i ≤ Vi(k) ≤ V i, for all k, (2)

where V i and V i denote the minimum and the maximum admissible storage capacity, respectively.

2.1.2. Actuators.
The manipulated flows through the actuators (valves and pumps) represent the manipulated variables, denoted as

qu. Both pumps and valves have lower and upper physical bounds. As in (2), they are expressed as

qui
≤ qui(k) ≤ qui, for all k, (3)

where qui
and qui denote the minimum and the maximum flow capacity, respectively.

2.1.3. Nodes.
The nodes are modelled as equality constraints related to inflows and outflows:∑

j

qi, j
in (k) =

∑
h

qi,h
out(k). (4)
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2.1.4. Demand Sectors.
A demand sector represents the water demand made by the network users of a certain physical area. The demand

forecasting algorithm is typically explained in[23].

2.2. Pressure Head Model

When considering pressure heads, the flow model presented in the previous section should be extended using the
non-linear relation between flow and pressure head, which appears at pipes, valves, pumps and tanks [24].

2.2.1. Pipes.
The Hazen-Williams model is one of the various widely used models to describe pressure head (h: sum of pressure

and topographic elevation) loss between two nodes i and j linked by a pipe:

g(q) = hi − h j = gi j(qi j) = Ri jq1.852
i j (5)

where
Ri j = (10.654 × Li j)/(Ci j

1.852 × Di j
4.871) (6)

and Li j, Di j and Ci j denote the pipe length, diameter and Hazen-Williams coefficient.

2.2.2. Pumps.
Pumps introduce a increase of pressure head between the suction node s and the delivery node d. In the case that

corresponds to variable speed pumps, the relation between the flow and the pressure head increase is given by:

g(q, u, s) = hd − hs =

Wq2 + Mq + Ns2, if u , 0 and s , 0
0, otherwise

(7)

where s is the pump speed and u corresponds to the number of pumps that are turned on, W, M and N are pump
specific coefficients.

2.2.3. Valves.
The valves can be modelled as a pipe with controlled conductivity, that is

gi j(qi j) = Gi jRi jq2
i j (8)

where Ri j is pipe conductivity and Gi j is control variable to manipulate the valve from 0 (closed) to 1 (open).

2.2.4. Tanks.
The pressure head established by the ith tank is given by the following equation:

hri(t) =
Vi(t)
S eci

+ Ei (9)

where S eci is the cross-sectional area of the tank and Ei is the tank elevation.

3. Operational Control Problem Statement

3.1. MPC for Flow Control

Standard MPC problem based on the linear discrete-time prediction model is considered as in [25][5]:

x(k + 1) = Ax(k) + Bu(k), (10a)
y(k) = Cx(k), (10b)
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where x(k) ∈ Rnx is the state vector representing the tank volume and u(k) ∈ Rnu is vector of command variables of
actuator flows at time step k, y(k) ∈ Rny is the vector of the measured outputs. Matrices A and B are obtained using
flow modelling approach in Section 2.1.

Assume one network has nc non-storage nodes and b branches. We define matrix Λc with nc and b dimensions for
junction nodes in order to write equation (4) in matrix form, where the definition is:

ai j =


1 if flow of branch i enters node j
0 if branch i and node j are not connected
−1 if flow of branch i leaves node j

(11)

A matrix form of equation (4) is as follows:
Λcq = d (12)

where q = (q1, . . . , qb)T is a vector of branch flows, d denotes an augmented demand vector by zero components
corresponding to non-loaded nodes.

Thus, the following problem has to be solved when only the flow model for the DWN is considered:

Problem 1:

min
(u(0|k),··· ,u(Hp−1 |k))

J(k) (13a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i = 1, · · · ,Hp,

x(0|k) = xk, (13b)
Λcu(i|k) = d(i|k) (13c)
xmin ≤ x(i|k) ≤ xmax, i = 1, · · · ,Hp,

umin ≤ u(i|k) ≤ umax, i = 0, · · · ,Hp−1,

Problem 1 can be recast as a Quadratic Programming (QP) problem:

U∗(k) , [u∗(0|k) · · · u∗(Hp − 1|k)]T ∈ RHpm×1 (14)

At each sampling time k, Problem 1 is solved for the given measured current state x(k). Only the first optimal set-point
u∗(0|k) of the optimal sequenceU∗(k) is applied to the process:

uMPC(k) = u∗(0|k) (15)

while the remaining optimal moves are discarded and the optimization is repeated at time k + 1.

3.2. Operational Goals for Flow Control

The main operational goals to be achieved in water distribution networks are:

• Cost reduction (Jcost): Minimize water cost during water supplying process.
• Operational safety (Jsa f ety): Maintaining appropriate water storage levels in tanks for emergency-handling.
• Control actions smoothness (Jsmoothness): Smooth flow set-point variations to present water in infrastructure.

3.3. Nodal Model for pressure head Control

When considering flow and pressure head in the DWN model, the dynamic equations of the tanks are:
hri(t) =

vi(t)
S eci

+ Ei

Vi(k + 1) = Vi(k) + ∆t
(∑

j
q j

in(k) −
∑
h

qh
out(k)

)
(16)
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according to equation (1) and equation (9).
Considering a network with n nodes and b branches, the matrix Λ will have n rows and b columns. The value of

element bi j which appears in the ith row and the jth column of matrix Λ has the similar definition as ai j of equation (11).
For the sake of convenience, we will place the rows corresponding to the tank/reservoir nodes on the first nr

position. The other rows correspond to the junction nodes. With the help of matrix Λ, we can write the flow-head
equations as the following vector equation:

ΛT
[
hr

h

]
+ G(q) = 0 (17)

where

• hr = (hr1, · · · , hr,nr )
T pressure heads of tank nodes

• h = (h1, · · · , hnc )
T pressure heads of junction nodes

• q = (q1, · · · , qb)T branch flows
• G(q) = (g1(q1), · · · ,−gi(qi, ui), · · · , g1(q1, v1), · · · , )T

functions defining flow-head relationships

This equation combined with equation (4) yields the nodal model:
Λcq = d

ΛT

hr

h

 + G(q) = 0
(18)

3.4. MPC for Pressure Head Control

In the case of pressure head control of DWNs, the MPC problem is defined as:

Problem 2

min
(u(0|k),··· ,u(Hp−1 |k))

J(k) (19a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i = 1, · · · ,Hp,

x(0|k) = xk, (19b)
Λcu = d (19c)

hr(i|k) =
x(i|k)
S eci

+ Ei (19d)

and:

ΛT
[
hr

h

]
+ G(u) = 0 (20a)

where:

xmin ≤ x(i|k) ≤ xmax, i = 1, · · · ,Hp, (21)
umin ≤ u(i|k) ≤ umax, i = 0, · · · ,Hp−1,

As described above, MPC of pressure head control is highly non-linear because of added pressure head constrains
(20a), which adds complexity to the optimization problem for the large scale DWNs.
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4. Proposed Approach

4.1. Definition of CSP

As introduced in [9], a CSP on sets can be formulated as a 3-tupleH = (V,D,C), where

• V = {v1, · · · , vn} is a finite set of variables.
• D = {D1, · · · ,Dn} is the set of their domains.
• C = {c1, · · · , cn} is a finite set of constraints relating variables ofV.

Solving a CSP consists of finding all variable value assignments such that all constraints are satisfied. More detail
definition and calculation process can be referenced in [2].

4.2. Network Aggregation Method (NAM)

Considering the definition and interval implementation characteristics of CSP, the building constraints C in DWNs
can only be realized in one-directional network [7]. The bidirectional pipes in DWNs have added difficulties to build
the required set for CSP. In order to apply successfully CSP-MPC to the bidirectional DWNs, NAM is used to simplify
a complex water network into an equivalent simplified conceptual one [2, 26].

4.2.1. Simplification.
In order to obtain the conceptual model, the first step is aggregating the nodes in terminal branches with no control

elements. We define the distance between nodes nk and nl by the pressure head and flow difference between them:

distance(nk, nl) = ∆Ele(nk, nl) +

p∑
j=1

∆P j (22a)

f low(nk, nl) = ∆ f low(nk, nl) (22b)

where ∆P j means pressure head loss at arc j and p is the path between nk and nl, ∆Ele(nk, nl) and f low(nk, nl) are the
elevation and flow difference between node nk and nl.

Following all the nodes from the terminal branch upstream, the nodes whose upstream is also a demand node and
connected by pipe, can be deleted after adding their pressure head and flow distances. As shown in Fig. 2, node n6 can

Figure 2: Node topology example used to illustrate NAM

be deleted after adding distance(n6, n5) and f low(n6, n5) to node n5 and then continue to the upstream. Both node n4
and node n5 can be deleted after adding max(distance(n4, n3), distance(n5, n3)) and sum( f low(n4, n3), f low(n5, n3)) to
node n3. This process will continue until the branch meets pumps, valves or tanks.
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4.2.2. Conceptualization
The main idea of this conceptual modelling approach is to assign demands to specific sources (tanks). Considering

that water flows in pumps and valves are unidirectional, demand nodes located between pumps/valves and tanks can
be considered as a demand allocated directly to a source (tank). This is illustrated in Fig. 3 and CSP will be used to
guarantee the equivalence of both schemes.

It is worth noticing that the conceptual model is related to a specific network configuration. If the configuration is
changed, the conceptual model must be revised to make sure it represents the network operation correctly.

Figure 3: Network conceptualization

4.3. Overview of the Integrated Control Scheme

4.3.1. Combining Linear MPC with CSP.
The main principle of the proposed approach is transferring the constraints of the non-linear pressure head model

into safety volumes in the tanks, which may be tackled by the flow MPC model combined with the CSP algorithm.
The linear constraints produced by CSP from the conceptual network will be combined with the initial constraints of
linear MPC for the original DWNs as new constraints. With this scheme, Problem 2 which is non-linear MPC will be
updated into linear MPC problem:

Problem 3

min
(u(0|k),··· ,u(Hp−1 |k))

J(k) (23a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k), i = 1, · · · ,Hp,

x(0|k) = xk, (23b)
Λcu = d (23c)

where:

x′min ≤ x(i|k) ≤ x′max, i = 1, · · · ,Hp, (24a)
u′min ≤ u(i|k) ≤ u′max, i = 0, · · · ,Hp−1,

The constraints x′min, x′max, u′min, u′max are obtained by CSP-MPC as Algorithm 1 presented in next section.

4.3.2. The Algorithm of Linear MPC with CSP.
The algorithm combining Linear MPC with CSP is described as Algorithm 1. At each time iteration, this CSP

algorithm will produce updated constraints equation (24) to Problem 2 by means of propagating the effect of non-
linear constraints equation (20a) into the operational constraints equation (21), which will be used for linear MPC to
generate optimized control strategies.

5. Case Study and Results

The D-Town network is used as the case study, which is a complex DWN with 388 nodes, 405 actuators and 7
tanks and multiple bidirectional links as shown in sub-figure (a) of Fig. 4 [19, 20]. Sampling time used by the CSP-
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Algorithm 1 CSP-MPC Algorithm
1: for k := 1 to Hp do
2: U(k − 1)⇐ [umin(k), umax(k)]
3: X(k)⇐ [xmin(k), xmax(k)]
4: end for

5: V ⇐

X︷                  ︸︸                  ︷
x(1), x(2), ..., x(Hp),

U︷                      ︸︸                      ︷
u(0), u(1), ...u(Hp − 1)

6: D ⇐ X(1),X(2)...X(Hp),U(0),U(1)...U(Hp − 1),D(0),D(1)...D(Hp − 1)

7: C ⇐ ΛT

[
hr

h

]
+ G(u) = 0

8: H ⇐ V,D,C
9: S = solve(H)

10: Update limits for the linear MPC problem using the CSP solution

(a) Original D-Town network (b) Conceptual D-Town network

Figure 4: D-Town Networks

MPC controller is 1 hour, while the needed real-time computing time for every iteration of CSP-MPC is around 60
seconds which is mainly consumed by PSA.

5.1. Results of NAM

With the algorithm NAM, the original D-Town network is first simplified into a network with 88 nodes, 144
actuators and 7 tanks. Then, the conceptual network of D-Town is presented in sub-figure (b) of Fig. 4, where all the
demand nodes have been aggregated inside one demand node connected with tanks. Fig. 5 shows the consistency of
optimized pumping flow in the original and conceptual networks, which confirms the feasibility of NAM.

5.2. Results of Linear MPC and CSP

The objective function of MPC includes minimizing the economic water transportation cost. Sub-figure (a) of
Fig. 6 shows in the same plot the pump flow after applying MPC with the electricity fee of pump station S 4. This
figure shows that MPC decides to pump when the electricity price is lower to reduce the operational cost. By means of
CSP, non-linear pressure head equations have been transferred into linear constraints that impose new limitations for
tanks and actuators. Sub-figure (b) of Fig. 6 shows evolution of real tanks volume compared with its updated minimal
safety volume, which has been produced by CSP in order to satisfy the required pressure head. As shown from the
plot, the added constraints for tanks affect water volume to guarantee pressure head for the demand node.
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(a) Flow comparisons of pump S1 (b) Flow comparisons of pump S5

Figure 5: Pump flow comparisons between original and conceptual networks

(a) Pump flow with electricity price (b) Water evolution of tank2

Figure 6: Results of combined Linear MPC and CSP

5.3. Comparison with other Approaches

Operations of D-Town network were optimized previously by a Pseudo-Genetic Algorithm (PGA) [19] and a
successive linear programming [20], whose optimal annual pump costs are 168, 118 and 117, 740 Euros. Up to
the information in the referenced papers, a comparison of CSP-MPC is included with the calculation for annual
operational cost of D-Town network. Considering gravitational acceleration as 9.8m/s2, e as pump efficiency (70%
here), ρ as water density, ∆H as the pressure head gain by pumps, ũ as pump flow and a2 as pumping price, the
operational annual cost by CSP-MPC is 137, 880 Euros, which is in order of the results obtained by [19, 20].

Cann. =
9.8

∑7
j=1

∑K365
i=1 ρũ(i, j)∆H(i, j)a2(i, j)

e
(25)

6. Conclusions

This paper proposes and validates the integrated control scheme of linear MPC for DWNs with the cooperation
of NAM and CSP which has been used to avoid formulating the problem using non-linear MPC. D-Town network,
a well known benchmark in the DWN community, has been used to as the case study, results produced by PGA and
successive linear programming have been compared to validate feasibility of this approach.

9



Acknowledgements

This research has been funded by DGR of Generalitat de Catalunya (SAC group Ref. 2009/SGR/1491), ECOCIS
(DPI2013-48243-C2-1-R), EFFINET (FP7-ICT-2011-8-31855) and an FI grant by AGAUR. The D-Town problem is
provided by the University of Exeter Center for Water Systems; part of this research was conducted by the first author
during her visit to Exeter.

References

[1] M. Lopez-lbanez, T. Devi Prasad, B. Paechter, Ant Colony Optimization for Optimal Control of Pumps in Water Distribution Networks, J.
Water Resour. Plng. Mgmt., 7, 2008, 337–346.

[2] C.C. Sun, V. Puig, G. Cembrano, Two-layer Scheduling Scheme for Pump Station, IEEE Multi-Conference on Systems and Control, Juan Les
Antibes, 2014, 1741–1746.

[3] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Great Britain, 2004.
[4] S. Streif, M. Kogel, T. Bathge, R. Findeisen, Robust Nonlinear Model Predictive Control with Constraint Satisfaction: A Relaxation-based

Approach, World Congress of The International Federation of Automatic Control, Cape Town, South Africa, 2014, 11073–11079.
[5] O. Giustolisi, E. Todini, Pipe hydraulic resistance correction in WDS analysis, Urban Water Journal, 6(1), 2009, 39–52.
[6] L.A. Rossman, Epanet 2.0 Users Manual, Environmental Protection Agency EPA/600/R-00/057, United States, 2000.
[7] C.C. Sun, V. Puig, G. Cembrano, Combining CSP and MPC for the operational Control of Water Networks: Application to the Richmond Case

Study, World Congress of The International Federation of Automatic Control, Cape Town, South Africa, 2014, 6246–6251.
[8] B. Coulbeck, M. Brdys, C. H. Orr, J. P. Rance, A hierarchical approach to optimized control of water distribution systems. Part I: Decomposi-

tion, Optimal Control Applications and Methods, 9(1), 1988, 51–61.
[9] L. Jaulin, M. Kieffer, O. Didrit, E. Walter, Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and

Robotics, Springer-Verlag, London, 2001.
[10] A. Diba, P.W.F. Louie, W.W.-G. Yeh, Planned operation of large-scale water distribution system, J. Water Resour. Plng. Mgmt., 121, 1995,

260–269.
[11] Y.-H. Sun, W.W.-G Yeh, N.-S. Hsu, P.W.F. Louie, Generalized network algorithm for water-supply-system optimization, J. Water Resour.

Plng. Mgmt., 121, 1995, 392–398.
[12] E.K. Can, M.H. Houck, Real-time reservoir operations by goal programming, J. Water Resour. Plng. Mgmt., Optimal Control Applications

and Methods, 110, 1984, 297–309.
[13] M. Papageorgiou, Optimal control of generalized flow networks, System Modelling and Optimization Proc, 59, 1983, 373–382.
[14] P. Carpentier, G. Cohen, Applied mathematics in water supply networks management, Automatica, 29, 1993, 1215–1250.
[15] R.G. Cembrowicz, Steuerungsoptimierung eines Wasserversorgungssystems, GWF-Wasser/Abwasser, 131, 1990, 550–562.
[16] D.M. Murray and S.J. Yakowitz, Constrained differential dynamic programming and its application to multi-reservoir control, Water Re-

sources Research, 15, 1979, 223–235.
[17] C.H. Orr, M.A. Parker, S.T. Tennant, Implementation of on-line control scheme for city water system, J. Water Resour. Plng. Mgmt., 116,

1990, 708–726.
[18] U. Zessler, Optimal operation of water distribution systems, J. Water Resour. Plng. Mgmt., 115, 1989, 735–752.
[19] P.L.Iglesias-Rey, F.J.Martinez-Solano, D.Mora Melia, P.D.Martinez-Solano, BBLAWN: a Combined Use of Best Management Practices and

an Optimization Model Based on a Pseudo-Genetic Algorithm, 16th Conference on Water Distribution System Analysis, WDSA, 2014, 29–36.
[20] E. Price, A. Ostfeld, Battle of Background Leakage Assessment for Water Networks Using Successive Linear Programing, 16th Conference

on Water Distribution System Analysis, WDSA, 2014, 45–52.
[21] C. Ocampo-Martinez, V. Puig, G. Cembrano, J. Quevedo, Application of Predictive Control Strategies to the Management of Complex

Networks in the Urban Water Cycle, IEEE Control Systems Magazine, 33(1), 2013, 15–45.
[22] D. Fiorelli, G. Schutz, N. Metla, J. Meyers, Application of an optimal predictive controller for a small water distribution network in Luxem-

bourg, Journal of Hydroinformatics(In Press), 2014.
[23] J. Quevedo, V. Puig, G. Cembrano, J. Blanch, Validation and reconstruction of flow meter data in the Barcelona water distribution network,

Control Engineering Practice, 11, 2010, 640–651.
[24] M. Brdys, B. Ulanicki, Operational Control of Water Systems Structures, algorithms and applications, Prentice Hall International, United

States, 1994.
[25] J.M. Maciejowski, Predictive Control with Constraints, Great Britain, 2002.
[26] S. Miyaoka, M. Funabashi, Optimal Control of Water Distribution Systems by Network Flow Theory, IEEE Transctions of Automatic Control,

29(4), 1984, 303–311.

10


