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Abstract— This paper presents the analysis and comparison
of interval-observer-based and set-membership approaches for
the state estimation of linear uncertain systems. In both
approaches noise and disturbances are assumed to be unknown
but bounded. In this paper, both approaches are compared
when implemented using zonotopes. Mathematical expressions
of both approaches are compared and conditions under which
they provide the same state estimation are derived. At the end,
an example based on a two-tanks system is used to test the
obtained conditions.

I. INTRODUCTION

The state estimation problem is one of the significant
problems in control theory. There are various approaches in
the literature for state estimation. These approaches can be
classified in two main categories: stochastic and determin-
istic. According to [1], different ways to model the noises
and perturbations are the main difference between stochas-
tic and deterministic approaches. In stochastic approaches,
noises and perturbations are assumed to be described by
some known statistical distribution (typically Gaussian) but
deterministic approaches consider noises and disturbances as
unknown variables with known bounds. Inside the family
of deterministic approaches, the interval state observers and
set-membership state estimators have been introduced sep-
arately [2], [3], [4]. The state estimation provided by both
approaches is given in a form of a set of states at each time
instant.

Interval-observer-based approaches are one of the most
common approaches in Fault Detection and Isolation (FDI).
This approach has appeared in last decade for systems with
uncertainties [5], [6], allowing to estimate the state set a time-
instant ahead based on the set estimated in the previous time
instant [7]. In fault detection with this family, the parameter
uncertainty in non-faulty situation is used for predicting the
state [8].

On the other hand, the set-membership state estimation
is the other approach for estimating the system state in-
cluding the measured output and bounded noises [9], [10].
Furthermore, there are several geometrical structures in the
literature to compute the set of states in both approaches,
e.g., polytopes [11], [12], ellipsoids [13], [14], [15], [16]
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and zonotopes [17], [18], [9], [19]. Typically, the set approx-
imation is used to reduce the complexity of computing the
uncertain state. Moreover, the set is approximated by means
of outer bounds using the outer bounds of the exact uncertain
state set at time instant k−1 and the measured output set at
time instant k, where k ∈ Z.

In order to understand the relation between the interval-
observer-based approach and set-membership approaches,
the main objective of this paper is to compare them mathe-
matically and establish mathematical relations between them.

In the present paper, disturbances and noises are the
sources of uncertainty considered with unknown magnitudes
but known bounds in both state estimation approaches. Also,
the discrete-time model is used as a basis for designing state
estimation schemes. Moreover, the propagation of uncertain-
ties is done by considering zonotopic representations and
associated operations [8].

The main contribution of this paper is to establish the
relationship between the observer-based approach and the
set-membership approach in the case of single-input, single-
output (SISO) linear discrete-time systems with bounded
uncertain parameters and noise. On the other hand, these
relationships are shown by implementing the proposed ap-
proaches on the two-tanks case study.

The remainder of the paper is organized as follows. First,
some definitions and properties of zonotopes are recalled in
Section II. The problem formulation for each approach is
studied in Section III. Section IV presents the comparison
between the two considered approaches. The mathematical
conditions that allow relating both approaches are discussed
in Section V. In Section VI, an example based on a two-
tanks system is proposed in order to show these conditions.
Finally, in Section VII conclusions are drown.

II. THEORETICAL BACKGROUND

In what follows, some fundamental definitions and prop-
erties regarding zonotopes that are important to recall for
understanding the contents of this paper are introduced.

Definition 2.1 (Minkowski Sum): The Minkowski sum of
two sets is defined by X⊕Y = {x+ y : x ∈ X ,y ∈ Y} .

Definition 2.2 (m-order Zonotope): A zonotope is a convex
symmetric polytope. Given a vector p ∈ Rn and a matrix
H ∈ Rn×m(n ≤ m), the zonotope is represented as: Z = p⊕
HBm = {p+Hz : z ∈ Bm} where p is the center, H contains
the segments of the zonotope and Bm is an m-dimensional
unitary box.

Definition 2.3 (Strip): A strip is described by S ={
x :
∣∣cT x−d

∣∣≤ σ
}

, where c ∈ R is a vector and d,σ are



scalars.
Property 2.1: Given two zonotopes Z1 = p1 ⊕HBm1 ∈

Rn and Z2 = p1 ⊕ HBm2 ∈ Rn, the Minkowski sum of
these zonotopes is defined as Z = Z1 ⊕ Z2 = (p1 + p2 ⊕[
H1 H2

]
Bm1+m2 , which is still a zonotope.

Property 2.2: Given the zonotope Z = p⊕HBm ⊂Rn, the
strip S =

{
x ∈ Rn :

∣∣cT x−d
∣∣≤ σ

}
and the vector λ ∈ Rn,

the intersection between the zonotope and strip is defined
as Z∩S = p̂(λ )⊕ Ĥ (λ )Bm+1 where p̂(λ ) = p+λ (d− cp)
and Ĥ (λ ) =

[
(I−λc)H σλ

]
.

III. PROBLEM FORMULATION

A. Dynamical Model of the System

The SISO linear discrete-time invariant system is modeled
as

xk+1 = Axk +Buk +ωk, (1a)
yk =Cxk +ηk, (1b)

where x ∈ Rn, u ∈ Rp, y ∈ Rq are the states, inputs and
outputs, respectively. Moreover, A ∈ Rn×n, B ∈ Rn×p, C ∈
Rq×n are constant matrices. In (1), ω ∈ W denotes the
state perturbation (disturbances) and η ∈ V represents the
measurement perturbation (noises), both considered as

W = {ωk ∈ Rr : |ωk−ω
c| ≤ ω̄,ωc ∈ Rr, ω̄ ∈ Rr} , (2a)

V = {ηk ∈ Rq : |ηk−η
c| ≤ η̄ ,ηc ∈ Rq, η̄ ∈ Rq} , (2b)

where ωc, ω̄ , υc and ῡ are constant vectors. Moreover, based
on the structures in (2), the zonotopes of W and V can be
re-written as

W = ω
c⊕Hω̄Br, (3a)

V = η
c⊕Hη̄Bq, (3b)

where Hω̄ ∈Rr×r and Hη̄ ∈Rq×q are two diagonal matrices
with respect to ω̄ and η̄ . Besides, Br and Bq are unitary
boxes.

B. Interval-observer-based Approach

Based on the dynamical model in (1), the interval observer
is used for estimating the state and output sets of the system.
The structure of interval observer is expressed as

x̂k+1 = Ax̂k +Buk +L(yk− ŷk)+W, (4a)
ŷk =Cx̂k +V, (4b)

where x̂ is estimated state, ŷ is output and L denotes the
observer gain. Moreover, if (1) is assumed to be observable,
the observer gain can be designed by using the method
proposed in [20] for zonotopic Kalman Filters.

The set definition of the observer structure in (4) can be
re-written in the zonotopic form as

X̂k+1 = (A−LC)X̂k⊕{Buk}⊕{Lyk}⊕ (−L)V ⊕W, (5a)

Ŷk =CX̂k⊕V, (5b)

where X̂ and Ŷ are the predicted state and output zonotopes,
respectively.

Moreover, the zonotopic observer structure in (5) can be
propagated in center-segments form as

x̂c
k+1 = (A−LC)x̂c

k +Buk +Lyk−Lη
c +ω

c, (6a)

Ĥx
k+1 =

[
(A−LC)Ĥx

k −LHη̄ Hω̄

]
, (6b)

ŷc
k =Cx̂c

k +η
c, (6c)

Ĥy
k =

[
CĤx

k Hη̄

]
, (6d)

where x̂c
k+1 and Ĥx

k+1 are the center and segments of X̂k+1,
respectively. Also, ŷc

k and Ĥy
k are the center and segment of

Ŷk. In addition, in this computation, the initial zonotopic state
is assumed X̂0 = x̂c

0⊕ Ĥ0Bm0 . Moreover, the set of uncertain
state can be obtained by using the iterative algorithm that is
presented in Figure 1.
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Fig. 1: Iterative algorithm of interval observer approach

C. Set-membership State Estimation

Set-membership state estimation is another approach for
state estimation. In this approach, the uncertainties are also
assumed unknown but bounded.

Based on the above assumption, the uncertain state set can
be obtained by using Algorithm 1 (see Figure 2).

Algorithm 1 Set-membership State Estimation

1: Compute the set of predicted states Xe(k),
2: Compute the set of consistent states Xyk(k),
3: Compute the set of uncertain states X̂(k) = Xe(k)∩
Xyk(k).

In Algorithm 1, the state estimation is done by means of
intersecting the prediction state set Xe

k and the output strip
Xyk

k . This intersection is denoted by X̂k.
In addition, the zonotopic representations are used for

implementing Algorithm 1 in set-membership approach. In
both methods, Step I and II are solved similarly but there are
several methods for dealing with Step III (correction step)
as singular value decomposition-based method, segments
minimization method, volume minimization method and the
P-radius minimization method [20].
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Fig. 2: Set-membership state estimation

Hence, by considering the dynamical model in (1), the
Algorithm 1 can be implemented as follows:

• Step I: By considering (1a) and (3a), the prediction state
set can be computed as

Xe
k+1 = x̂ce

k+1⊕Hxe
k+1B

r, (7)

where x̂ce
k+1 and Hxe

k+1 denote the center and the segments
of zonotope Xe

k+1, respectively, which are calculated as

x̂ce
k+1 = Ax̂k +Buk +ω

c, (8a)

Hxe
k+1 =

[
AĤx

k Hω̄

]
. (8b)

• Step II: The measurements yk are used to obtain the
strip in Algorithm 1. This strip can be represented by
S=

{
x ∈ Rn :

∣∣cT x−d
∣∣≤ σ

}
, where d = yk and σ is the

measurement noise. Therefore, the strip can be written
as

Xyk
k =

{
x ∈ Rn :

∣∣CT x− yk
∣∣≤ ηk

}
. (9)

• Step III: The prediction state set and the consistent state
set are obtained by considering the dynamical model
in (1) in Steps I and II. The intersection between the
zonotope obtained in Step I and the Step II gives the
state of Step III in Algorithm 1, i.e., Xe

k+1∩Xyk
k . More-

over, this intersection can be provided by considering
Property 2.2. Therefore, by intersecting the predicted
state and the strip in Step III, the state estimation can
be obtained in Step III. Hence, based on the prediction
step, Xe

k+1 = (Axk+Buk+ωk)⊕
[
AĤx

k Hω̄

]
Br, also the

strip Xyk
k =

{
x ∈ Rn :

∣∣CT x−d
∣∣≤ ηk

}
, the intersection

can be computed as

X̂k+1 = X̂c
k+1 (λ )⊕ Ĥx

k+1 (λ )B
m+1, (10)

where the center X̂c
k+1 is derived as

X̂c
k+1 (λ ) = AX̂c

k +λ (yk+1−CAX̂c
k ). (11)

Also, the segments matrix Ĥx
k+1 is calculated by con-

sidering Property 2.2 and (8) as

Ĥx
k+1 (λ ) =

[
(I−λC)AĤx

k (I−λC)Hω̄ Hη̄ λ
]
.

(12)
In addition, throughout the procedure of Step III, the
whole computation is parameterized by means of vector
λ . Hence, according to [9], it can be generally obtained
by λ = HHT C

CT HHT C+σ2 in order to minimize the segments
of the zonotope.

IV. COMPARISON BETWEEN BOTH APPROACHES

The main difference between the interval observer and
set-membership approaches is related to their own ways for
taking the effect of measurements into the account when
performing the state estimation. Interval observer uses an
explicit way for achieving this goal through the observer
gain. On the other hand, the set-membership approach carries
out this process implicitly by providing the intersection
between the set of states consistent with the model and
the measurements, respectively. Furthermore, the intersection
and observer gain that are used in set-membership and
interval observer approaches depend on the relative values
of process and measurement noises. This fact motivates to
find out the relation that can be established between both
approaches. Thus, in order to find the mathematical relation-
ship of interval observer and set-membership approaches,
the comparison is done by comparing the centers and the
segments of the obtained zonotopes.

The predicted center and the segments are computed in
(6) with the interval-observer approach. On the other hand,
(11) and (12) provide the center and the segments of the
zonotopic state estimation with set-membership approach.
By comparing these expressions, it is seen that the observer
gain and uncertainties play the important role in the interval
observer state estimation. On the other hand, the same role
is played by the uncertainties in set-membership approach.
Therefore, if the same uncertainties are considered for both
approaches, the observer gain will be the only important
factor for finding the relationship.

In order to find the relation of interval-observer and set-
membership approaches, the same disturbance and noise are
considered for the dynamical system in (1). The comparison
is done under three different conditions according to the
observer gain. These conditions are outlined as follows:

• Case I: In this case, the observer gain is selected
to satisfy 0 < LC < A. Therefore, the center and the
segments of the interval observer can be derived as in
(6a) and (6b).

• Case II: In this case, L = 0 and corresponds to the
case that the set of estimated states depends only on the
model and disturbances. Then, the zonotope produced
by the interval observer can be computed as

x̂c
k+1 = Ax̂c

k +Buk +ω
c, (13a)

Ĥx
k+1 =

[
AĤx

k Hω̄

]
. (13b)



• Case III: In this case, L is selected to satisfy LC = A
(deadbeat observer) such that the set of estimated states
depends only on measured inputs and outputs. Thus, the
center and the segments of estimated states will be

x̂c
k+1 = Buk +Ax̂c

k +ω
c, (14a)

Ĥx
k+1 =

[
−LHη̄ Hω̄

]
. (14b)

In the first case, the center and the segments are affected
by the observer gain. As discussed previously, this gain
is obtained by the same method that is proposed in [20],
which takes the bounds of uncertainties into account. By
comparing (6a) with (11) and (6b) with (12), the centers
of both approaches are the same in steady state if the noise
will be centered around zero. But, the interval observer set is
wider than set-membership approach based on its segments.
Additionally, by comparing (13) and (14) for the interval
observer with (11) and (12) for set-membership, the state
estimations provided by both approaches are affected by
disturbances and noises. Moreover, if noise and disturbances
are zero mean (that is, centered around zero), for Cases II
and III, the centers of interval observer and set-membership
approaches will be located in the same place.

On the other hand, by assuming no noise condition, then
comparing (13b) with (12) under the same noise condition
Ĥx

k+1 (λ ) =
[
(I−λC)AĤx

k (I−λC)Hω̄

]
, the only differ-

ence between the matrices that are obtained with these two
estimation approaches is the optimization vector λ from the
set-membership approach. It means that, only in the ideal
condition (λ = 0), two approaches will produce the same
state predictions.

In the same way for the third case (LC = A), the center
of two approaches are the same and (13b) is reduced into
Ĥx

k+1 =
[
Hω̄

]
, also in the case without noise. Moreover, it

can be concluded that if the center of these approaches are
equal, the state that is estimated by interval-observer is inside
of the set-membership state estimation.

Summarizing, by supposing the dynamical model under
the condition of zero mean noise and in the case of consid-
ering that the observer gain satisfies L = 0 or LC = A, the
centers of interval observer and set-membership are located
in the same positions. Additionally, in the ideal case λ = 0,
the approaches are equal if L = 0 and interval observer is
included by set-membership estimation if LC = A.

V. CASE STUDY

A. Two-Tanks System

The comparison of the two mentioned state estimator
families will be performed by using the two-tanks system
that is presented in Figure 3.

The mathematical model of the system can be written as

dh1(t)
dt

=− a1

A1

√
2gh1(t)+

a2

A1

√
2gh2(t)+

γk
A1

ω(t), (15a)

dh2(t)
dt

=− a2

A2

√
2gh2(t)+

(1− γ)k
A2

v(t), (15b)

Fig. 3: Schematic diagram of the Two-tanks system

where
• γ is the valve ratio.
• kv(t) is the flow through the pump.
• (1− γ)kv(t) is the flow towards the Tank 1 according

to the valve position.
• γkω(t) is the flow towards the Tank 2 according to the

valve position.
• k is the pump constant.
• Ai is the cross section of Tank i, with i = 1,2.
• ai is the cross sectional area of the outlet pipes.
• g is acceleration due to gravity.
• hi is the level of the water in Tank i, with i = 1,2.
In order to apply the approaches considered in this pa-

per, the previous non-linear model is linearized around the
operating point:
• h∗1 = 12.4 [cm],
• h∗2 = 1.8 [cm],
• v = 3.00 [V],

with the following parameter values:
• k = 3.35 [cm3/Vs],
• γ = 0.60.
Including the disturbance and the noise, an Euler dis-

cretization (with step size equal to 1) of the linearized model
can be written based on as [21]

hk+1 =

[
−0.0159 0.0419

0 −0.0419

]
hk +

[
0

0.0479

]
vk

+

[
0.0718

0

]
ωk,

(16a)

yk =
[
0.5 0

]
hk +ηk, (16b)

where ω is the disturbance and η is the measurement noise.
Therefore, each condition in Section IV can be checked

by using the state-space model in (16) for the case study.
Case I (0 < LC < A) : The observer gain in this condition

is obtained by using the Zonotopic Kalman Filte method



(ZKF) that is proposed in [20]. State estimation is done
by using interval-observer and set-membership approaches.
Figure 4 shows the comparison of estimation with both
considered approaches. It can be seen that both approaches
present a quite similar behaviour.
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Fig. 4: Envelope of interval observer and set membership
state estimation if 0 < LC < A

Moreover, Figure 4 shows, under the condition 0 < LC <
A, the bound of state that is estimated by interval observer
is wider than set-membership state estimation. This point is
shown in Figure 5 by comparing the created zonotopes in
the last iteration with both approaches.
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Fig. 5: The zonotope of state estimation in the last iteration
by both approaches for 0 < LC < A (solid-line shows the in-
terval observer and dashed-line presents the set-membership
state estimations)

Case II (L = 0): The estimated state is influenced by
considering zero value for the gain in interval observer
approach. The effect of this gain can be seen in Figure 6.
In this case, the centers and the segments of state estimation
in both approaches are converging to each other. Therefore,
both approaches have quite similar state estimations.

Moreover, Figure 7 shows that the center are equal and a
small difference between the shape of two zonotopes in the
last iteration.

Case III (LC = A): Under this condition, the segment
matrix of the state estimation with the interval observer is
reduced to one segment that is based on the disturbance. This
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disturbance is added to the lower tank during the simulation.
Hence, the set of state estimations with interval observer
under this condition is obtained as a line.

Figure 8 presents the effect of designing the gain when
LC =A on estimating the states. Furthermore, the comparison
between two families is shown in this figure. As it is seen,
both approaches estimate the similar centers. Therefore, in
this case, the set that is estimated by interval observer
is inside of the set-membership state estimation, in other
words, the interval observer is included by set-membership
approach. Figures 8 and 9 show the envelope and last
iteration zonotope of both approaches, respectively.

VI. CONCLUSIONS

The observer-based approach and the set-membership ap-
proach have been considered in this paper for estimating the
state of linear single-input, single-output (SISO) systems.
Moreover, both approaches were analyzed and compared
from the mathematical point of view by implementing zono-
topes.

In one hand, the calculations involved in both approaches
are introduced. On the other hand, by considering the ob-
server gain in interval observer approach, three cases were
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Fig. 8: Envelope of interval observer and set membership if
LC = A
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Fig. 9: Envelope of interval observer and set membership if
LC = A (solid-line shows the interval observer and dashed-
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discussed in order to find the relation between these two
families.

In particular, it has been shown that the same envelopes of
the state estimation are obtained with both interval observer
and set-membership approaches when L = 0. Furthermore,
in the case that the observer gain is designed as LC = A
the envelope of state estimation by using interval observer
approach goes inside of set-membership envelope. Also,
interval observer estimation set included by the one produced
by the set-membership if LC = A. In the case that the
observer gain in the interval observer is designed according
to the zonotopic Kalman filter approach, the state estimation
envelopes are quite close to those obtained using the set-
membership approach. Therefore, it would be one of fu-
ture research to use some additional conditions for finding
the connection of these two families with Kalman filter
and Zonotopic Kalman filter state estimators. As a future
research, the comparison will be extended to the case of
non-linear systems represented in Linear Parameter Varying
(LPV) form and to see the performance of both approaches
regarding fault detection and isolation.

ACKNOWLEDGEMENTS

This work has been partially funded by the Spanish
Ministry of Science and Technology through the Project

ECOCIS (Ref. DPI2013-48243-C2-1-R).

REFERENCES

[1] R. E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME-Journal of Basic Engineering,
82(Series D):35-45, 1960.

[2] S. Tornil-Sin, C. Ocampo-Martinez, V. Puig and T. Escobet. Robust
fault detection of non-linear systems using set-membership state
estimation based on constraint satisfaction. Engineering Applications
of Artificial Intelligence, 25(1): 1-10, 2012.

[3] D. Efimov, T. Raı̈ssi, S. Chebotarev, and A. Zolghadri. Interval state
observer for nonlinear time varying systems. Automatica, 49(1):200-
205, 2013.

[4] F. Mazenc and O. Bernard. Interval observers for linear time-invariant
systems with disturbances. Automatica, 47(1):140-147, 2011.

[5] Y. Wang, D. M. Bevly and R. Rajamani. Interval observer design for
LPV systems with parametric uncertainty. Automatica, 60:79-85, 2015.

[6] T. Raı̈ssi, D. Efimov and A. Zolghadri. Interval state estimation for a
class of nonlinear systems. IEEE Transactions on Automatic Control,
57(1):260-265, 2012

[7] F. Mazenc, T. N. Dinh and S. I. Niculescu. Interval observers for
discrete time systems. International Journal of Robust and Nonlinear
Control, 24(17):2867-2890, 2014.

[8] T. Alamo, J. M. Bravo and E. F. Camacho. Guaranteed state estimation
by zonotopes. Automatica, 41(6):1035-1043, 2005.

[9] V. T. H. Le, C. Stoica, T. Alamo, E. F. Camacho and D. Dumur.
Zonotope-based set-membership estimation for multi-output uncertain
systems. IEEE International Symposium in Intelligent Control (ISIC),
pages 212-217, India, 2013.

[10] G. Wei, S. Liu, Y. Song and Y. Liu. Probability-guaranteed set-
membership filtering for systems with incomplete measurements.
Automatica, 60:12-16, 2015.

[11] R. M. Fernández-Cantı́, S. Tornil-Sin, J. Blesa and V. Puig. Nonlinear
set-membership identification and fault detection using a Bayesian
framework: Application to the wind turbine benchmark. 52nd IEEE
Annual Conference in Decision and Control (CDC), pages 496-501,
Italy, 2013.

[12] S. M. Tabatabaeipour, P. F. Odgaard, T.Bak and J. Stoustrup. Fault de-
tection of wind turbines with uncertain parameters: a set-membership
approach. Energies, 5(7):2424-2448, 2012.

[13] W. Yu, E. Zamora and A. Soria. Ellipsoid SLAM: a novel set member-
ship method for simultaneous localization and mapping. Autonomous
Robots, 40(1):125-137, 2016.

[14] Z. H. O. U. Bo, Q. I. A. N. Kun, M. A. Xu-Dong and D. A. I. Xian-
Zhong. A new nonlinear set membership filter based on guaranteed
bounding ellipsoid algorithm. Acta Automatica Sinica, 39(2):146-154,
2013.

[15] K. J. Keesman, J. P. Norton, B. F. Croke, L. T. Newham and A.
J. Jakeman. Set-membership approach for identification of parameter
and prediction uncertainty in power-law relationships: The case of
sediment yield. Environmental modelling and software, 40:171-180,
2013.

[16] C. Combastel. A state bounding observer for uncertain non-linear
continuous-time systems based on zonotopes. 44th IEEE Conference
in Decision and Control, CDC-ECC’05, pages 7228-7234, 2005.

[17] F. Xu, F. Stoican, V. Puig, C. Ocampo-Martinez, and S. Olaru. On
the relationship between interval observers and invariant sets in fault
detection. In Control and Fault-Tolerant Systems (SysTol), pages 49-
54, France, 2013.

[18] V. T. H. Le, T. Alamo, E. F. Camacho, C. Stoica and D. Dumur.
A new approach for guaranteed state estimation by zonotopes. 18th
World Congress IFAC, pages 9242-9247, Italy, 2011.

[19] C. Combastel. A state bounding observer based on zonotopes. Pro-
ceedings of European Control Conference, pages 2589-2594, UK,
2003.

[20] C. Combastel. Zonotopes and Kalman observers: Gain optimality
under distinct uncertainty paradigms and robust convergence. Auto-
matica, 55:265-273, 2015.

[21] K. H. Johansson. The quadruple-tank process: A multivariable labo-
ratory process with an adjustable zero. IEEE Transactions Control on
Systems Technology, 8(3):456-465, 2000.


