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bAutomatic Control Department, Universitat Politècnica de Catalunya, Institut de Robòtica i Informàtica Industrial
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Abstract

Large-scale network systems involve a large number of states, which makes the design of real-time controllers a challenging task.
A distributed controller design allows to reduce computational requirements since tasks are divided into different systems,
allowing real-time processing. This paper proposes a novel methodology for solving constrained optimization problems in
a distributed way inspired by population dynamics. This methodology consists of an extension of a population dynamics
equation and the introduction of a mass dynamics equation. The proposed methodology divides the problem into smaller
sub-problems, whose feasible regions vary over time achieving an agreement to solve the global problem. The methodology
also guarantees attraction to the feasible region and allows to have few changes in the decision-making design when a network
suffers the addition/removal of nodes/edges. Then, distributed controllers are designed with the proposed methodology and
applied to the large-scale Barcelona Drinking Water Network (BDWN). Some simulations are presented and discussed in order
to illustrate the control performance.
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1 Introduction

An approach to design control systems is to express the desired performance of the plant as an optimization prob-
lem with multiple constraints, e.g., minimization of the error, minimization of the norm of states, minimization of
the energy associated to control actions, all of those objectives subject to physical and/or operational constraints.
When the system involves a large number of states, the design of optimization-based controllers becomes challeng-
ing, because of the lack of centralized information or because of other implications associated to information (e.g.,
communication issues, costs, reliability). The limitation regarding information availability demands the development
of distributed optimization techniques that achieve an optimal point of a performance cost function for the total
system by using only local and partial information. There are many distributed optimization applications in engi-
neering, and most of them using a network systems approach [4,5,24,25]. These problems have been solved by using
distributed optimization algorithms based on the Newton method [9,27], the sub-gradient method [10,30], and the
consensus protocol [10,16,29], among other techniques.

On the other hand, game theory studies the interaction of decision makers and the interconnection of decision making
elements based on local information. From this perspective, game-theoretical tools become very useful to describe
the behavior of distributed engineered systems [15]. One important characteristic of this theoretical approach is the
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Nash equilibrium concept, which describes how a global objective is reached based only on local decisions. The task
to reach a global objective with partial information is one of the main aspects in distributed optimization problems.
This problem may be seen as a multi-agent case in which there are local interactions among them. Furthermore,
evolutionary game theory describes the previously mentioned model of agents interacting but also considering a
determined population structure, i.e., constraints in the interaction among agents [17]. From this point of view, this
theory is suitable to design intelligent systems and controllers for systems where there are local decision makers
(local controllers) and achieving a global performance and/or global goal under a specific structure, which is given
by the topology of the system (e.g., energy networks, water networks, transportation networks, etc). Also, game
theory has become an important and powerful tool for solving optimization problems since the Nash equilibrium
corresponds to the extreme of a potential function satisfying the Karush-Kuhn-Tucker (KKT) first order condition
[23]. This property is commonly used in a class of games known as potential games, which have gotten special
importance in the solution of engineering problems. For instance, in [14] potential games are widely studied from
the perspective of state-based games. Furthermore, some kind of optimization problems can be solved by finding
a Nash equilibrium for an appropriate designed game, and the consideration of only local information allows to
solve distributed optimization problems [1]. For instance, in [6] a distributed convergence to Nash equilibria in
two networks is discussed for zero-sum games. In [22], distributed optimization has been applied using replicator
dynamics (one of the six fundamental population dynamics), based on local information. In [13], the design of utility
functions for each agent in order to decouple constraints is presented, and the usage of penalty functions and barrier
functions is discussed. The design of local control laws for individual agents to achieve a global objective is proposed
in [12], which has been extended in [28] by using matrix theory.

The consideration of dynamics in the system-equivalent graph that describes information sharing among decision
variables is paramount since some network systems in engineering might grow (e.g., drainage network systems,
drinking water networks, distributed generation systems). These dynamics represent an addition or removal of
elements to/from the network. Moreover, the connectivity of the network elements could change over time (e.g., re-
configuration systems), which could affect availability of information. In [11], variations on the graph that determines
the system information sharing are studied, where the set of communication links varies with a certain probability.

The main contribution of this paper is to introduce a novel methodology to solve constrained optimization problems
in a distributed way, inspired by the population dynamics studied in [23]. Different from the already published
population dynamics approaches, this method adds dynamics to the population masses, making the population
simplex vary properly over time making the method robust [2]. The method consists in considering the global problem
as a society, where there is limitation of information sharing. The society is divided into several populations, where
there is full available information. Then, a local optimization problem is solved at each population whose feasible
region varies dynamically, i.e., there is an interchange of masses among populations. The feasible regions vary until
all populations agree to solve the global optimization problem. In addition to this, applications in the control
field may involve disturbances that could lead the trajectories to leave the feasible region (given by constraints
that impose a desire performance) [3]. Another relevant difference with respect to already published distributed
population dynamics approaches is that the proposed method guarantees that the feasible region is attractive. The
last mentioned feature potentially improve the control performance rejecting disturbances. Finally, the design of
the decision-making distributed system allows to have a reduced number of modifications when the graph topology
changes, i.e., there are new nodes/edges in the graph or there are nodes/edges that disappear. Also, some redundant
links can be identified, i.e., links in the graph that are not necessary in the connection among cliques.

The remainder of the paper is organized as follows. Section 2 shows preliminaries of graphs, population dynamics, and
introduces the mathematical formalism that is used throughout the paper. Section 3 presents the population dynamics
and the mass dynamics, including relevant characteristics. Then, the stability of the dynamics are presented in Section
4. Section 5 shows the different possible changes that the social graph might suffer, and explains the implication over
the design. Section 6 presents the optimization problem forms that could be solved with the population dynamics
and the mass dynamics, presenting also some illustrative examples and results. Afterwards, the robustness of the
method is shown by applying disturbances in Section 7. Then, Section 8 presents a large-scale system and the design
of optimal controllers by using the proposed methodology. Controllers consider both a model-based approach, and a
model-free approach. Section 9 shows the results and discussion about the performance of controllers designed with
the proposed methodology. In Section 10 the main conclusions are drawn.

Notation

The sub-index is associated to a node of a graph, or to a strategy in a game. On the other hand, the super-index refers
to a population. For instance, the sub-index i in xi, Pi, x

p
i or Fi refers either to a node in a graph or to a strategy,
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and the super-index p in mp, xp, xpi or Np indicates a population. Also it should be clear that the super-index is not
an operational number, i.e., N3 refers to population three but N3 ≠ NNN . We use bold font for column vectors and
matrices, e.g., x, and H; and non-bold style is used for scalar numbers, e.g., Np. Calligraphy style is used for sets,
e.g., S. The column vector with N unitary entries is denoted by 1N , and the column vector with null entries and
suitable dimension is denoted by 0. The identity matrix with dimension N ×N is denoted by IN . The cardinality of
a set S is denoted by ∣S ∣. The continuous time is denoted by t, and it is mostly omitted throughout the manuscript
in order to simplify the notation. Finally, R+ represents the set of all non-negative real numbers, and Z+ represents
the set of positive integer numbers.

2 Preliminaries

Let G = (V,E) be an undirected non-complete connected graph that exhibits the topology of a society, where V is
the set of vertices of G that represents the set of N available strategies in a social game denoted by S = {1, . . . ,N};
and E ⊂ {(i, j) ∶ i, j ∈ V} is the set of edges of G that determines the possible interactions among society strategies.
The graph G is divided into M sub-complete graphs known as cliques (a complete sub-graph), where each clique
represents a population within the society. The set of populations is denoted by P = {1, . . . ,M}, and the set of
cliques is denoted by C = {Cp ∶ p ∈ P}. The clique of the population p ∈ P is a graph given by Cp = (Vp,Ep), where
the set Vp represents the set of Np available strategies in a population game denoted by Sp = {i ∶ i ∈ Vp}, and
Ep = {(i, j) ∶ i, j ∈ Vp} is the set of all the possible links in Cp determining full interaction among the population
strategies.

It is assumed that cliques are already known, i.e., the number of cliques M , the set of vertices Vp, and the set of
edges Ep for all p ∈ P are known. Although, if it is desired to obtain the optimal set of cliques (i.e., the minimum

amount of cliques M such that ⋃p∈P Vp = V, and the minimum amount of links ∣Ẽ ∣, where Ẽ = ⋃p∈P Ep ⊆ E such

that the graph G̃ = (V, Ẽ) is connected), there are several methods to find them and it is out of the scope of this
paper (e.g., the Bron Kerbosh algorithm). Once the optimal set of cliques C has been identified, it is possible to find

redundant edges or links. A link (i, j) ∈ E is redundant if (i, j) ∉ Ẽ , i.e., (i, j) ∉ Ep, for all p ∈ P.

Then, we define the number of cliques that contain a node i ∈ V denoted by G(i) as

G(i) = ∑
p∈P

g(i, p), and g(i, p) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if i ∈ Vp

0 otherwise.

Since G is a non-complete connected graph, then all cliques must share at least one node with another clique, which
is known as an intersection node. The set of intersection nodes in a population p ∈ P is denoted by Ip = {i ∈ Vp ∶
G(i) > 1}, and the set of intersection nodes in the graph G is denoted by I = ⋃p∈P Ip.

Proposition 1 In an optimal set of cliques, two cliques do not share more than one intersection node.

PROOF. Suppose a society with a topology given by the graph G = (V,E), which is composed of M populations, i.e.,
P = {1, . . . ,M}. Now, suppose that two cliques associated to populations p, q ∈ P share more than one intersection

node, i.e., ∣Ĩ ∣ > 1, where Ĩ = Ip⋂I
q. Then C is not an optimal set of cliques (i.e., there are redundant links in

Ẽ = ⋃p∈P Ep). Moreover, Cp and Cq are complete graphs with set of vertices Vp and Vq, respectively. Suppose without

loss of generality that ∣Vp∣ > ∣Vq ∣, and that a, b ∈ Ĩ. Finally, notice that all the edges {(a, j) ∈ E ∶ j ∈ Vp/{Ĩ}} are
redundant edges or links in G. Consequently, the set of cliques C is not optimal since the clique Cp may be reduced
to the complete graph C̃p, by Ṽp = Vp/{a}, and Ẽp = Ep/ {(a, j) ∶ j ∈ Vp/{a}}. ∎

Example 2.1 Suppose the social topology composed of three populations P = {1,2,3} as shown in Figure 1,
where V1 = {1,2,3}, V2 = {1,3,4,5,6}, and V3 = {6,7}. The sets of intersection nodes for each population are
given by I1 = {1,3}, I2 = {1,3,6}, and I3 = {6}. Then, two populations share more than an intersection node, i.e.,

Ĩ = I1⋂I
2 = {1,3} = {a, b}, where ∣I2∣ > ∣I1∣. Then, the redundant links are given by {(1, j) ∶ j ∈ {1,3,4,5,6}/{1,3}},

i.e., {(1,4), (1,5), (1,6)} as shown in Figure 1 a). Finally, it is obtained the three cliques shown in Figure 1 b) after
removing the mentioned redundant links. �

3



1

2

3

4

5

6
7 1

2

3

4

5

6
7

a) b)

Fig. 1. Population dynamics with more than one intersection node, i.e., non-optimal set of cliques with redundant links.

Throughout the paper, we are going to refer to all the populations p ∈ P such that a node i ∈ V belongs to the set of
nodes Vp. This is the set of all the populations that includes a certain node i ∈ V and it is denoted by Pi = {p ∶ i ∈ Vp},
where Pi ⊆ P. For instance, let us consider a simple social topology shown in Figure 1b) with three populations
P = {1,2,3} whose sets of nodes are given by V1 = {1,2,3}, V2 = {3,4,5,6}, and V3 = {6,7}, respectively. Then,
P2 = {p ∶ 2 ∈ Vp} = {1}, whereas P3 = {p ∶ 3 ∈ Vp} = {1,2}, and P6 = {p ∶ 6 ∈ Vp} = {2,3} (node 6 ∈ V belongs to
population 2, and population 3 ∈ P).

The scalar xi ∈ R+ corresponds to the proportion of agents in the society selecting the strategy i ∈ S, and the scalar
xpi ∈ R+ is the proportion of agents selecting the strategy i ∈ Sp in the population p ∈ P. Moreover, the distribution
of agents throughout the available strategies in the society and populations is known as the social state and the
population state denoted by x ∈ RN+ , and xp ∈ RN

p

+ , respectively. The set of possible social states is given by a simplex
denoted by ∆, which is a constant set, i.e., ∆ = {x ∈ RN+ ∶ ∑i∈S xi =m} , where m ∈ R+ is the constant mass of agents
in the society. Similarly, the set of possible states of the population p ∈ P is given by a non-constant simplex defined
as ∆p = {xp ∈ RN

p

+ ∶ ∑i∈Sp xi =m
p} , where mp ∈ R+ corresponds to the mass of agents in the population p ∈ P.

Furthermore, there is a relationship between the social states and the population states given by

xi =
1

G(i)
∑
p∈Pi

xpi . (1)

Notice that if it is considered that xpi = 0 for all i ∉ Vp, then (1) can be written as

xi =
1

G(i)
∑
p∈P

xpi . (2)

The fitness functions take a social or population state, and return the payoff that a proportion of agents playing a
certain strategy receives. Let Fi ∶ ∆↦ R be the mapping of the fitness function for the proportion of agents playing
the strategy i ∈ S, and F pi ∶ ∆

p ↦ R be the mapping of the fitness function for the proportion of agents playing the
strategy i ∈ Sp in the population p ∈ P. The fitness corresponding to a strategy i ∈ S is the same as the fitness for a
strategy j ∈ Sp for all p ∈ P if i = j. Consequently, for all i ∈ Sp and for all p ∈ Pi,

Fi(x) = F
p
i (x

p
), if xi = x

p
i . (3)

The vector of the fitness functions for a society is given by F = [F1 . . . FN ]⊺ ∈ RN . The social average fitness
is denoted by F̄ , where F̄ = (x⊺F)/m. Similarly, the vector of fitness functions for a population p ∈ P is given by

Fp ∈ RN
p

, whose fitness functions are associated to the strategies Sp. The average fitness for a population p ∈ P is
denoted by F̄ p = (xp⊺Fp)/mp. There is a relationship between the population masses and the social mass given by

m = ∑
p∈P

mp
−∑
i∈S

(G(i) − 1)xi. (4)

Remark 1 The relationship between the population masses and the social mass presented in (4) guarantees that the
simplex ∆ is satisfied, i.e., ∑i∈S xi = m. This required relationship is guaranteed with the mass dynamics presented
in the next section, and the implication of the simplex satisfaction obtained with this relationship is analyzed below
in the section of stability analysis. ♢

The framework of this paper is given by the assumptions stated next.
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Assumption 1 The game F is a full potential game [23], i.e., there is a continuously differentiable function f(x),
known as the potential function, satisfying

∂f(x)

∂xi
= Fi(x), for all i ∈ S, and x ∈ ∆.

Assumption 2 Fitness functions depend only on strategies on which there is connection, i.e., each node requires
only available information given by the graph topology.

Assumption 3 The proportion of agents playing the strategies corresponding to intersection nodes are strictly pos-
itive for all the time, i.e., xpi > 0 for all i ∈ I, and for all p ∈ P (i.e., there is not extinction of the intersection
population). This also implies that population masses are strictly positive, i.e., mp > 0, for all p ∈ P, since the
population masses are composed of proportion of agents within populations.

Assumption 4 The game F is a stable game [8], i.e., the Jacobian matrix DF(x) is negative semi-definite with
respect to the tangent space defined as T∆ = {z ∈ RN ∶ ∑i∈S zi = 0}, i.e.,

z⊺DF(x)z ≤ 0, for all z ∈ T∆, and x ∈ ∆. (5)

The features of the potential function f(x) determine whether the full potential game F is stable, as shown in
Lemma 1.

Lemma 1 If f(x) is twice continuously differentiable and concave, then the full potential game F is a stable game.

PROOF. Since f(x) is concave, the Hessian matrix J =DF(x) is negative semi-definite. Therefore, z⊺DF(x)z ≤ 0
is satisfied. This condition is the same as in (5). ∎

3 Population and mass dynamics

The objective for the society is to converge to a Nash equilibrium 1 of the game F denoted by x∗ ∈ ∆. In order to
achieve this objective, there is a game at each population p ∈ P converging to a Nash equilibrium of the game Fp

denoted by xp∗ ∈ ∆p, and the intersection nodes i ∈ I allow a mass interchange among the different populations.

3.1 Population dynamics

A game is solved for each population with constraints given by the population masses mp, which vary dynamically.
Dynamics associated to each population are shown in (6a). There are M different dynamics of this form, one for
each clique Cp for all p ∈ P, i.e.,

ẋpi = x
p
i (F

p
i − F̄

p
− φp) , for all i ∈ Sp, (6a)

φp = β
⎛

⎝

1

mp ∑
j∈Sp

xpj − 1
⎞

⎠
, (6b)

where β is the convergence factor for the whole system that takes a positive and finite value. Notice that, when
φp = 0 (i.e., xp ∈ ∆p), then (6a) becomes the classical replicator dynamics equation. The use of the convergence
factor is further discussed in Section 7.

1 x∗ ∈ ∆ is a Nash equilibrium if each used strategy entails the maximum benefit for the proportion of agents selecting it,
i.e., the set of Nash equilibria is given by {x∗ ∈ ∆ ∶ x∗i > 0⇒ Fi(x∗) ≥ Fj(x∗)}, for all i, j ∈ S [23].
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3.2 Mass dynamics

On the other hand, there are as many mass dynamics as intersection nodes in the graph, i.e., one for each i ∈ I. The
dynamics for population masses mp are given by

ṁp
i =m

p
i (xi − x

p
i − ψi) , for all p ∈ Pi, (7a)

ψi = β
⎛

⎝

1

κi + (G(i) − 1)xi
∑
q∈Pi

mq
i

∣Iq ∣
− 1

⎞

⎠
, (7b)

where κi ∈ R+ is a distribution of the social mass m. Then, it should be satisfied that

∑
i∈I
κi =m. (8)

Equation (7a) describes the movements of agents among populations through intersection nodes, and the term β
in (7b) is the convergence factor of the system. There might be alternative posibilities in the selection of the mass
dynamics (7). However, the requirements that should be satisfied are: i) the dynamics satisfy the communication
constraints established by the graph G, and ii) dynamics converge to the equilibrium point given by the following
equality:

κi + (G(i) − 1)x∗i = ∑
q∈P

mq
i
∗

∣Iq ∣
. (9)

Notice that ∑q∈Pi
{mq

i /∣I
q ∣} = ∑q∈P {mq

i /∣I
q ∣} since mq

i = 0, for all i ∉ Vq.

In the general case, the selection of the κi for all i ∈ I is not a trivial problem. This selection is discussed in detail
in Section 6, and the selection of κi is shown for an example in which the intersection nodes do not form a complete
graph within the social topology.

There is a relationship between mp
i , for all i ∈ Ip, and the population masses mp given by

mp
=

1

∣Ip∣
∑
i∈Ip

mp
i , for all p ∈ P. (10)

For the mass dynamics at intersection nodes in (7a), the vector of masses and the vector of states associated to an

intersection node i ∈ I are defined next. The masses vector is denoted by mi = [mp1
i . . . m

pG(i)
i ]⊺ ∈ RG(i), where

p1, . . . , pG(i) ∈ Pi; and the vector of population states is xi = [xp1i . . . x
pG(i)
i ]⊺ ∈ RG(i), where p1, . . . , pG(i) ∈ Pi;

both vectors mi, and xi for all i ∈ I. Notice that, mi ≠mi, and xi ≠ xi.

In order to illustrate the structure of the methodology and the interaction between the population dynamics and
the mass dynamics, consider the social topology given by the graph G = (V,E), where V = {1,2,3,4,5}, and E =

{{1,2},{1,3},{2,3},{3,4},{3,5},{4,5}}. For this society, there are two populations and only one intersection node.
consequently, I1 = I2 = I = {3}. The structure for this problem is shown in Figure 2.

3.3 Population game without social mass constraint

Now, suppose the case in which it is desired to achieve a Nash equilibrium, but without imposing a social mass, i.e.,
there is not limitation in the growth of agents within the society. Notice that, since it is not necessary to satisfy a
determined social mass, then (9) is not longer required. Consequently, the term ψi in (7a) is not necessary. Then,
the mass dynamics are changed and rewritten as follows:

ṁp
i =m

p
i (xi − x

p
i ) , for all p ∈ Pi. (11)

Besides, even though ψi is not present, the equilibrium m∗
i still implies that xi = x

p
i for all p ∈ Pi and i ∈ I. Also,

the whole system still converges to a Nash equilibrium since the population dynamics are the same. However, the
social mass m and the average fitness F̄ take arbitrary values at equilibrium.
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Fig. 2. The methodology structure with two populations and one mass dynamics.

The dynamical system can be forced to converge to a Nash equilibrium x∗ such that F(x∗) = ∇f(x∗) converges to
a desired value Fi(r) for an i ∈ I, where r is a known value (e.g., a reference). Modifying the relationship between
the states in (2) by adding the reference r, the following new relationship is obtained:

xi =
1

G(i) + 1

⎛

⎝
∑
p∈P

xpi + r
⎞

⎠
,

where xpi = 0, if i ∉ Vp. Using this modification, by (11), xi tends to r. This makes F̄ to converge to the desired value
Fi(r), for only one i ∈ I.

Remark 2 In case that r is not easily found for any i ∈ I, it is possible to establish a known decreasing auxiliary
function denoted by F̃N+1(xN+1), where xN+1 is an auxiliary intersection node that is not part of the optimization

problem. Reference r is known, so that F̃ (r) is the desired value for the average fitness. The addition of a new
variable does not affect the solution, but forces trajectories towards a desired value. ♢

4 Stability analysis

It is necessary to show that the solution of the distributed system with population dynamics (6a), and mass dynamics
(7a) at intersection nodes, implies the solution of the social game (i.e., the global problem).

Proposition 2 If Assumption 3 is satisfied, the population dynamics (6a) are in equilibrium (xp∗ ∈ ∆p, for all p ∈
P), and the mass dynamics (7a) are in equilibrium (m∗

i , for all i ∈ I); then, the society is in equilibrium, i.e.,
x∗ ∈ ∆.

PROOF. The equilibrium xp∗ ∈ ∆p of the population dynamics (6a), for all p ∈ P, implies that

i) φp(xp∗) = 0, and,
ii) F pi (x

p∗) = F̄ p, for all i ∈ Sp, and p ∈ P.

The equilibrium m∗
i of the mass dynamics (7a), for all i ∈ I, implies that

i) ψi(x
∗
i ,m

∗
i ) = 0 since (9) is forced, and,

ii) x∗i = x
p
i
∗

for all p ∈ Pi.

Then, for all i ∈ I, x∗i = xsi
∗
= xki

∗
, for all s, k ∈ Pi. By (3) Fi(x

s∗) = Fi(x
k∗) = Fi(x

∗). Moreover, Fi(x
s∗) =

F̄ s(xr∗) = Fi(xk
∗
) = F̄ k(xk

∗
), for all s, k ∈ P and i ∈ I. Consequently, all population average fitnesses are equal,
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then Fi(x
∗) = Fj(x∗) = F̄ (x∗) for all i, j ∈ S. Additionally, m∗

i for all i ∈ I satisfies (9). Then,

∑
i∈I

(κi + (G(i) − 1)x∗i ) =∑
i∈I
∑
p∈P

mp
i

∣Ip∣
.

By (10), and using the fact that mp
i = 0, if i ∉ Ip

∑
i∈I
κi +∑

i∈I
(G(i) − 1)x∗i = ∑

p∈P
mp.

For a node i ∉ I, G(i) = 1, and by (8)

m +∑
i∈S

(G(i) − 1)x∗i = ∑
p∈P

mp,

since xp∗ ∈ ∆p, and owing that xpi = 0, for all i ∉ Vp

m +∑
i∈S

(G(i) − 1)x∗i = ∑
p∈P

∑
i∈Sp

xpi
∗
,

= ∑
p∈P

∑
i∈S

xpi
∗
.

Finally, by (2),

m +∑
i∈S

(G(i) − 1)x∗i =∑
i∈S

G(i)x∗i ,

m =∑
i∈S

x∗i .

Then x∗ ∈ ∆ completes the proof. ∎

Next, it is shown that the equilibrium points corresponding to the population dynamics and the mass dynamics are
asymptotically stable. Then, the population and mass dynamics will converge to a solution under the conditions set
in Theorem 1.

Theorem 1 If F is a stable game, then there exists a β such that the equilibrium point xp∗ ∈ ∆p of the population
dynamics (6a), for all p ∈ P, and the equilibrium point mi

∗ of the mass dynamics (7a), for all i ∈ I, are asymptotically
stable.

PROOF. Consider the Lyapunov function

V (xp,mi) =∑
p∈P

∑
i∈Sp

(xpi − x
p
i
∗
(1 + ln(

xpi
xpi

∗ ))) +∑
i∈I

∑
p∈Pi

(mp
i −m

p
i
∗
(1 + ln(

mp
i

mp
i
∗ ))), (12)

which is convex for non-negative proportion of agents and masses, i.e., xp ∈ RN
p

+ , for all p ∈ P, and mi ∈ RG(i)
+ , for

all i ∈ I. Moreover,

● V (xp∗,mi
∗) = 0,

● V (xp,mi) > 0 if xp ≠ xp∗ or mi ≠ mi
∗,
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and its derivative is given as

V̇ (xp,mi) = ∑
p∈P

∑
i∈Sp

(1 −
xpi

∗

xpi
) ẋpi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V1

+∑
i∈I

∑
p∈Pi

(1 −
mp
i
∗

mp
i

) ṁp
i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
V2

.

Consider the vector Ii = [ 1
∣Ip1 ∣ . . . 1

∣IpG(i) ∣]
⊺
∈ RG(i), where p1, . . . , pG(i) ∈ Pi, and i ∈ I; and the change of variable

κ̃i = κi + (G(i) − 1)xi, where κ̃i > 0. Then,

V̇ (xp,mi) =V1 + V2,

where

V1 =∑
p∈P

{(xp − xp
∗
)
⊺
(Fp(xp) −

1

mp
1Npxp

⊺
Fp (xp) −

β

mp
1Npxp

⊺
1Np + 1Npβ)},

V2 =∑
i∈I

{(mi −m∗
i )

⊺
(1G(i)x

⊺
i 1G(i)

1

G(i)
− xi − 1G(i)m

⊺
i Ii

β

κ̃i
+ 1G(i)β)}.

Since it is possible that in a transitory event xp ∉ ∆p, then we consider that xp⊺1Np =mp + ε. The parameter ε could
be either positive or negative depending on xp. Moreover, it is known that xp∗ ∈ ∆p, then xp∗⊺1Np =mp.

In the same way, it is possible that, in a transitory event, mi does not satisfy the condition in (9) (i.e., m⊺
i Ii ≠ κ̃i).

Then, m⊺
i Ii = κ̃i + γ, where γ could be either positive or negative depending on the condition in (9). Finally, since

∣Ip∣ ≥ 1, for all p ∈ P,

κ̃i + γ = m⊺
i Ii

= ∑
p∈P

mp
i

∣Ip∣

≤ ∑
p∈P

mp
i

= m⊺
i 1G(i)

= κ̃i + γ + θ,

where θ ≥ 0. Replacing xp⊺1Np , xp∗⊺1Np , m⊺
i Ii, and m⊺

i 1G(i). Then, V̇ (xp,mi) is written as

V̇ (xp,mi) =∑
p∈P

{(1 −
mp + ε

mp
)xp

⊺
Fp (xp) − β

ε2

mp
+ (xp − xp

∗
)
⊺
Fp (xp)} +∑

i∈I
{

γ

G(i)
x⊺i 1G(i) + (m∗

i −mi)
⊺xi − β

γ2

κ̃i
}.

(13)

There are some cases to analyze:

i) ε = 0 and γ = 0. Then V̇ (xp,mi) = ∑p∈P (xp − xp∗)⊺ Fp (xp)+∑i∈I (m∗
i −mi)

⊺xi. The first term is negative since
F(xp) is a stable game. The second term is also negative since all fitness functions have the same decreasing tendency

(e.g., Figure 3 shows a geometric notion with two population with an intersection). Therefore, V̇ (xp,mi) ≤ 0.

ii) In all other cases, there exists a β such that V̇ (xp,mi) ≤ 0. For the case ε ≠ 0 and γ ≠ 0, β is given by

β ≥
1

( ∑
p∈P

ε2

mp + ∑
i∈I

γ2

κ̃i
)

⎧⎪⎪
⎨
⎪⎪⎩

∑
p∈P

{(1 −
mp + ε

mp
)xp

⊺
Fp (xp) + (xp − xp

∗
)
⊺
Fp (xp)} +∑

i∈I
{

γ

G(i)
x⊺i 1G(i) + (m∗

i −mi)
⊺xi}

⎫⎪⎪
⎬
⎪⎪⎭

.
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m2
i
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m∗
i

mi

x∗
i = {x1i

∗
, x2i

∗}

x∗
i = {x1i

∗
, x2i

∗}

Fig. 3. Geometric notion for the masses and the states in an intersection node, where G(i) = 2 with i ∈ I.

This bound determines the magnitude of the convergence factor such that the trajectories are forced to remain into
the feasible region. Notice that, when the population states are near the feasible region (i.e., ε → 0, and γ → 0), the
convergence factor is not longer required (i.e., β can get any positive value).

In (13), the equality V̇ (xp,mi) = 0 holds when xp = xp∗ and mi = m∗
i (Case i). Applying LaSalle’s invariance princi-

ple, every solution starting in xp(0) ∈ RN
p

+ and mi(0) ∈ RG(i)
+ approaches to xp∗ and m∗

i as t→∞. ∎

Remark 3 Proof of Theorem 1 also shows that the feasible region is attractive, i.e., if disturbances affecting the
system make the trajectories to leave the feasible region, then the distributed system composed of population and mass
dynamics forces trajectories to converge to a feasible solution. ♢

When there is a population game without a social mass constraint, both the mass dynamics and the relationship
between states change. Then, it is necessary to show stability for the new dynamical system.

Theorem 2 If F is a stable game, then there exists a β such that the equilibrium xp∗ of the population dynamics
(6a) for all p ∈ P, and the equilibrium mi

∗ of the mass dynamics (11) for all i ∈ I is asymptotically stable.

PROOF. For this proof, the Lyapunov function in (12) is used. Moreover, a change of variable is made given by
x̃i = 1G(i)[x⊺i r]1[G(i)+1] 1

G(i)+1 . Then,

V̇ (xp,mi) =∑
p∈P

{(1 −
mp + ε

mp
)xp

⊺
Fp (xp) − β

ε2

mp
+ (xp − xp

∗
)
⊺
Fp (xp)} +∑

i∈I
{(m∗

i −mi)
⊺
(xi − x̃i)},

where V̇ (xp,mi) ≤ 0 when ε = 0. There exists a β for ε ≠ 0, such that V̇ (xp,mi) ≤ 0, given by

β ≥
1

∑
p∈P

ε2

mp

⎧⎪⎪
⎨
⎪⎪⎩

∑
p∈P

{(1 −
mp + ε

mp
)xp

⊺
Fp (xp) + (xp − xp

∗
)
⊺
Fp (xp)} +∑

i∈I
{(m∗

i −mi)
⊺
(xi − x̃i)}

⎫⎪⎪
⎬
⎪⎪⎭

.

This bound determines the magnitude of the convergence factor such that the trajectories are forced to remain into
the feasible region. Notice that, when the population states are near the feasible region (i.e., ε→ 0), the convergence
factor is not longer required (i.e., β can get any positive value). ∎

5 Changes in the graph

Network systems in engineering are constantly growing. On the other hand, some systems isolate a segment of the
network under some specific conditions (e.g., an operation fault), and this might suppose a reduction in the graph.
When any of these two situations occur, the controller should be re-designed in order to fit the new system conditions.
The method proposed in this paper allows to reduce the number of changes in the original design when changes in
the graph are made. It is necessary to highlight that the modifications over the graph should not disconnect the
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graph, i.e., the removal of an intersection node is not allowed in an optimal set of cliques since this would disconnect
the social topology graph according to Proposition 1 (two cliques only share one intersection node). In order to
illustrate this property of the methodology, we analyze different cases of addition and/or removal of vertices and/or
edges to/from the original graph (i.e., the graph that has been previously used for the control design). We discuss
different possible situations, and Figure 4 shows a simple example for each one of them.

i
e ∈ V+

i

e ∈ V+

e ∈ V+ e ∈ V+

a) b) c) d)

e ∈ V−
e ∈ V−

E+
E+

e) f) g) h)

E+

E−

E−

i) j) k)

Fig. 4. Different possible changes over the graph: a) addition of a node, clique, and intersection; b) addition of a node, and
clique; c) addition of a node to an existing clique; d) addition of a node with more than one edge (redundant links); e) removal
of a node making a clique smaller; f) removal of a node disappearing both a clique and an intersection; g) addition of an edge
merging two cliques; h) addition of an edge that does not modify the set of cliques; i) addition of more than one edge merging
cliques; j) removal of an edge dividing a clique into more cliques and without adding intersection nodes; k) removal of more
than one edge dividing a clique and including intersection nodes.

5.1 Addition of nodes

Let V+ be the set of new nodes added to the graph, i.e., the set of vertices is modified to be V ⋃V+. Suppose that the
addition of the new nodes V+ are connected to a subset of already existing nodes denoted by V̂ ⊂ V. The addition of
V+ is made throughout the set of edges denoted by E+ = {(i, j) ∶ j ∈ V+, i ∈ V̂ ⊆ V}, i.e., the set of edges is modified
to be E ⋃E+. Without loss of generality, let ∣V+∣ = 1, i.e., V+ = {e}. At this point, there are different possible cases

to analyze, which depend on the cardinality of the set of new edges added to the graph, denoted by ∣V̂ ∣.

5.1.1 Addition of e ∈ V+ throughout one edge (∣V̂ ∣ = 1)

In this case, the addition of the node e ∈ V+ implies necessarily the addition of a new clique since it is included
throughout only one edge. It is not possible that the node e ∈ V+ belongs to an already existing clique that is at least
composed of two nodes. Then, there must be an addition of population dynamics. On the other hand, if V̂ ⋂I = ∅,
then the addition of the node e ∈ V+ implies that a node i ∈ V̂ becomes an intersection node (see Figure 4 a)).

Consequently, this implies an addition of mass dynamics. In contrast, if V̂ ⋂I ≠ ∅, then the added edge E+ = {(e, i)}
connects the new node e ∈ V+ with an intersection node i ∈ I, and it is not necessary to add new mass dynamics (see
Figure 4 b)).

5.1.2 Addition of e ∈ V+ throughout more than one edge (∣V̂ ∣ > 1)

When the new node e ∈ V+ is added throughout more than one edge, the addition does not necessarily imply the
addition of a clique (otherwise, it implies a modification of an existing dynamics). In the case that Vp ⊆ V̂, for any
p ∈ P, then the node e ∈ V+ becomes part of the clique Cp and the dynamics associated to this population must
be extended (see Figure 4 c)). Moreover, this case does not modify the mass dynamics in any sense. In contrast, if
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Vp /⊆ V̂, then the addition of e ∈ V+ must be treated as in Sub-section 5.1.1 and with ∣V̂ ∣ − 1 redundant links (see
Figure 4 d)).

5.2 Removal of nodes

Let V− be the set of removed nodes from the graph, i.e., the set of vertices is modified to be V/V−. The removal of
nodes V− implies the removal of all the edges associated to them, given by E− = {(i, j) ∶ j ∈ V−, i ∈ V}, i.e., the set of
edges is modified to be E/E−. Without loss of generality, let ∣V−∣ = 1, i.e., V− = {e}. Notice that it is not possible to
remove an intersection node since it would violate the assumption that G is a connected graph, i.e., e ∉ I. Finally,
the removal of a node e ∈ V− implies the modification of the dynamics associated to the population p ∈ Pe (see Figure
4 e)).

Furthermore, suppose that there is a clique Cp composed of two nodes Vp = {i, e} and only one intersection node
denoted by i ∈ Ip. When the node e is removed from the set of nodes Vp, the clique Cp also disappears and the node
i ∈ V is not longer an intersection node, then one mass dynamics also disappear (see Figure 4 f)). Otherwise, the
removal of nodes cannot affect mass dynamics.

5.3 Addition of edges

First, due to the fact that the set of nodes remains the same as the set of already existing edges, then the addition
of edges does not imply a change in the dynamics already designed. However, the addition of edges might allow
the reduction of cliques. Consequently, the addition of edges might allow the reduction of the number of population
dynamics. Moreover, the mentioned reduction is not required for the system to keep converging towards the solution.

Let E+ be the set of edges added to the graph, i.e., the set of edges is modified to be E ⋃E+. In general, the addition
of edges cannot imply the addition of cliques, but could imply the reduction of the optimal set of cliques, i.e., the
addition of edges might merge different cliques into one complete graph.

5.3.1 Addition of one edge (∣E+∣ = 1)

The edge is characterized by E+ = {(i, j) ∶ i ∈ Vp, j ∈ Vq}, where p, q ∈ P. Notice that i and j cannot belong to the
same clique (each clique is a complete graph). If for those two populations p ≠ q, Ip⋂Iq ≠ ∅, and ∣Vp∣ = ∣Vq ∣ = 2,
then there is a reduction of cliques. The new clique is given by the set of vertices Vp⋃Vq and the set of edges
Ep⋃E

q
⋃E

+ (see Figure 4 g)). This situation implies the modification of an intersection node, and the modification
of the population dynamics associated to populations p, q ∈ P into unified population dynamics.

Moreover, this case is a quite particular one that requires the existence of two cliques of two nodes each one. Any
different case for the added edge E+ is a redundant link and does not imply any modification, neither over the
population dynamics nor over the mass dynamics. For instance, if there are not cliques composed of only two nodes,
any addition of an edge might be ignored straightforward as a redundant link (see Figure 4 h)).

5.3.2 Addition of more one edge (∣E+∣ > 1)

When adding more than one edge, it is possible to obtain a reduction of cliques within the graph that describes the
social topology, i.e., it is possible that two or more populations merge into only one population. In order to analyze
the addition of more than one edge, consider the set of new edges denoted by E+ = {(i, j) ∶ i, j ∈ V̂}. For simplicity,
and without loss of generality, suppose that two cliques Cp, and Cq, corresponding to populations p, q ∈ P, share an
intersection node e ∈ I, i.e., e ∈ (Ip⋂I

q). Then, the only possibility of having a reduction within a clique is that the

addition of edges is given by E+ = {(i, j), for all i ∈ V̂p, and j ∈ V̂q}, where V̂p = Vp/{e}, and V̂q = Vq/{e}. This fact
implies that cliques Cp, and Cq become the same clique whose set of vertices is given by Vp⋃Vq and whose set of
edges is given by Ep⋃Eq⋃E+ (see Figure 4 i)).

5.4 Removal of edges

The removal of edges in an optimal set of cliques necessarily implies the addition of the number of cliques, i.e., an
edge is removed from a complete graph, making it split into more sub-complete graphs composing new and smaller
cliques. Moreover, the removal of edges might cause that a node becomes an intersection node.
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Let E− = {(i, j) ∶ i, j ∈ V̂ ⊂ Vp} be the set of edges that are removed from a clique associated to a population p ∈ P.
Notice that the less amount of edges implies the splitting of the clique into two cliques, and several edges might
become redundant (see Figure 4 j)). On the other hand, the complete graph for the population p ∈ P is composed of
(∣Vp∣(∣Vp∣ − 1))/2 edges. Consequently, the larger amount of edges that might be removed from a clique is given by
(∣Vp∣2 − 3∣Vp∣+ 2)/2, generating ∣Vp∣− 2 extra populations, and then intersection nodes appear in the social topology,
i.e., one population dynamics should be modified, ∣Vp∣−2 extra population dynamics should be included, and ∣Vp∣−2
mass dynamics should be added (see Figure 4 k)).

6 Optimization problems with constraints

One of the main features of full potential games is that their Nash equilibrium points coincide with the extreme
points of the corresponding potential function, i.e., Nash equilibria satisfy the KKT first-order conditions [23].
Additionally, if the potential function is concave, potential games are stable and an optimization problem can be
solved in a distributed way by using the population dynamics and the mass dynamics shown in Section 3. Some
optimization problem forms are set in this section, and illustrative examples are solved with the population and
mass dynamics presented previously. First, we consider the classical optimization problem of a population game, i.e.,
an optimization problem with a constraint given by the positiveness of the proportion of agents and the constraint
given by the social mass. Afterwards, we consider an optimization problem of a population game without a constraint
given by the social mass. The last mentioned optimization problem allows to illustrate how trajectories of fitness
functions can be forced to converge to a desired value. Finally, the fact that trajectories may be forced towards a
desired value allows to extend the consideration of constraints.

6.1 Optimization problem with social mass constraint

The general optimization problem related to population dynamics with full potential games is presented next. This
problem is a resource allocation problem, where m is the total resource amount. The problem is stated as

maximize
x

f(x)

subject to
N

∑
i=1
xi =m, and x ∈ RN+ ,

where f ∶ RN+ ↦ R and m ∈ R+. It is assumed that f is continuously differentiable and concave. Then, there is a full
potential stable game given by F(x) = ∇f(x).

The first constraint in this optimization problem determines the set of social states x ∈ ∆, and the second constraint
is satisfied with population dynamics since the states are defined to be positive. Constraints about information
availability are given by a graph, which determines possible dependency among populations.

Example 6.1.1 An academic example for this optimization problem is proposed as

maximize
x

− x⊺W x +w⊺x

subject to
20

∑
i=1
xi = 250, and x ∈ R20

+ ,

where W ∈ R20×20 is a sparse matrix with unitary diagonal and the entry [W]i,j = 1 for (i, j) = (3,13), and w ∈ R20,
w = [2 4 6 8 10 ⋯ 30 32 34 36 38 40]⊺. For this optimization problem, there are limitations in
information dependency given by the graph shown in Figure 5 omitting the nodes named µ1, µ2, and r. The
intersection nodes form a complete graph for which ∑i∈I κi =m is guaranteed.

Convergence results are shown in Figures 7a) and 7c). It can be seen that the constraint related to social mass is
satisfied, even when population masses vary over time. Also, since dynamics are defined only for positive variables
then the additional constraint related to positiveness of the decision variable is satisfied as well. �
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Fig. 5. Social topology with six populations and two intersection nodes.

Example 6.1.2 Consider the optimization problem given by

maximize
x

− x⊺ x +w⊺x

subject to
9

∑
i=1
xi = 100, and x ∈ R9

+,

where w ∈ R9, w = [20 4 6 8 10 12 14 16 18]⊺. Suppose that, for this optimization problem, there are
limitations over the information dependency given by the graph shown in Figure 6. Notice that the intersection nodes
do not form a complete graph. Consequently, an auxiliary distributed population dynamics are proposed with the
constraint ∑i∈I κi = m, equivalent to a simplex for a game including only intersection nodes [22]. Fitness functions
do not vary for this auxiliary distributed problem.

1
3

8

9

2 4

5

6

7

Fig. 6. Social topology with four populations and three intersection nodes.

The results of convergence are shown in Figures 7b) and 7d). It can be seen that the constraints related to social
mass and positiveness of decision variables are satisfied. �

6.2 Optimization problems without social mass constraint

A less restrictive optimization problem is studied. This problem only demands the positiveness of optimization
variables. From a mass dynamics perspective, it implies a variation of the social mass arbitrarily. The problem is
stated as follows:

maximize
x

f(x)

subject to x ∈ RN+ ,

where f ∶ RN+ ↦ R, and f is continuously differentiable and concave. Also, it is supposed that the solution point of
this problem is an interior point.

The solution for the optimization problem with one constraint is found by F(x) = ∇f(x) = 0, since f(x) is concave
and by the fact that it is known that the maximum point is an interior point. Therefore, the desired value for the
average fitness is Fi(r) = 0, and it is enough to find the correct value for reference r and any intersection i ∈ I.

Example 6.2.1 An academic example for this optimization problem is proposed as

maximize
x

− x⊺W x +w⊺x

subject to x ∈ R20
+ ,
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Fig. 7. Evolution of states and fitness functions.

where W ∈ R20×20 is a sparse matrix with unitary diagonal and entries [W]i,j = 1 for (i, j) = {(3,13), (9,20)},
and w ∈ R20, w = [2 4 6 8 10 ⋯ 30 32 34 36 38 40]⊺. For this optimization problem, there are
limitations over the information dependency given by the graph shown in Figure 5, omitting the nodes named µ1,
µ2, and r.

Convergence results are shown in Figures 8a) and 8b), where it can be seen that the constraints related to positiveness
are satisfied. �

6.3 Optimization problems with multiple constraints over agents proportions

Suppose that there is a strategic interaction with more than one constraint, e.g., different constraints over the
proportion of agents. It is desired that the total amount of certain groups of proportions of agents are constant. This
problem is stated as

maximize
x

f(x)

subject to Hx = h, and x ∈ RN+ , (14)

where x ∈ RN+ , f ∶ RN+ ↦ R, and f is concave and continuously differentiable. Moreover, H ∈ RL×N since there are L
constraints and N decision variables, and h ∈ RL. For this optimization problem, µ is the Lagrange multiplier vector.
The Lagrange function l ∶ RN ×RL ↦ R is

l(x, µ) = f(x) + µ⊺(Hx − h). (15)
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Fig. 8. Evolution of states and fitness functions.

Moreover, ∇xl(x, µ) = ∇f(x) + H⊺µ, and −∇µl(x, µ) = −Hx + h. The Lagrange condition is used to find possible
extreme points in the objective function, in which ∇xl(x, µ) = 0, ∇µl(x, µ) = 0.

Consequently, fitness functions for each node are chosen to be defined as F(x) = ∇xl(x, µ), and F(µ) = ∇µl(x, µ).
This problem is solved by using a reference r as it was explained in Sub-section 3.3 in order to force a convergence
value for the fitness functions associated to the social states and the Lagrange multipliers. For both F(x) and F(µ),
a fictitious function can be set as explained in Remark 2. In order to use the population and the mass dynamics, it
is necessary that the games are stable according to Assumption 3.

Lemma 2 If f(x) is twice continuously differentiable and concave, and the constraints have the form Hx = h, then
the games F(x) = ∇xl(x, µ) and F(µ) = ∇µl(x, µ) are stable.

PROOF. The Lagrangian function is defined as in (15), and the fitness functions are given by F(x) = ∇f(x)+H⊺µ,
F(µ) = −Hx + h.

The derivative of F(x) with respect to x is DxF(x) = ∇2f(x), that is the Hessian matrix J ≤ 0 since f(x) is concave.
The derivative of F(µ) with respect to µ is DµF(µ) = 0. Therefore F(x) and F(µ) are stable games. ∎

Remark 4 Notice that the optimization problems with constraints of the form Px ≤ p can be written as the form
Hx = h by using slack variables. ♢

Example 6.3.1 An academic example for this optimization problem is proposed as follows:

maximize
x

− x⊺ x +w⊺x

subject to x7 + x8 + x9 + x20 = x⊺c11[4] = 25

x18 + x19 + x20 = x⊺c21[3] = 15

x ∈ R20
+ ,

where w ∈ R20, w = [11 13 12 9 6 7 8 15 14 9.5 10.5 11.5 12.5 18 17 16 5 20 4 2]⊺,
xc1 = [x7 x8 x9 x20]

⊺, and xc2 = [x18 x19 x20]
⊺. For this optimization problem, there are limitations in

information dependency given by the graph shown in Figure 5 including the nodes named µ1 and µ2, which are the
Lagrange multipliers associated to the constraints.

The convergence of the population states towards the solution can be seen in Figure 9a), and the convergence of
fitness functions is shown in Figure 9b). Results show that there is a transitory event in which trajectories do not
belong to the feasible region. However, the population and the mass dynamics force the trajectories to converge to
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the solution despite this fact. The convergence to the feasible region could be faster by increasing the convergence
factor β. �
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Fig. 9. Evolution of states and fitness functions.

7 Performance against disturbances and the convergence factor

As it has been shown in Section 3, the convergence factor β forces trajectories towards the feasible region. This fact
makes the proposed methodology robust against disturbances. In order to illustrate this feature, Example 6.1.1 is
solved under different conditions. First, the initial condition does not belong to the feasible region (i.e., x(0) ∉ ∆).
Additionally, as a second factor affecting the evolution of states, a hard disturbance is applied to a node in the
graph shown in Figure 5. The disturbance can be applied to any arbitrary node (or to more than one node (state)).
However, disturbances in an intersection node have more repercussions over the total society, i.e., the disturbance
over the proportion of agents of an intersection node i ∈ I affects all the proportion of agents xpj for all j ∈ Sp, and
for all the populations p ∈ Pi, and consequently all the trajectories leave the simplex sets ∆p for all p ∈ Pi.
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Fig. 8. Evolution of states and fitness functions.

Additionally, as a second factor a↵ecting the evolution of states, a hard disturbance is applied to a node in the graph

shown in Figure 4. The disturbance can be applied to any arbitrary node (or to more than one node). However, the

intersection node 10 2 V is selected such that many other nodes are a↵ected in the graph, representing this a more

critical situation. Figure 9 shows the disturbance d with an amplitude of about 15 applied to the intersection node

during 0.5 s.
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Disturbance

Time [sec ]

d

Fig. 9. Abrupt disturbance in the node 10 2 V (i.e., a↵ecting state x10).

Figure 10 shows the evolution of states and fitness functions for two di↵erent convergence factors. Figures 10a)

and 10c) show results for a �1 = 10. It can be seen that the trajectories of states take around 1.5 s to satisfy the

constraint, then, trajectories get out the feasible region because of the disturbance applied and trajectories return

to feasible region at t = 3.5 s. On the other hand, Figures 10b) and 10d) show results for a larger convergence factor

�2 = 100�1. It can be seen a fast convergence to the feasible region in the beginning of states evolution, and then

after disturbance, almost an immediate return to feasible region is newly obtained. Finally, it is necessary to point

out that this behavior against disturbances occurs for any of the optimization problems presented in Section 4.2.

19

time [s]

Fig. 10. Abrupt disturbance at intersection node 10 ∈ I (i.e., affecting state x10, and all the proportion within the populations
p ∈ P10).

In this case, the intersection node 10 ∈ V is selected such that many other nodes are affected in the graph because
of the direct connectivity with it, representing disturbances on 10 ∈ V a critical situation. Figure 10 shows the
disturbance d ∈ R with an amplitude of about 15 applied to the intersection node. That disturbance is applied to
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the proportion of agents corresponding to the node, i.e., xp10, for all p ∈ P10. Then, d affects the fitness functions
Fp, and it also affects the evolution of the population masses mp, for all p ∈ P10. Moreover, the disturbance pushes
the proportion of agents trajectories away from the feasible region since it affects the total sum of proportions. We
illustrate that the elements φp in (6a) for all p ∈ P, and ψi in (7a) for all i ∈ I, maintain the proportion of agents
evolving to the corresponding feasible region.

Figure 11 shows the evolution of the states and the fitness functions for two different values of β. Figure 11a) and
11c) show results for β = 10. It can be seen that the trajectories of states take around 1.5 s to satisfy the constraint,
then, trajectories get out the feasible region because of the applied disturbance and trajectories return to feasible
region at t = 3.5 s. On the other hand, Figures 11b) and 11d) show results for a larger convergence factor β = 1000.
It can be seen a fast convergence to the feasible region at the beginning of the states evolution, and then after
disturbance, almost an immediate evolution towards the feasible region is newly obtained. Finally, it is necessary to
point out that this shown behavior against disturbances occurs for any of the optimization problems presented in
Section 6.
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6 Case Study Application: Barcelona Drinking Water Network

The Barcelona DWN, managed by Aguas de Barcelona S.A (AGBAR), supplies drinking water to Barcelona city

and its metropolitan area. The network has a centralized telecontrol system, organized in a two–level architecture.

At the upper level, a supervisory control system, installed at the control center of AGBAR, is in charge of controlling

the whole network by taking into account operational constraints and consumer demands. This upper level provides

the set–points for the lower–level regulatory control loop. The lower level regulates the pressure profile to minimize

losses due to leakage and to provide su�cient water pressure, e.g., for high–rise buildings. For more details of this

system, see [21][22].

The control problem for DWN can be described by a constrained optimization problem, consequently the previously

presented methodology with population dynamics is suitable to be applied to the distributed optimization–based
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8 Case study

In an optimal control design, the control actions are commonly the decision variables. Then, from the point of view
of our proposed approach, the proportion of agents playing each strategy is associated to each control action of the
system. It is guaranteed that the solution obtained with the proposed approach satisfies the established constraints.
However, due to the fact that trajectories of proportion of agents might get out from the feasible region in a transitory
event, it is not convenient to apply these proportions as the control actions in a continuous time. For this reason,
we present the design of a controller based on the population and mass dynamics for a discrete-time system.

The Barcelona Drinking Water Network (BDWN) is a large-scale system managed by Aguas de Barcelona S.A.
(AGBAR). The network is mainly composed of tanks, valves, pumps, drinking water sources, and water demands

[20,21]. The volume at tanks is represented by a state vector denoted by v ∈ RNv+ , the flows through the valves
and pumps are represented by the control actions vector denoted by u ∈ RNx , and the water-demanded flows
are represented by the disturbance vector d ∈ RNd . The corresponding discrete-time model with sampling time
∆t = 1 hour is given by

v(k + 1) =Av(k) +Bu(k) +Bld(k), (16a)

0 =Exu(k) +Edd(k), (16b)

where k ∈ Z+ denotes the discrete time. The difference equation in (16a) decribes the dynamics of the storage
tanks, and (16b) describes the static relations given by the mass balance at the junction nodes. Moreover, 0 is a
column vector of null entries with suitable dimensions, and A,B,Bl,Ex, and Ed are constant matrices with suitable
dimensions.

Remark 5 The evolution of the proportion of agents converging to a solution is given in continuous time, i.e., x(t),
whereas the control action sequence is given in discrete time, i.e., u(k). At each iteration, a population game is solved
to compute the proper control action. Moreover, if the initial condition for the proportion of agents associated to the
control actions is given by x(0) = u(k), then the control action applied to the system in the next iteration is defined
as u(k + 1) ≜ x(∆t) = x∗ of the kth population game (there is a population game at each iteration). Notice that the
population game should converge towards its solution in a time shorter than ∆t (for the presented case study, ∆t = 1
hour, which is more than enough time to converge towards the solution x∗). From now on, the control action u(k)
is denoted by x(k), in order to relate it directly to the proportion of agents in the population game. ♢

The BDWN is shown in Figure 12. The social topology, given by the information network is going to be discussed
later in Section 8.1, has 61 available strategies associated to the control actions. Equation (16b) summarizes the
constraints presented in Table 1. It is also important to point out that the system shown in Figure 12 has 11 nodes
corresponding to the mass-balance constraints and which should not be confused to the edges in the social topology
graph.

Table 1
Node constraints

Node Constraint Node Constraint

1 x1 − x2 − x5 − x6 = 0 7 x25 − x26 + x32 + x34 + x40 − x41 = d15

2 x2 − x3 = d2 8 x39 − x45 + x46 − x47 = d17

3 −x13 + x18 = d5 9 x28 − x35 − x43 + x49 = d16

4 x14 + x15 − x19 − x25 + x26 = d7 10 x43 + x44 + x52 = d20

5 x22 − x30 = d9 11 −x50 − x51 − x52 − x56 − x57 − x58 − x59 − x60 + x61 = d25

6 x31 − x39 − x40 = d14
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Fig. 12. Aggregate model of the Barcelona Drinking Water Network (BDWN), comprised by 17 states, 61 control actions, 25
demands, and 11 mass-balance nodes.

8.1 Partitioning of the network

Partitioning of the BDWN is a problem already studied in [19]. For the BDWN control problem, the proposed
partitioning is determined based on the system mass-balance constraints. As in Section 6, Lagrange-multiplier
vertices are connected to decision variables vertices from which information is needed in order to compute the fitness
functions F(µ). As a criterion for performing the partitioning, it is desired that all the Lagrange multipliers, and the
nodes connected with them, belong to the same clique. In order to formalize this partitioning criterion, let Hj be

the set of all the nodes that are involved in the jth equality constraint of the form (14), where j = 1, . . . , L, e.g., for
the BDWN system, H1 = {1,2,5,6}, and H2 = {2,3}. Furthermore, we consider two sets of nodes for mass-balance
constraints Hi, and Hj . If Hi⋂Hj ≠ ∅, then all the nodes Hi⋃Hj should belong to the same clique.

Based on this idea, it is possible to determine the vertices (strategies) that should belong to the same clique
(population). As an example, consider the set of nodes associated to the constraint given by mass-balance node 9,
i.e.,H9 = {28,35,43,49}, and the set of nodes corresponding to the mass-balance constraint 10, i.e.,H10 = {43,44,52}.
There is a common vertex given by H9⋂H10 = {43}. Now, considering the constraint corresponding to the mass-
balance node 11, i.e., H11 = {50,51,52,56,57,58,59,60,61}, then it is obtained that H10⋂H11 = {52}. Consequently,
there is a clique including all elements involved in mass-balance constraints 9, 10, and 11 from Table 1, i.e., all the
nodes H9⋃H10⋃H11 should belong to the same clique.

On the other hand, there are some vertices that are not associated to any constraint, e.g., the node 4 associated to the
decision variable x4, then 4 ∉Hj for all j = 1, . . . ,11. In these cases, vertices are assigned to the closest clique. Cliques
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are presented in Figure 13, and the nodes of each clique are shown in Table 2. Notice that {H1⋃H2⋃H3⋃H5} ∈ V
1,

{H4⋃H6⋃H7⋃H8} ∈ V
2, and {H9⋃H10⋃H11} ∈ V

3.

Table 2
Partitioning of the network into the three resultant cliques.

Clique Vertices x Involved states v

1 1,2,3,4,5,6,7,8,9,10,11,13,17,18,22,29,30,36,37,38 1,2,3,4,6,7,9,10,11

2 12,14,15,16,19,20,21,23,24,25,26,27,31,32,33,34,39,40,41,45,46,47 4,5,6,7,8,9,10,12,14

3 28,35,42,43,44,48,49,50,51,52,53,54,55,56,57,58,59,60,61 9,10,11,12,13,14,15,16,17
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Fig. 13. Partitioning of the BDWN into three cliques (see Table 2).

8.2 System management criteria

The desired control performance is described by operational control objectives, which are determined by the company
in charge of the management of the network. There are three main objectives, i.e., i) economic operation, ii) safety
operation, and iii) smooth operation. Regarding the economical aspect, there are two costs, one of them associated to
the water cost, and the other one associated to the energy costs to operate the network actuators (mainly pumping
stations). The energy costs vary over time. These mentioned costs are denoted by α1 ∈ RNx , and α2(k) ∈ RNx ,
respectively. The economic operation objective is to minimize both the water production costs and the transportation
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costs given in economic units 2 (e.u.), i.e.,

f1(x(k)) = (α1 + α2(k))
⊺x(k).

Regarding the safety operation, the objective consists in guaranteeing that there is enough stored water to satisfy
the demands within the network, given by a safety volume denoted by vs ∈ RNv . This objective is managed through
the following soft constraint [7]:

v(k) ≥ vs − ξ(k).

Moreover, it is desired that ξ ∈ RNv tends to zero in order to make the tank volume be greater than the safety value.
Consequently, the objective associated to the safety operation is given by

f2(ξ(k)) = ξ(k)⊺ ξ(k).

Finally, as a third objective, it is desired to guarantee a smooth operation of the control devices, i.e., to penalize
the variations of the control actions along the time given by ∆x(k) = x(k) − x(k − 1). This objective consists in
minimizing

f3(x(k)) = ∆x(k)⊺ ∆x(k).

The most important objective is the economical aspect, the second priority within the objectives is the safety
operation, and the less important objective is the smooth operation.

8.3 Control design

In general, the design of a controller by using a population dynamics approach consists in the design of the fitness
functions. In this paper, the design of the controllers with the proposed populations and mass dynamics consists
in developing the statement of an optimization problem into a convenient form. Then, the fitness function can be
established as well as the design of both the population and mass dynamics. In this section, two controllers are
designed by using the proposed approach. First, the cost function is composed of the objectives presented in Section
8.2, and a control-oriented model (COM) is used. The second controller consists in an optimization-based controller
that does not consider a model of the system. With this approach, the behavioral tendency of the volumes with
respect to the inflows is considered, i.e., taking into account that the inflows might induce the increment of tanks
volumes. Finally, due to the fact that the large-scale case study (BDWN) has been controlled with model predictive
control (MPC), reported in different works as in [18–21], then the performance of the designed controllers with
the proposed population and mass dynamics approach is compared with the performance obtained with an MPC
controller.

Moreover, physical constraints for tanks and control actions are considered, i.e., limitations over volumes and flows.
These physical constraints are of the form

vmin ≤ v(k) ≤ vmax, for all k,

xmin ≤ x(k) ≤ xmax, for all k.

8.3.1 Optimal control based on population dynamics using a control-oriented model

The design of a controller based on the proposed population and mass dynamics approach is presented by using
a COM. Let us consider the COM shown in (16). The model may be expressed in terms of the elements at each
population as follows:

vp(k + 1) =Apvp(k) + ∑
q∈P

Bqxq(k) +Bp
l d

p
(k), for all p ∈ P, (17a)

0 =Ep
xx

p
(k) +Ep

dd
p
(k), for all p ∈ P. (17b)

2 These costs are expressed in economic units (e.u.) instead of in the real value (euro) because of confidentiality reasons.
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Then, an optimization problem that minimizes the objectives presented in Section 8.2, and that considers the model
in (17) can be stated as follows:

maximize
xp,ξp

− f(xp(k),ξp(k)) = −γ1(α
p
1 + α

p
2(k))

⊺xp(k) − γ2ξp(k)⊺ ξp(k) − γ3∆xp(k)⊺ ∆xp(k), (18a)

subject to Ep
xx

p
(k) +Ep

dd
p
(k) = 0, (18b)

vpmin ≤ vp(k + 1) ≤ vpmax, (18c)

xpmin ≤ xp(k) ≤ xpmax, (18d)

vp(k + 1) ≥ vps − ξp(k). (18e)

Let Ep(k) = Apvp(k)+∑q∈P, q≠pBqxq(k−1)+Bp
l d

p(k) allow to use a COM. Finally, the whole optimization problem
(18) can be written as follows:

maximize
xp,ξp

−f(xp(k),ξp(k)) = −

⎡
⎢
⎢
⎢
⎢
⎣

xp(k)

ξp(k)

⎤
⎥
⎥
⎥
⎥
⎦

⊺ ⎡
⎢
⎢
⎢
⎢
⎣

γ3INx 0

0 γ2INv

⎤
⎥
⎥
⎥
⎥
⎦
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⎣

2γ3
⎛
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0
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⎠
− γ1
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αp1 + α
p
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⎥
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⊺
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⎣

xp(k)

ξp(k)
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⎥
⎥
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(19a)

− γ3 x(k − 1)⊺x(k − 1)
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xp(k)
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Bp 0
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≤
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⎢
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⎢
⎢
⎣
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−xpmin

⎤
⎥
⎥
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[−Bp −INv
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P3

⎡
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⎣

xp(k)

ξp(k)

⎤
⎥
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≤ Ep
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p3

. (19e)

Consider the variable x̃p(k) = [xp(k)⊺ ξp(k)⊺]⊺. Then, the cost function in the optimization problem (19) has the
form −f(x̃p) = − x̃p⊺Wx̃p +w⊺x̃p − constant, and the constraints have the form Hx̃p = h, and Px̃p ≤ p. Matrices
P and p are composed of matrices P1,P2,P3, and p1,p2,p3, respectively. Then, a quadratic problem of the form
(14) is obtained, and using Remark 4, it is solved with the proposed populations and mass dynamics approach.

8.3.2 Model-free optimal control based on population dynamics

This section presents the design of a controller without considering the model of the system, but just by considering
the fact that the error within a tank (i.e., the difference between the safety value and the current volume) can
be reduced as the control action is increased. In order to design a model-free controller based on the proposed
methodology, it is defined a cost function corresponding to the desired behavior of the system. In this particular
case, a volume error at each tank is considered.

The controller is designed through an optimization problem minimizing economical costs, the volume error with
respect to the safety storage term, and variations in the control actions. These objectives are minimized subject to
constraints of mass balance and physical constraints of actuators. To this end, new variables ṽs ∈ RNx of safety values,
and ṽ ∈ RNx composed of tank volumes, are introduced. Notice that the dimension of the new vectors of volumes
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Table 3
Discrimination of economical costs for different control strategies.

Total Cost in Economical Units (e.u.)

Population Dynamics Approach Model Predictive Control

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Day With COM Model-free Matching COM Mismatching COM

Water Energy Water Energy Water Energy Water Energy

1 37217.03 22414.76 45484.48 18409.34 37915.28 22096.12 44580.44 20222.35

2 30516.06 22322.49 41384.76 18131.81 28352.38 22235.15 35075.95 20277.75

3 30518.46 22322.37 40022.43 18791.73 28400.39 22288.11 35189.99 20276.93

4 30518.49 22322.34 40389.76 18387.35 28330.14 22219.59 35015.71 20301.10

Sum 128770.06 89381.98 167281.43 73720.23 122998.21 88838.97 149862.09 81078.17

Overall costs 218152.04 241001.66 211837.17 230940.23

corresponds to the dimension of the vector of control actions, i.e., ṽs, ṽ,x ∈ RNx . For the case study shown in Figure
12, consider the variables ṽ = [ṽ1 ṽ2 . . . ṽ61]

⊺, ṽs = [ṽs,1 ṽs,2 . . . ṽs,61]
⊺, and x = [x1 x2 . . . x61]

⊺.
The scalar ṽi denotes the volume corresponding to the tank whose inflow is given by xi, and null in case that xi
is not an inflow for any tank. The safety volume ṽs,i corresponds to the safety volume of the tank whose inflow is

given by xi, and null otherwise. Briefly, ṽi = vj , and ṽs,i = vs,j if xi is the inflow of the jth tank, and null if xi is
not an inflow for any tank (e.g., ṽ4 = v1, and ṽ2 = 0). Notice that the constraints over the system states (i.e., tanks
volumes) may not be considered since this approach does not use a COM. The following optimization problem only
depends on measured state values (volumes) and decision variables (control actions):

maximize
xp

− f(xp(k)) = −γ1(α
p
1 + α

p
2(k))

⊺xp(k) − γ2(ṽps − ṽp(k))⊺diag(xp(k)) (ṽps − ṽp(k)) − γ3∆xp(k)⊺ ∆xp(k),

subject to Ep
xx

p
(k) = −Ep

dd
p
(k),

⎡
⎢
⎢
⎢
⎢
⎣

INx

−INx

⎤
⎥
⎥
⎥
⎥
⎦

xp(k) ≤

⎡
⎢
⎢
⎢
⎢
⎣

xpmax

−xpmin

⎤
⎥
⎥
⎥
⎥
⎦

.

Finally, the addition of slack variables may be used to make the problem to have the form (14).

9 Results and discussion

In order to analyze the proposed methodology, four different scenarios are proposed, two of them designed with the
proposed population and mass dynamics approach and two of them by using a centralized MPC approach:

● Scenario 1: consists in a controller based on the proposed population and mass dynamics, and considering a COM.
● Scenario 2: consists in a model-free controller based on the proposed population and mass dynamics.
● Scenario 3: consists in an MPC controller with perfect COM (i.e., the COM equal to the SOM) and with a

prediction horizon of one day Hp = 24.
● Scenario 4: consists in an MPC controller whose COM does not correspond to the SOM (i.e., with a subtle

modification over the COM) and with a prediction horizon Hp = 24.

It is worth to highlight that the MPC controller with an imperfect COM is presented in order to make a fair
comparison with respect to the model-free control approach with population dynamics.

Simulations are made by using the simulation-oriented model (SOM) shown in (16), and with real historical data
for the disturbances. Scenarios consider the following parameters according to the given prioritization. The weights
for the cost function are selected to be γ1 = 100, γ2 = 10, and γ3 = 1. Initial conditions for simulations are chosen
arbitrarily with respect to the safety volumes, i.e., v(0) = 0.5vs.

According to the assigned prioritization of the management objectives, the most important one is to minimize is the
economical aspect, hence γ1 = 100. Table 3 shows the water costs whose minimization is a global objective since the
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Table 4
Discrimination of cost function. i.e., economical costs, safety volume, and smooth operation (f1(x(k))+ f2(ξ(k))+ f3(x(k))).

Population Dynamics Approach Model Predictive Control

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Day With COM Model-free Matching COM Mismatching COM

1 85753.68 90016.18 86136.48 105631.03

2 57412.11 64084.36 57776.91 94060.01

3 52937.18 58910.22 53723.53 80201.20

4 52889.09 58826.09 53529.68 66925.18

Overall costs 248992.02 271836.84 251166.61 346817.42

water sources can supply tanks of different cliques throughout the network. Table 3 also shows energy costs whose
minimization is a local objective since these costs only depend on the local operation of each actuator within each
clique. These economical costs are shown for the four different scenarios. It can be seen that the total economical cost
of Scenario 1 is similar to the total economical cost of the Scenario 3. Moreover, economical costs for the Scenario
2 are similar to the costs with the Scenario 4. In both cases a better economical costs reduction is obtained with
the MPC controllers. However, the MPC controllers dispose of full information in a centralized manner, and they
also dispose of information of disturbances within the prediction horizon through a forecasting model (see [26] and
references therein). In contrast, the distributed population and mass dynamics control approaches only possess of
measured local information.

Now, the different controllers are compared by considering the whole cost function. Notice that, this comparison is
more proper in the sense that the reduction of all objectives is considered. Table 4 shows the values for the whole
cost function, i.e., considering the economical aspect, the safety volume, and the smooth operation. In these results,
a better performance with the Scenario 2 can be seen, compared to the performance with the Scenario 4. Moreover,
the proposed distributed approach requires less information than the MPC approach.

Figures 14a), 14b), and 14c) show the evolution of volumes of some tanks from the vector of all the volumes v(k).
The behavior of the states is quite oscillatory (mostly for the MPC controller) due to the hard disturbances given
by the demand profiles. As an example of these disturbances, Figure 15 shows the demand d21.

Moreover, Figures 14a), 14b), and 14c) show that the distributed controllers based on populations and mass dynamics
provoke less oscillations over the systems states. On the other hand, Figures 14d), 14e), and 14f) show the evolution
of some control actions from the proportion of agents x(k) and the time-varying costs associated to them. For
instance, Figure 14d) shows a quite similar behavior of the control signal. This oscillatory behavior is obtained
because the control action corresponds to the inflow to a mass balance node that contains an outflow given by a
demand, forcing the control action to have a similar pattern. The control action shown in Figure 14e) shows that, for
the MPC controller, the flow x42 is the only inflow of the tank with volume v13. The flow x42 is increased when the
control action is cheaper, and it is reduced when the control action becomes more expensive. This desired behavior
is obtained due to the fact that the MPC controller dispose of information about the behavior of the demand d19
within a time window of a day. In contrast, the controllers designed with the population and mass dynamics do
not consider the behavior of d19 since they compute the control action x42 based only on measurements in the time
instant k, and due to the fact that this control action is the only inflow able to modify the volume v13, then a
different performance with respect to the MPC controller is obtained. Finally, Figure 14f) shows the control action
x48, which is an inflow to tank with volume v17. This is not the only inflow to this tank, i.e., control action x60 is also
an inflow of the tank with volume v17. In order to analyze the performance of the control action x48, it is important
to point out that the control action x60 is cheaper than x48, and consequently the safety level at this tank is mostly
achieved by using the cheaper inflow. Notice that, for all the controllers, the control action x48 is increased when its
operation gets cheaper and it is reduced when its operational costs increase.

10 Concluding remarks

A methodology to solve different optimization problems with multiple constraints has been presented. The method
is based on population dynamics, whose set of states varies over time (i.e., dynamics over the population masses
are added). The variation of the set of possible states represents a mass interchange among populations. It has
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been shown that the population dynamics and the mass dynamics are stable and that the feasible region of the
global problem is attractive, under the presented assumptions associated to the objective function (i.e., the potential
function of the game is concave).

The proposed distributed decision-making approach allows to design optimization-based systems where there are
dynamical modifications over the graph that represents the society, without having to ensure that initial conditions
satisfy the constraints. Notice that, in order to guarantee that the initial condition belongs to the feasible set, it
would be required to have complete information about the system. In contrast, the proposed methodology allows
to initialize the element values within the distributed system at any value in R+. Additionally, it has been shown
that changes in the topology of the network (e.g., the addition and/or removal of vertices and/or edges) imply only
partial and local modifications in the decision-making system. Finally, the proposed approach has been applied in the
design of distributed optimization-based controllers for a real case study, showing its effectiveness in comparison with
already reported control strategies. As further work, it is of interest to analyze the proposed methodology in discrete
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time in order to motivate its implementation, i.e., how the discrete version of the population and mass dynamics
would be, and which conditions have to be satisfied in order to guarantee stability and convergence conditions.
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he is with the research group in control and automation systems (GIAP, UAndes), where he is
pursuing the Ph.D. degree in Engineering in the area of control systems. Since 2014, he is as-
sociate researcher at Technical University of Catalonia (Barcelona, Spain), Automatic Control
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