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Abstract

This paper deals with the problem of set-membership identi�cation of nonlinear-in-the-parameters

models. To solve this problem, the paper illustrates how the Bayesian approach can be used to

determine the feasible parameter set (FPS) by assuming uniform distributed estimation error and �at

model prior probability distributions. The key point of the methodology is the interval evaluation

of the likelihood function and the result is a set of boxes with associated credibility indexes. For

each box, the credibility index is in the interval (0, 1] and gives information about the amount of

consistent models inside the box. The union of the boxes with credibility value equal to one provides

an inner approximation of the FPS, whereas the union of all boxes provides an outer estimation. The

boxes with credibility value smaller than one are located around the boundary of the FPS and their

credibility index can be used to iteratively re�ne the inner and outer approximations up to a desired

precision. The main issues and performance of the developed algorithms are discussed and illustrated

by means of examples.

1 Introduction

In the Control Engineering �eld, the so-called Robust Identi�cation techniques deal with the problem of

obtaining not only a nominal model of the plant, but also an estimate of the uncertainty associated to

the nominal model. There exist two main families of approaches to the modelling of model uncertainty:
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the stochastic/probabilistic methods and the deterministic/worst case methods. For an early survey, see

e.g. [1] and as precursor works see e.g. [2] and [3].

On the one hand, stochastic methods such as the classical model error model (MEM) techniques [4]

and the more recent Bayesian techniques [5][6], lead to probabilistic bounds on the uncertainty region.

On the other hand, deterministic methods lead to hard bounds on the uncertainty region and the most

representative are the set-membership (SM) techniques (see e.g. [7][8][9]), which include the branch of

interval methods (see e.g. [10][11][12][13][14][15][16][17]).

Although set-membership techniques were initially associated to deterministic approaches, in recent

years many attempts have been made to blend deterministic and probabilistic estimation concepts, see for

instance [18], where interval methods (deterministic) are used to approximate minimal-volume Bayesian

credible (probabilistic) sets in the context of general parameter Bayesian estimation. In [19], an extension

of the particle �lter algorithm able to handle interval data by means of interval analysis and constraint

satisfaction techniques is proposed. In [20], both deterministic and stochastic uncertainties are considered

in the context of Bayesian estimation. And more recently, in the works [21] and [22], Kalman �lters

are designed to cope with both types of uncertainties. The research presented in this paper continues

with the same spirit of blending set-membership and stochastic approaches. In particular, this paper

is motivated by [23] where it is suggested a rapprochement between the set-membership and Bayesian

stochastic parameter estimation approaches by establishing under which conditions both of them could

be comparable.

The main contribution of this paper is to propose an algorithm that solves the set-membership param-

eter estimation problem for nonlinear-in-the-parameters models under the Bayesian parameter estimation

framework. The key point of this algorithm is that by means of the interval evaluation of the likelihood

function, and assuming a uniform distributed estimation error and �at model prior probability distri-

butions, it produces as a result a set of boxes with associated credibility indexes. For each box, the

credibility index is in the interval (0, 1] and gives information about the amount of consistent models

inside the box. The union of the boxes with credibility value equal to one provides an inner approximation

of the feasible parameter set (FPS), whereas the union of all boxes provides an outer estimation. The

boxes with credibility value smaller than one are located around the boundary of the FPS. Compared

to existing interval methods, the credibility index enhances the interval estimation process since it gives

information of the amount of consistent models in each box. Consequently, it can be used to iteratively

re�ne the inner and outer approximations of the FPS up to a desired precision. Finally, an example based

on a part of a wind turbine case study is used to illustrate the proposed approach.

This paper is organized as follows: Section 2 presents the model parameterization that will be consid-

2



ered in this work and formulates the nonlinear set-membership parameter estimation problem. Section

3 introduces the fundamentals of the Bayesian framework. In particular, the Bayesian credible model

set is de�ned and used to formulate, under some assumptions, the set-membership parameter estimation

within the Bayesian framework. In Section 4, the parameter estimation problem is solved by means of

interval evaluations. First, a basic algorithm is presented. Then, an enhanced version of the algorithm is

developed in order to allow the e�cient search and selection of the boxes that constitute the �nal FPS. In

Section 5, the performance and results of the whole methodology is discussed by means of its application

to a dynamic system taken from a well-known fault detection benchmark problem. Finally, Section 6

concludes the paper.

2 Problem de�nition

2.1 Model parametrization

Let us assume that the system can be expressed by means of the following regression model

y(k) = F (k,θ) + e(k), k = 1, . . . ,M (1)

where:

• F (k,θ) is the regression function (or observation function), which, in a general case, is assumed to

be nonlinear-in-the-parameters θ, and it can contain any function of inputs u(k) and outputs y(k).

The regression function can be viewed as the estimation of the system response produced by the

model with parameters θ, ŷ(k) ≡ F (k,θ).

• θ ∈ Θ0 is the parameter vector of dimension nθ × 1.

• Θ0 is the set in the parameter space whose boundary represents the a priori bounds for the param-

eter values.

• e(k) is an additive error term which is unknown but it is assumed to be bounded by a constant

|e(k)| ≤ σ.

• k is the discrete-time sample.

2.2 Set-membership parameter estimation problem

The set-membership parameter estimation problem consists in determining the region in the parameter

space that contains all the models that are consistent with the M input/output samples [24]. This con-
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sistency parameter region is known as Feasible Parameter Set (FPS) and, for the model parametrization

(1), it is de�ned as follows

FPS = {θ ∈ Θ0|y(k)− σ ≤ F (k,θ) ≤ y(k) + σ, k = 1, . . . ,M} (2)

In the case that the regression function is expressed linearly as F (k,θ) = ϕT (k)θ, the exact FPS

can be obtained. However, in the case that the regression function is nonlinear-in-the-parameters θ, the

resulting FPS is no longer a convex polytope but a region with a much more complicated shape [24].

Thus, the exact description of the FPS may be too complex to easily deal with. Thus, several algorithms

exist that obtain inner or outer simpler regions that approximate the exact FPS [24][10] leading to what

are known as Approximated Feasible Parameter Sets (AFPS).

Inner approximations �nd the approximate parameter set of maximum volume such that all its pa-

rameters are inside the feasible parameter set,

AFPSin ⊆ FPS (3)

On the other hand, outer approximation algorithms �nd the approximate parameter set of minimum

volume that guarantees that the feasible parameter set is inside it,

FPS ⊆ AFPSout (4)

When F (k,θ) is linear, boxes, parallelotopes, ellipsoids or zonotopes are used to characterize the

AFPS [25][26][27]. In the nonlinear case, a minimum outer box can be determined by means of a set

of optimization problems [24]. But since the parameters enter in a nonlinear way in (1), the resulting

optimization problems are non-convex and obtaining the solution is NP-hard. As an alternative, the

AFPS can be approximated by using interval methods such as the SIVIA (Set Inversion Via Interval

Analysis) algorithm which is based on re�ning the initial a priori set Θ0 by iteratively bisecting it [10].

3 Set-membership estimation in the Bayesian framework

3.1 Bayesian Credible Parameter Set

The parametric-type uncertainty can be described by means of the Bayesian Credible Parameter Set Bθ

de�ned as follows:

Bθ ≡ {θ ∈ Rnθ |p(θ|y, σ) ≥ c(α)} (5)
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where the process model is characterized by means of the parameter vector θ; y = (y(1), . . . , y(M))
T

is the measurement data vector; c(α) ∈ [0, 1] is the critical value where 100(1 − α)% is the desired

credibility level; and the model posterior distribution p(θ|y, σ) can be obtained by means of the Bayes'

rule, p(θ|y, σ) ∝ p(y|θ, σ)p(θ), being p(y|θ, σ) the likelihood of the observations y jointly conditioned

to the model θ and to the error bound σ.

The Bayesian credible parameter set is a very general set suitable for most identi�cation procedures.

However, for the parameter set-membership estimation problem considered here, it is not necessary to use

it in its full powerfulness. A simpli�ed version, obtained by taking the assumptions that are listed below,

will be enough. Moreover, it will serve to illustrate how the deterministic set-membership parameter

uncertainty region can be viewed as a particular case of the Bayesian estimation theory [23].

3.2 Assumptions

The assumptions taken in this work are the following:

First assumption: The prior distribution is �at. In the Bayesian framework, the model prior proba-

bility distribution p(θ) can be a subjective probability [28],[29]. For simplicity, here it is assumed that

no information about which the value of the �true� parameter vector θ is and consequently we take a �at

p(θ) over the initial set Θ0 . This way the model posterior distribution is directly proportional to the

likelihood function of the observations, p(θ|y, σ) ∝ p(y|θ, σ), in Θo.

For a �xed θ, the value of ŷ(k) = F (k,θ), ∀k can be computed. Then, for θ and σ independent,

the likelihood function p(y|θ, σ) coincides in form with the error term probability distribution, i.e.,

p(y|θ, σ) ≡ pe(y − ŷ|θ, σ), where ŷ = (ŷ(1), . . . , ŷ(M))
T . The use of a non-�at prior distribution is

interesting if we have reliable prior knowledge about where the FPS could could lay in Θo. In such a

case, we could assign a prior weight to each parameter or interval in the initial set Θo, so the model

posterior distribution would be computed as p(θ|y, σ) ∝ p(y|θ, σ)p(θ). The additional weighting given

by the prior knowledge may present advantages during the search algorithm. For instance, some points

or regions could be early discarded, thus making faster the whole identi�cation process. Moreover, the

resulting probability levels in the �nal credible region would result in a more accurate indication of which

the "true" parameter is. However, all these advantages strongly depend on the availability of good prior

information. If we used wrong prior weights, the interplay with the experimental data would result in

regions with biased probability levels inside. Regarding the implementation issues, the di�culty and

complexity increase due to the introduction of the prior information depends on the particular algorithm.

In a point-wise evaluation of the likelihood function, introducing prior distributions is trivial whereas in

the interval evaluation it is more complicated.
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Second assumption: The error term is uniform distributed. To obtain a hard-bounded uncertainty

credible region, we must assume that the distribution of the additive error is hard-bounded. The simplest

choice is to take the uniform distribution, i.e. e(k) ∼ U(−σ, σ), where σ is selected to be the additive error

bound presented in Section 2.1. In this case, the resulting likelihood function is constant and nonzero in

the region where models θ are consistent with measurements and it is zero outside this region.

Note that, in this approach, we are not really concerned on obtaining the posterior distribution for a

particular θ; instead, what we obtain is the region (within the initial support Θ0 ) for which the posterior

distribution for θ is constant and nonzero. This region corresponds to the FPS. Note also that, since the

value of the posterior distribution for θ is constant over the FPS, the α value is not relevant here neither.

All models θ will be equally probable to occur, and this probability value, if needed, could be obtained

by forcing the volume to integrate to one in the FPS region.

Third assumption: Equation-error assumption. The likelihood function can be numerically estimated

by taking the so-called equation-error assumption [30]. On the contrary to the error-in-variables ap-

proach, where the regression function itself presents an error term, the equation-error approach assumes

that the error term is additive to data at each time instant k and it does not depend on k.

This way, we can assume that the error samples e(k) = y(k) − ŷ(k),∀k, where ŷ(k) = F (k,θ), are

i.i.d. (independent and identically distributed), and we can compute the likelihood function numerically

and sample-to-sample,

pe(y|θ, σ) =

M∏
k=1

pe(y(k)− ŷ(k)|θ, σ) (6)

It is noteworthy that there is no di�erence in the computation of (6) whether F (k,θ) is linear in the

parameters or not.

4 Computation of the Bayesian AFPS

In the Bayesian framework, it is usual to perform the computations by means of the sampling of the

parameter region. In this sense Markov Chain Monte Carlo (MCMC) techniques are widely used, see

e.g. [5], [6]. However, one important drawback of the point-wise characterization of the AFPS is that

we cannot give guarantees that the spaces between the points belong to the AFPS. This is especially

relevant in the points that are in the border since we would like to de�ne a region enclosing the FPS in

a guaranteed way. Moreover, conventional set-membership techniques allow obtaining inner and outer

approximations of the FPS whereas the point-wise approaches do not enjoy this interesting feature.

In this section we present a generalization of the former point-wise methodology consisting in the

interval evaluation of the likelihood function in order to obtain boxes instead of points. The new algo-
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rithms obtain not only an inner and an outer approximation of the FPS but they provide information of

the amount of consistent models in each box as well.

4.1 Interval evaluation of the likelihood function

Without loose of generality, let us consider that the initial set is an axis-aligned box [Θ0] (that can be

arbitrarily large if no a priori information about the FPS is available):

Θ0 , [θ1]× · · · × [θnθ ] (7)

where [θi] = [θi, θi] are initial intervals for each parameter and the operator × represents the Cartesian

product. To obtain the likelihood function over [Θ0], this box is divided into a set on N sub-boxes:

[Θ0] =
[
θ1
]
∪ · · · ∪

[
θN
]

(8)

where all the sub-boxes have the same size, being this size determined according to a prespeci�ed precision

vector ε = {ε1, · · · εnθ}. The total number of sub-boxes is given by the directional widths of the initial

box and the values in the vector ε according to N =
∏nθ

i=1Ni, Ni = width([Θi])/εi.

Once the domain has been divided into sub-boxes, the likelihood function has to be evaluated over

them. The mathematical tool that allows to evaluate functions over boxes is the interval analysis [10].

The core of interval analysis is the combination of interval arithmetic, an extension of real arithmetic to

intervals, with interval extensions for elementary functions. The application of this combination allows

in practice to compute the range of values that a linear or nonlinear function takes over a domain box.

Unfortunately, the use of interval analysis can provide overbounded results due to the well known multi-

incidence problem1. However, it is assured that the provided result contains all the solutions, and this

is an interesting property that will be exploited by the algorithms presented in next subsections. Using

interval analysis, the evaluation in a given time instant k of the regression function F over the box
[
θi
]

results in a predicted output interval, [ŷ(k)] = F (k,
[
θi
]
), [ŷ(k)]

∆
= [ŷ(k), ŷ(k)].

4.2 Consistency test

Once the predicted output interval [ŷ(k)] has been computed, it can be compared to the measurement

y(k) in order to obtain the interval error term [e(k)] = y(k) − [ŷ(k)],[e(k)]
∆
=
[
e(k), e(k)

]
. To check the

consistency of [θi] with the measurements, we must check the relation between the interval error [e(k)]

1Two instances of the same variable in a given interval function are treated as di�erent variables what leads to the
overestimation of the function range.
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and the prespeci�ed interval [−σ, σ]. This is illustrated in the Fig. 1, where the error term is assumed to

be uniform-distributed, (e(k)|σ) ∼ U(−σ, σ).

e(k)

(a) (b) (c) 

[e(k)] [e(k)] [e(k)]

pe(e(k)| )

 !" 

# 

$

Figure 1: Consistency test

Three cases can be considered:

• If the interval error [e(k)] is outside the consistency interval [−σ, σ], we conclude that the interval

model [θi] is not consistent with the measurements (see Fig. 1(a)). Therefore these models do not

belong to the FPS.

• If the interval error [e(k)] is totally inside the interval [−σ, σ], we conclude that the interval model

[θi] is consistent with the measurements and therefore it belongs to the FPS (see Fig. 1(c)).

• Finally, if the interval error [e(k)] is partially inside the interval [−σ, σ], we conclude that only some

of the models of [θi] belong to the FPS whereas others not (see Fig. 1(b)). In this later case, the

interval model [θi] is in the border of the FPS and it belongs to the region that is between the

inner approximation of the FPS and the outer approximation.

The consistency test illustrated in Fig. 1 can be directly implemented by means of the computation

of the following integration

I =

∫ e(k)

e(k)

p(e(k)|σ(k))de(k) (9)

For the uniform case, and de�ning we(k) as the error interval width, we(k) ≡ e(k)− e(k) , the integral

(9) is I = 0 in the case (a), I = we(k)/(2σ) in the case (c), and I = γwe(k)/(2σ) in the case (b), with

0 < γ < 1. The (a) and (c) cases can be viewed as particular cases of case (b) if we let γ take the values

0 and 1 respectively.

The value γ is called the credibility index and ranges from 0 to 1: 0 ≤ γ ≤ 1. For a given box [θi], the

value 100γ% is related to the amount of models in the box that belong to the FPS. If γ = 0 for the box,
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this means that none of the models in [θi] belong to the FPS. If γ = 1, then the whole box [θi] belongs

to the inner approximation of the FPS. And if γ ranges between 0 and 1, then the interval model [θi]

belongs to the outer approximation of the FPS.

4.3 Algorithm 1

The whole procedure for set-membership identi�cation is summarized in the Algorithm 1.

Algorithm 1 Set-membership identi�cation using interval-based evaluation.
Algorithm SM-Bayes-interval-1([Θ0], ε)
{[θ]} ← create-list([Θ0], ε)
{γ} ← {1}
for k = 1 to M do

for every [θi] ∈ {[θ]}
[ŷ]← [F ](k, [θi])
[e]← y(k)− [ŷ]
if [e] ⊆ [−σ,+σ] then
γ([θi])← γ([θi])

elseif [e] ∩ [−σ,+σ] = ∅ then
γ([θi])← 0

else

γ([θi])← γ([θi]) ∗ w ([e] ∩ [−σ,+σ]) /w ([e])
endif

endfor

endfor

normalize({γ})
return({[θ]},{γ})

endAlgorithm

This algorithm uses a list of parameter boxes {[θ]} and a list of credibility values {γ}. At the beginning

of the algorithm, the list of parameter boxes is initialized with the boxes obtained by gridding the initial

parameter box [Θ0] in boxes of directional widths speci�ed by the vector ε = (ε1, . . . , εnΘ
) (according to

Subsection 4.1). The list of credibility indexes {γ} has the same number of elements than {[θ]}, each

element in {γ} is associated to an element in {[θ]}, and those elements are initialized to 1.

Two nested loops allow to deal with every sample in the data set (outer loop) and every box in [Θ0]

(inner loop). The outer loop is associated to the data samples in order to obtain a formulation of the

parameter estimation algorithm that can be applied not only o�-line but also on-line. In the internal

code, the current box [θi] is processed according to the consistency test (detailed in Subsection 4.2).

After the execution of the loops, each value in {γ} is in the range [0, 1]. A zero value indicates that none

of the parameters in the associated box belong to the FPS. On the other hand, a �nal value equal to

one indicates that this value has been obtained at every time instant, indicating that all the parameters

inside the box are consistent with the whole data set. Finally, a value greater than zero and smaller than

one indicates that only a certain percentage of models inside the box are consistent with the data. Hence,
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the result of the identi�cation algorithm is a list of boxes with associated credibility indexes. The union

of the boxes with credibility value equal to one provides an inner approximation of the FPS, whereas the

union of all boxes with credibility value greater than zero provides an outer estimation. The boxes with

credibility value between zero and one are located around the boundary of the FPS.

Note that in contrast to gridding methods, what we obtain here is an outer and an inner approximation

for the FPS and, even more, each box inside the region between the inner and outer borders has assigned

a credibility index γ.

4.4 Algorithm 2

Algorithm 1 can be improved in di�erent ways. On the one hand, if a given parameter box [θi] is found

to be inconsistent with the data at a given time instant k ([e] ∩ [−σ,+σ] = ∅, γ([θi]) = 0), then the

box can be eliminated from the list to speed up the processing in the future time instants. On the other

hand, it may happen that several neighbour boxes that at the end will present a credibility index equal

to one could be evaluated as a whole (bigger box) obtaining the same result. In this case, the processing

of just one box would be more e�cient (less computing time). This claims for an alternative adaptive

strategy that, instead of splitting the domain from the very beginning in as many boxes as the parameter

ε indicates, it starts by considering the initial box [Θ0] and applies a bisection process, to this initial box

and to its descendants, only when is needed. Additionally, to limit the computation time, the parameter

ε can be used to stop the bisection process.

Taking into account the previous discussion, the procedure summarized in Algorithm 2 is proposed.

Additionally, the algorithm uses a parameter γth that will be justi�ed later, but for a �rst analysis

it can be assumed to be equal to one (note that, since γk ∈ [0, 1], this is equivalent to eliminate the

condition γk ≥ γth in the elseif statement present in the algorithm). The algorithm uses again a list

of parameter boxes and a list of associated credibility indexes, but now those lists are dynamic. The

processing of a given box [θi] at a given time instant distinguishes the three standard cases associated

to the instantaneous value for the credibility index, i.e. γk = 1, γk = 0 and 0 < γk < 1 (the function

compute-gamma is assumed to be programmed according to the code of the if-elseif-else section in

Algorithm 1). If γk = 1, the current parameter box belongs to FPS(k) and its accumulated credibility is

maintained. On the other hand, if γk = 0 then it does not belong to FPS(k) and hence it also does not

belong to the FPS associated to the whole set of data. Consequently, the parameter box is eliminated

from the list {[θ]}. Finally, if 0 < γk < 1 then two sub-cases are considered. If the box is "large", it is

bisected into two subboxes that are evaluated and added to the list {[θ]} if their computed γk is bigger

than 0. But if the box is "small" according to the prede�ned ε, i.e. all the directional widths of [θi] are
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smaller than the associated values in the vector ε, then the box is not bisected and it is maintained in

the list with an update of its associated accumulated γ.

Algorithm 2 Set-membership identi�cation using interval-based evaluation.
Algorithm SM-Bayes-interval-2(Θ0, ε, γth)
{[θ]} ← [Θ0]
{γ} ← {1}
k ← 1
while (k ≤M) ∧ (not isempty({[θ]})) do

[θi]← obtain-�rst({[θ]})
while not isempty({[θ]}) do

[ŷ]← [F ](k, [θi])
γk ← compute-gamma([ŷ],y(k),σ)
if γk = 1 then

γ([θi])← γ([θi])
elseif (γk ≥ γth) ∨ (width([θi]) ≤ ε) then
γ([θi])← γk ∗ γ([θi])

else

([θl], [θr])← bisect([θi])
delete-box({[θ]},[θi])
[ŷl]← [F ](k, [θl])
γlk ← compute-gamma([ŷl],y(k),σ)
if γlk > 0 then

add-box({[θ]},[θl])
γ([θl])← γlk

endif

[ŷr]← [F ](k, [θr])
γrk ← compute-gamma([ŷr],y(k),σ)
if γrk > 0 then

add-box({[θ]},[θr])
γ([θr])← γrk

endif

endif

[θi]← obtain-next({[θ]})
endwhile

endwhile

normalize({γ})
return({[θ]},{γ})

endAlgorithm

The previously described behaviour is quite similar to the provided by the classical SIVIA algorithm

[31]. However, the application of SIVIA to the parameter estimation problem presents a limitation. At

a given time instant k, and in particular at the �rst time instant k = 0, SIVIA tries to obtain a good

outer approximation of FPS(k) according to the resolution prespeci�ed in ε. This can imply lots of

bisections for a detailed exploration of a subset of the parameter space (more precisely, an exploration

of the previously computed FPS(k − 1)) and this has associated a given computation time. However,

this exploration may result unnecessary if the application of the algorithm to future data samples leads

to the same �nal result with or without the detailed exploration in the current time instant.
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This justi�es the use of γth in Algorithm 2. It is used as a threshold that activates or not the bisecting

process, aiming to speed up the algorithm. Hence, while processing a given box [θi] at a given time

instant k0, the box is not bisected if it presents a credibility index bigger or equal than the threshold, i.e.

γk0 > γth. If in a future time instant k1 the evaluation of box is inconsistent with the data, i.e. γk1 = 0,

then the box will be excluded from the solution list. In this case, the previous decision (not bisecting [θi])

does not alter the �nal result while some computations are avoided. However, on the other hand, the box

can maintain an instantaneous credibility index bigger than the threshold in all time instants. In this

case, the box will be accepted as belonging to the FPS even it has not an accumulated global credibility

index of one. This is the price to pay, a potential overbounding of the obtained outer approximation of

the FPS. However, it must be noticed that the guarantee of the obtained solution is assured. i.e. the

union of the boxes returned by the algorithm constitute an outer approximation.

5 Application example

5.1 Description

In order to the illustrate the performance of the proposed approach, we are going to apply it to a well-

known benchmark example from the Fault Detection and Isolation (FDI)) literature. It corresponds to a

pitch system of a wind turbine [32] which dynamics can be described by a second order continuous time

transfer function:

H(s) =
Y (s)

U(s)
=

ω2
n

s2 + 2ζωns+ ω2
n

(10)

and the parameters to be identi�ed are the natural frequency ωn and the damping factor ζ. The �unknown�

values for these parameters are ωn=11.11rad/s and ζ=0.6 . Notice that the system has a nonlinear

dependence with these two parameters.

In order to apply the identi�cation methods proposed in this work, the continuous-time system (10)

is discretized. According to the forward di�erence approximation, the transformation s = z−1
Ts

is applied

to (10) to obtain the following discrete-time transfer function:

H(z) =
ω2
nT

2
s

z2 + (−2 + 2ζωnT 2
s )z + (1− 2ζωnTs + ω2

nT
2
s )

(11)

Then, output data y(k) from the pitch system is generated by means of the simulator available with

the wind turbine benchmark2. These data include additive sensor noise. Then, the picth system can be

expressed in regressor form (1) by obtaining the di�erence equation from the discrete-time pitch model
2The benchmark is available http://www.kk-electronic.com/wind-turbine-control/competition-on-fault-detection/wind-

turbine-benchmark-model.aspx
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(11) as follows

y(k) = (2− 2ζωnT
2
s )y(k − 1) + (−1 + 2ζωnTs − ω2

nT
2
s )y(k − 2) + (ω2

nT
2
s )u(k − 2) + e(k) (12)

where the additive error term e(k) takes into account the additive noise in sensors and the discretization

error. The bound σ of this error can be estimated by determining the maximum (worst-case) of both.

5.2 Results

In order to perform the identi�cation, an input signal u(t) has been applied to the continuous system (10),

thus generating an output signal y(t) that has been corrupted by additive noise. Both signals have been

sampled with a sampling time of Ts=0.0125s from t=0s to t=2s, obtaining a sequence of input/output

data {u(k), y(k)}Mk=1, with M=161. The additive error σ due to the additive noise and discretization

error has been estimated and bounded by |σ| ≤ 0.28. The data set used for the identi�cation is shown in

Figure 2.
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Figure 2: Input and output signals.

Algorithm 2 has been applied over the initial box [Θ0] = [ωn, ωn] × [ζ, ζ] = [9.4, 11.6] × [0.35, 0.7],

working with di�erent resolution levels (di�erent values of Nmax/ε) and di�erent values for the threshold

γth. Figures 3a to 3d show some of the obtained solutions. These four displayed solution sets correspond

to the use of Nmax = {32× 32, 128× 128} in combination with γth = {1, 0.75}. On one hand, it can be

easily observed that the resolution of the obtained solutions mainly depends on the value for Nmax. On

the other hand, it can be observed that the use of γth = 0.75 leads to the processing of a smaller number

of boxes while obtaining qualitatively similar results.

For a better analysis of the e�ect of the threshold γth on both the computation time and the quality
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(a) Nmax = 32 ∗ 32, γth = 1.
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(b) Nmax = 32 ∗ 32, γth = 0.75.
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(c) Nmax = 128 ∗ 128, γth = 1.

9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11 11.2 11.4
0.35

0.4

0.45

0.5

0.55

0.6

0.65

(d) Nmax = 128 ∗ 128, γth = 0.75.

Figure 3: Some results of the application of Algorithm 2 to the application example.

of the obtained solution, more experiments have been performed and the results are summarized in Table

1. For each experiment, determined again by a given pair of values for Nmax and γth, the computation

time and the volume of the obtained solution have been determined. Regarding the computation time, it

is important to indicate that Algorithm 2 has been implemented in MATLAB and executed in a laptop

computer with a 2 GHz Intel Core i5 processor and 8GB of RAM memory.

Looking at Table 1, it can be veri�ed (as it is expected) that for each value of Nmax (any row in the

table), the computation time decreases and the volume of the obtained solution increases as the value

for γth decreases (going from left to right in the table). The value γth = 1 can be used as the reference

value for comparison. It can be observed that the use of γth = 0.7 allows to decrease the computation

time (around a 35% in average) with a really small overbounding in the obtained solutions (around

1% of increment in the volume in average). Working with γth = 0.6 allows a higher decrement of the

computation time (50%) still keeping a small overbounding (still around 1%). Finally, the computation
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times are much more reduced (90%) by working with γth = 0.5, but with a substantial and possibly

unacceptable overbounding (50%).

γth = 1 γth = 0.7 γth = 0.6 γth = 0.5
Nmax time(s) volume time(s) volume time(s) volume time(s) volume
32*32 300 0.4967 239 0.4967 178 0.4997 61 0.5888
64*64 1013 0.3543 638 0.3555 501 0.3560 80 0.5207
128*128 2143 0.2978 1225 0.2991 909 0.3005 107 0.5030
256*256 3278 0.2812 1972 0.2827 1448 0.2847 130 0.4994

Table 1: Computational results of applying Algorithm 2 to the application example.

6 Conclusion

This paper has addressed the set-membership identi�cation problem for models that are nonlinear-in-

the-parameters. It has been shown how the set-membership parameter estimation problem can be re-

formulated such that the Bayesian framework can be used to characterize the FPS. This is possible by

assuming uniform distributed error and �at model prior probability distributions.

The key point of the methodology is the computation of the likelihood function using interval meth-

ods. Hence, the likelihood function is evaluated over boxes instead of points and obtaining a measure,

the so-called credibility index, of the amount of models inside each box that are consistent with the

measurements. Compared to other set membership methodologies, the main contribution comes from

the de�nition of this credibility index. Not only it gives additional information of the consistency level

of each box but it also can be used to increase the e�ciency in the exploration of the initial parameter

space, and to re�ne the inner and outer approximations up to a desired precision. Moreover, the presented

algorithms, basic and enhanced, serve even if the FPS is non-convex or even disjoint.

Regarding computational issues, the computation times are similar to the ones of SIVIA for a �xed

precision. The main limitation is the number of parameters to deal with due to the computational

complexity of this algorithm, which grows exponentially with the number of parameters. However, this

drawback is common to other set membership methods. In order to overcome this drawback, the future

research will focus on the introduction of more speci�c Bayesian tools, such as the MCMC algorithms

and particle �lters, to the developed algorithms that consider non-�at prior distributions and additive

errors with general probability density functions.

As a further work, the e�ect of the interval evaluation of the parameter boxes has to be studied

in detail. By directly applying interval arithmetic, and due to the multi-incidence problem, the ranges

(intervals) obtained for the model output can be overbounded. On the one hand, this may increase the
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number of bisections. Moreover, this has an e�ect on the precision of the information provided by the

credibility index. A possible way to explore is to combine the use of interval evaluation (through interval

arithmetic) with the use of vertex evaluation, which provides an inner estimation of the range instead

of an outer one. Hence, two di�erent estimations of the model output will be obtained, leading to an

interval for the credibiliy index. The use of this information in the algorithms may result of interest.
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