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Abstract: This review summarizes the synthesis and coordination chemistry of a series of carboranyl
ligands containing N,O donors. Such carborane-based ligands are scarcely reported in the literature
when compared to other heteroatom-containing donors. The synthetic routes for metal complexes of
these N,O-type carborane ligands are summarized and the properties of such complexes are described
in detail. Particular attention is paid to the effect that the incorporation of carboranes has into the
coordination chemistry of the otherwise carbon-based ligands and the properties of such materials.
The reported complexes show a variety of properties such as those used in magnetic, chiroptical,
nonlinear optical, catalytic and biomedical applications.
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1. Introduction

The icosahedral closo carboranes (dicarba-closo-dodecaboranes; C2B10H12) are an interesting class
of exceptionally stable boron-rich clusters with high thermal and chemical stability, hydrophobicity
and acceptor character [1–3]. Carborane chemistry has experienced a major surge of interest across
a wide spectrum of technologies, fueled by developing applications in diverse areas such as in
catalysis, materials science and medicine [1,4–11]. There are three isomers of carborane that differ
in the relative position of both carbon atoms in the clusters (ortho-, meta- and para-, or o-, m- and
p-; Figure 1). Although the volume of the three isomers of carborane is roughly the same, they
show very different dipole moments as a consequence of the different arrangement of the carbon
atoms in the cluster (4.53 D, 2.85 D and zero D for o-, m- and p-, respectively) [8]. The average
size of the three isomers of carborane (141–148 Å3) is comparable to that of adamantane (136 Å3),
significantly larger (40%) than the phenyl ring rotation envelope (102 Å3) and slightly smaller (10%)
than C60 (160 Å3) [12]. The presence of ten hydridic hydrogens at the boron atoms of the clusters
makes them extremely hydrophobic, surpassing that for adamantane [13]. The hydrophobicity of
carboranes has been extensively used to trigger desired biological actions [7,8]. Concerning the
electronic effect, all cluster carbon atoms exert an electron-withdrawing effect on attached substituents,
which decreases in the order o- to m- to p-carborane. For example, when bonded by a cluster carbon
atom, o-carborane exhibits an electron-withdrawing substituent effect similar to that of a fluorinated
aryl group. Experimental evidence shows that the electron-withdrawing character of the carborane
isomers has a clear impact on the acidity of substituents at carbon, the acidity decreasing in the same
order (o-, m-, p-), and all being more acidic than the related phenyl moiety [3]. Thus, the C–H bonds
of the icosahedral closo carboranes can be deprotonated with strong bases (e.g., alkyllithium) and the
generated carboranyl nucleophile can react with a wide variety of electrophiles (e.g., alkylhalides,
carbonyl derivatives, etc.) producing C–functionalized carboranes. Monosubstitution of the carboranes
is not trivial because the monolithiation of the o-carborane moiety is complicated by the tendency of
the monolithio o-carborane to disproportionate into o-carborane and its dianion [14]. Several strategies
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have been followed to overcome this problem, for example, by using protecting/deprotecting
methodologies, using dimethoxyethane as the solvent, or by doing the reaction at high dilution [15,16].
We recently revealed that mono and disubstitution of carboranes can be conveniently done in ethereal
solvents at a very low temperature [17]. Such nucleophilic substitution methodology is perhaps the
more general route for functionalizing carboranes as it can be applied to all carborane isomers.
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would strongly influence the coordination chemistry of such compounds, in addition to other 
relevant properties, such as higher stability, hydrophobicity, etc. Integration of carboranes in place of 
organic ring systems (typically benzene) is a very popular strategy to trigger desirable properties in 
(bio)medicine [7,8] but is much less exploited in chemistry or materials science [35]. 

In the present review, we summarize our results and the results of others on the synthesis, 
structure and reactivity of carboranyl ligands containing N,O-donor atoms and their metal 
complexes and properties. Metallacarborane complexes, incorporating one or more metal atoms 
within a polyhedral carborane cage structure, are excluded of the present review. For some recent 
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Over the years, our group and others have been interested in the synthesis of new carborane-based
ligands containing a variety of donor centers (N, P, S, N/C, N/S, N/P, P/C, P/P P/Si, P/S, S/C or
S/S donors) and their metal complexes an applications [2,6,18–28]. Carborane ligands containing N,O
donors are scarce in the literature. This is somewhat surprising when considering the importance of
classical N,O-ligands in metal complexes and their properties [29–34]. One of the main objectives of
our research in the last few years was to study the chemistry of carboranylmethylalcohols, particularly
of those containing a heteroatom such as nitrogen, and exploring their properties. Our interest in
N/O-functionalized carboranes primarily stems from our rationale that introducing a carborane moiety
in the place of a conventional carbon-based moiety would strongly influence the coordination chemistry
of such compounds, in addition to other relevant properties, such as higher stability, hydrophobicity,
etc. Integration of carboranes in place of organic ring systems (typically benzene) is a very popular
strategy to trigger desirable properties in (bio)medicine [7,8] but is much less exploited in chemistry or
materials science [35].

In the present review, we summarize our results and the results of others on the synthesis,
structure and reactivity of carboranyl ligands containing N,O-donor atoms and their metal complexes
and properties. Metallacarborane complexes, incorporating one or more metal atoms within
a polyhedral carborane cage structure, are excluded of the present review. For some recent reviews on
metallacarboranes see references [36–41].

2. Carboranyl Compounds with N,O-Donor Functionalities and Properties

2.1. Closo-Carboranylmethylalcohols with Nitrogenated Aromatic Rings

Reported pyridine-type containing carboranyl-based N,O-donor compounds are summarized in
Chart 1. Carboranyl methanols are easily available by the addition of lithiocarboranes to aldehydes or
ketones. Using this methodology, a wide variety of mono substituted carboranyl methanol derivatives
have been synthesized [42,43]. Following a similar procedure we [44–49] and others [50,51] have
prepared an extensive series of new monosubstituted o-, m- and p-carboranylmethylalcohols bearing
nitrogenated aromatic rings, by the addition of lithiocarboranes to the corresponding pyridylaldehydes
(1–4, Chart 1 and Scheme 1). The addition of dilithiocarboranes to two equivalents of the corresponding
aldehydes, under the same reaction conditions, provided a new series of disubstituted o- and
m-carboranylmethylalcohols (5–6, Chart 1) [52,53]. This synthetic methodology allows the preparation
of the compounds in good yields in gram quantities from one-pot reactions, starting from commercially
available materials.
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Chart 1. Synthesized carboranylmethylalcohols with nitrogenated aromatic rings. o-, m- and p-CB 
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nomenclature). Conditions: (a) 1eq. n-BuLi, Ether/THF (0/−78 °C); 1eq. 
pyridine/quinolinecarboxaldehyde (−84/−63 °C); (b) 2eq. n-BuLi, Ether/THF (0 °C); 2eq. 
pyridinecarboxaldehyde (−94 °C for oCB or −63 °C for mCB). 

This family of carboranylmethylalcohols contains one (1–4; Chart 1) or two (5–6; Chart 1) chiral 
carbon centers. The monosubstituted compounds are therefore obtained as racemic mixtures, and 
they can be easily resolved into the R and S enantiomers by using HPLC over a chiral stationary 
phase [49,54], or by diastereomers formation with (1S)-(−)-camphanic acid chloride [50,51]. In the 
case of the disubstituted compounds (5–6), the situation is more complex (Scheme 2). These 
compounds contain two chiral centers that can adopt either R or S configuration and, therefore, lead 
to the formation of two diastereoisomers (Scheme 2), a meso compound (RS; OH groups in a syn 
orientation) and a racemic compound (mixture of SS and RR; OH groups in an anti orientation). The 
enantiopure compounds can be exploited in coordination chemistry, as will be described in the 
following sections. Separation of the syn- and anti-isomers in the disubstituted series of compounds 
has been carried out in the case of o-carborane derivatives 5a and 5b [53,55]. 
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Scheme 1. General procedure for the syntheses of carboranylmethylalcohols 1–6 (see
Chart 1 for nomenclature). Conditions: (a) 1eq. n-BuLi, Ether/THF (0/´78 ˝C); 1eq.
pyridine/quinolinecarboxaldehyde (´84/´63 ˝C); (b) 2eq. n-BuLi, Ether/THF (0 ˝C); 2eq.
pyridinecarboxaldehyde (´94 ˝C for oCB or ´63 ˝C for mCB).

This family of carboranylmethylalcohols contains one (1–4; Chart 1) or two (5–6; Chart 1) chiral
carbon centers. The monosubstituted compounds are therefore obtained as racemic mixtures, and
they can be easily resolved into the R and S enantiomers by using HPLC over a chiral stationary
phase [49,54], or by diastereomers formation with (1S)-(´)-camphanic acid chloride [50,51]. In the case
of the disubstituted compounds (5–6), the situation is more complex (Scheme 2). These compounds
contain two chiral centers that can adopt either R or S configuration and, therefore, lead to the
formation of two diastereoisomers (Scheme 2), a meso compound (RS; OH groups in a syn orientation)
and a racemic compound (mixture of SS and RR; OH groups in an anti orientation). The enantiopure
compounds can be exploited in coordination chemistry, as will be described in the following sections.
Separation of the syn- and anti-isomers in the disubstituted series of compounds has been carried out
in the case of o-carborane derivatives 5a and 5b [53,55].
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or dialdehydes derivatives of o-, m- and p-carborane with pyrroles in the presence of acid catalysts 
(Scheme 3). Provided that the pyrrol moieties could be deprotonated, these compounds might 
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Both mono and disubstituted carboranylmethylalcohols mentioned above possess hydroxyl
(OH) groups as hydrogen bond donors and nitrogen atoms that act as hydrogen bond acceptors.
Indeed, the supramolecular chemistry of such compounds is dominated by moderate O–H¨¨¨N
hydrogen bonding. In the case of 2-pyridyl derivatives, 2a, 3a and 4b (both in racemic and enantiopure
forms), they all form homochiral helical networks and it has been shown that a correlation exists
between the OCCN torsion angles of the molecules in the solid state and the handedness of the
supramolecular helices [49]. Regarding the disubstituted derivatives, 5a–f, it was observed that
syn and anti stereoisomers crystallized separately from their mixtures and the detailed analysis of
their supramolecular structures revealed that homochiral recognition seems to operate also in these
molecular systems [53].

2.2. Other Closo-Carboranes Incorporating N and O Functionalities

Other reported non pyridine-type containing carboranyl-based N,O-donor compounds are
summarized in Chart 2. A related family of compounds to that of 1–4 and 6 (Chart 1) is that of
chiral carboranylpyrroles 7–11 (Chart 2) [56]. In these molecules, the pyridyl moieties in the former
ones are replaced by a pyrrol moiety. These carboranylpyrroles were prepared by the reactions of mono
or dialdehydes derivatives of o-, m- and p-carborane with pyrroles in the presence of acid catalysts
(Scheme 3). Provided that the pyrrol moieties could be deprotonated, these compounds might provide
rich coordination chemistry.
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Scheme 3. General procedure for the syntheses of carborane derivatives in Chart 2. Conditions:
(a) pyrrole (excess), TFA or InCl3 (0 ˝C), 1 h; (b) NaHCO3, 2-hydroxybenzaldehyde, toluene (reflux),
two days; (c) n-BuLi, Ether, CO2, HCl; (d) SOCl2 (reflux), 24 h; (e) 3 eq. DAST, CH2Cl2 (´20 ˝C), 12 h.

Reaction of o-carboranylmethyl ammonium salt with commercially available phenyl aldehyde
provided the phenyl(carboranylmethyl)imine 12 (Chart 2 and Scheme 3) in good yield [57].
Another interesting series of compounds is that of chiral bis(oxazolilnyl)-m-carboranes 13–14
that were synthesized via a multistep synthesis [58]. Briefly, m-carborane dicarboxylic acid was
transformed to the acyl chloride with SOCl2 and further condensed with two equivalents of the
corresponding resolved amino alcohols to provide the uncycled bis(hydroxyamide)-m-carborane
intermediates. Double cyclization reaction by diethylaminosulfur trifluoride (DAST) afforded
enantiopure compounds 13–14 in very high yields (Scheme 3).

3. Synthesis of Coordination Complexes and Properties

In the following, it will be shown the effect that the incorporation of carboranes has into the
coordination chemistry of the otherwise carbon-based ligands (whenever possible) and the properties
of such materials.

3.1. Complexes of Monosubstituted 1–4 and 12

Conventional N,O ligands such as (hydroxymethyl)pyridines (hmpH; Scheme 4) have proved
to be successful building blocks for the self-assembly of metallosupramolecular architectures with
exciting physical properties [54] (and references therein). Carborane compounds 1–4 can be regarded
as hmpH ligands where one of the H atoms at the –CH2– position of the methylalcohol moiety has
been replaced by a carboranyl fragment (Scheme 4). The introduction of carborane into the hmpH
backbone provokes a bigger decrease of the alcohol pKa value, with respect to the related phenyl-hmpH
(phhmpH) derivative (Scheme 4), in addition to an increase of the size and hydrophobicity of 1–4 with
respect to phhmpH.
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that the Co–OH(R) bonds in 16a are labile and that the coordination strength of the alcohol function 
can be modulated by solvent-assisted intermolecular hydrogen bonding. We also showed that full 
deprotonation of both alcohol hydrogens in the octahedral cobalt complex 16a afforded a rare 
square-planar CoII complex 19a that was characterized by single crystal X-ray diffraction (XRD). The 
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Scheme 4. Comparison of various pyridylmethyalcohol derivatives.

Furthermore, the possibility for placement of the methylalcohol moiety at the 2-, 3- or 4-position
with respect to the pyridine (or quinoline) nitrogen, which usually coordinates to the metal center,
is a key feature that allows these ligands to support a whole family of supramolecules of a different
nature. Heterobidentate ligands of this type offer several advantages over traditional symmetrical
bidentate ligands by creating steric, electronic, asymmetry and chirality at the metal centers [59].

3.1.1. Cobalt

The 2-pyridyl derivatives 1a and 2a reacted with CoCl2¨ 6H2O in a 2:1 ratio under
aerobic conditions to provide the corresponding CoII complexes 15a and 16a, respectively
(Scheme 5) [60]. X-ray diffraction studies confirmed that 2a acts as a bidentate N,O-ligand, giving
an octahedral-coordinated CoII complex. We showed experimentally (both in solution and solid
state) that the Co–OH(R) bonds in 16a are labile and that the coordination strength of the alcohol
function can be modulated by solvent-assisted intermolecular hydrogen bonding. We also showed
that full deprotonation of both alcohol hydrogens in the octahedral cobalt complex 16a afforded
a rare square-planar CoII complex 19a that was characterized by single crystal X-ray diffraction (XRD).
The square-planar geometry in this complex seemed to be induced by the steric hindrance generated
by the carborane moiety on the ligand. Complex 17a seems to enable O2 activation, followed by
transformation of the ligands and metal oxidation states affording a CoIII carborane complex 18.
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The 3- and 4-pyridyl or quinolyl derivatives 1b–c, 1e and 2b–c, 2e also reacted with CoCl2¨ 6H2O
under the same reaction conditions, providing, in this case, the corresponding tetrahedral CoII

complexes 15a and 16a, respectively (Scheme 6) [60]. Octahedral complex 21 was, however, formed
in the presence of excess of 2c. The structure for complexes 19c, 19e, 20b, 20e and 21 were confirmed
by XRD.
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It is interesting that even though the above CoII complexes are paramagnetic, we were
able to perform and characterize most of the complexes by NMR spectroscopy. The solid-state,
variable-temperature (2–300 K) magnetic susceptibility data were collected on polycrystalline samples
of 16a, 20b and 20c (Figure 2) and the data agree well with their crystallographic data and stress
the relevance of intermolecular interactions among neighboring molecules providing well-organized
supramolecular 1 D systems (vide infra).

Crystals 2016, 6, 50 7 of 21 

 

The 3- and 4-pyridyl or quinolyl derivatives 1b–c, 1e and 2b–c, 2e also reacted with CoCl2∙6H2O 
under the same reaction conditions, providing, in this case, the corresponding tetrahedral CoII 
complexes 15a and 16a, respectively (Scheme 6) [60]. Octahedral complex 21 was, however, formed 
in the presence of excess of 2c. The structure for complexes 19c, 19e, 20b, 20e and 21 were confirmed 
by XRD. 

 
Scheme 6. Syntheses of complexes 19–21. 

It is interesting that even though the above CoII complexes are paramagnetic, we were able to 
perform and characterize most of the complexes by NMR spectroscopy. The solid-state,  
variable-temperature (2–300 K) magnetic susceptibility data were collected on polycrystalline 
samples of 16a, 20b and 20c (Figure 2) and the data agree well with their crystallographic data and 
stress the relevance of intermolecular interactions among neighboring molecules providing 
well-organized supramolecular 1 D systems (vide infra). 

 

Figure 2. χM Tvs T plots for compound 16a (black squares), 20b (white circles) and 20c (white 
rhombs) between 2.0 and 300.0 K. Inset: Increased section of the graph containing all three 
compounds from 2 to 50 K. Solid lines in χMT vs. T plots are for eye guide. 

In the solid state, all the above CoII complexes show intermolecular O–H∙∙∙Cl/O hydrogen 
bonds. From those, unsolvated structures show exclusively O–H∙∙∙Cl hydrogen bonds giving 

Figure 2. χM Tvs T plots for compound 16a (black squares), 20b (white circles) and 20c (white rhombs)
between 2.0 and 300.0 K. Inset: Increased section of the graph containing all three compounds from 2 to
50 K. Solid lines in χMT vs. T plots are for eye guide.

In the solid state, all the above CoII complexes show intermolecular O–H¨¨¨Cl/O hydrogen bonds.
From those, unsolvated structures show exclusively O–H¨¨¨Cl hydrogen bonds giving supramolecular
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chains. Those are, however, interrupted whenever an oxygen-containing solvent is included in the
structures. In that case, O–H¨¨¨O hydrogen bonds are also formed, interfering partially (21) or totally
(16a) with the O–H¨¨¨Cl hydrogen bonds. The supramolecular chemistry of 16a serves as an example
of this phenomena and of how the carborane moieties can have an influence on the solid structure and
properties of the molecular complex. A comparison of the molecular and supramolecular structures of
the octahedral complex 16a with that of related (not containing carborane) cobalt complexes revealed
that the chirality of 2a in conjunction with the bulky carborane favors RR/SS alternation as a more
economic packing arrangement. As shown at the top of Figure 3, the unsolvated form of 16a gives
chains, alternating RR and SS enantiomeric complexes, along the c axis via the O–H¨¨¨Cl hydrogen
bond interactions (Figure 3, top left). The proximity of the complexes (Co¨¨¨Co: 5.722 Å) forces the
carborane cages of consecutive molecules to be staggered (Figure 3, top middle). The solid structure
significantly changed when 16a was recrystallized from methanol. The methanol solvate of the latter,
16a¨ 2MeOH, also shows chains of alternating RR and SS enantiomeric complexes (Figure 3, bottom).
However, two methanol molecules are inserted now in the hydrogen bonding network, resulting in
a longer distance between consecutive Co centers (Co¨¨¨Co: 7.281 Å) than in 16a. As a consequence,
the molecules in 16a¨ 2MeOH are not staggered but eclipsed (Figure 3, bottom). This has important
consequences in the three-dimensional (3D) structures of these two complexes, as shown in Figure 3
(right column). The eclipsed chains in 16a¨ 2MeOH are more closely packed than the staggered chains
in 16a and as a consequence, the packing of stagger chains of 16a creates defined channels running
along the c axis parallel to hydrogen bonded chains (Figure 3, right). The solvation process from
16a to 16a¨ 2MeOH has been demonstrated experimentally by exposing 16a to liquid methanol, or
even vapors.
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Figure 3. Supramolecular assemblies of 16a and 16a¨ 2MeOH. Left column: Projections showing
four molecules of each compound forming hydrogen-bonded chains. Middle column: Projections
along the hydrogen-bonded chains showing a staggered arrangement of the carboranyl fragments
in 16a (top) versus an eclipsed arrangement in 16a¨ 2MeOH (bottom). Right column: A comparison
of the 3D supramolecular assemblies of 16a (left) and 16a¨ 2MeOH (right) showing the well-defined
channels (yellow-orange) running along the c axis in the former and the absence of voids in the latter.
All hydrogen atoms, except those for the CHOH group, are omitted for clarity. Color code: B pink;
C grey; H white; O red; N light blue; Cl green; Co blue.
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3.1.2. Iron

The reaction of 2a with FeCl2 in a 1.5:1 ratio afforded the FeIII complex Fe2Cl3(2a´)3 (22) in nearly
quantitative yield (Scheme 7) [54]. When the same reaction was carried out with the phenyl-modified
ligand phhmpH, initial formation of the mononuclear FeII complex FeCl2(phhmpH)2 (23) was
observed, followed by its conversion to the trinuclear FeIII complex [Fe3Cl4(phhmp)4][FeCl4] (24).
Structures for complexes 22–24 have been solved by XRD. It was observed that deprotonation occurred
spontaneously in the reactions of 2a with iron, but this was faster in the case of the carborane-based
ligand 2a than with the phenyl-based one phhmpH, in agreement with a higher acidity for 2a.
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These results clearly showed how the introduction of the bulky o-carborane into the  
2-(hydroxymethyl)pyridine (hmpH) architecture significantly alters the coordination of the simple 
or arylsubstituted 2-hmpH. The comparison of 22 with all other FeIII complexes in the literature 
having arylsubstituted 2-hmpH ligands revealed that the latter always show two alkoxide 
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These results clearly showed how the introduction of the bulky o-carborane into the
2-(hydroxymethyl)pyridine (hmpH) architecture significantly alters the coordination of the simple or
arylsubstituted 2-hmpH. The comparison of 22 with all other FeIII complexes in the literature having
arylsubstituted 2-hmpH ligands revealed that the latter always show two alkoxide pyridylalcohol
ligands bridging two close FeIII ions (Scheme 8), whereas the dinuclear complex 22 contains three
alkoxide bridges. This unusual architecture seems to be triggered by the poor nucleophilicity of the
alkoxide ligand (2a´).
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The crystalline powder obtained during the synthesis of 22 was identified as a racemic mixture 
of (S,S)AFe(R)AFe-(+)22 and (R,R)CFe(S)CFe-(−)22 by Powder X-ray Diffraction (PXRD). This racemic 
mixture (rac-22) showed a very rare case of spontaneous resolution that takes place on precipitation 
or exposition to vapors giving a conglomerate compound (co-22), as shown in Figure 6. 

Scheme 8. µ2–O versus µ3–O bridging of hmpH in Fe complexes.

The presence of three alkoxide bridges in 22 is rather surprising, owing to the size of the carborane
cages, and it has important structural consequences. Each of the pyridylalcohol ligands can adopt
an R or S configuration, so that RRR, SSS, RRS and SSR could all be expected in complex 22.
However only RRS and/or SSR combinations are possible due to the steric hindrance imposed
by the same hardness of the ligands (22¨ acetone, Figure 4). This was confirmed by synthesizing
the enantiopure complexes of 22 from pure R and S enantiomers of 2a. The chirality of the
enantiopure ligands ((R)-(+)-2a/((S)-(´)-2a) and corresponding complexes (S,S)AFe(R)AFe-(+)-22 and
(R,R)CFe(S)CFe-(´)-22 was confirmed by circular dichroism (CD) measurements in solution and by
second-harmonic generation (SHG) measurements in the solid state (Figure 5).
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Figure 5. (A) CD spectra of R(+)2a (blue dotted lines), S(–)2b (red dotted lines), (R,R)CFe(S)CFe-(´)22
(blue plain lines) and (S,S)AFe(R)AFe-(+)22 (red plain lines); (B) SHG Intensity of a mixture of
(R,R)CFe(S)CFe-(´)22 and (S,S)AFe(R)AFe-(+)22 versus temperature between ´200 ˝C and 200 ˝C.

The crystalline powder obtained during the synthesis of 22 was identified as a racemic mixture
of (S,S)AFe(R)AFe-(+)22 and (R,R)CFe(S)CFe-(´)22 by Powder X-ray Diffraction (PXRD). This racemic
mixture (rac-22) showed a very rare case of spontaneous resolution that takes place on precipitation or
exposition to vapors giving a conglomerate compound (co-22), as shown in Figure 6.
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Complex 22 constitutes the first dinuclear FeIII system containing three alkoxide bridges that
displays an antiferromagnetic behavior. DFT calculations have corroborated the latter and show that
the Fe–O distance is the main parameter that controls the magnetic behavior. Overall, complex 22
represents an interesting class of multifunctional molecular materials that combine magnetic,
chiroptical and second-order optical properties.

3.1.3. Platinum

Contrary to the above metals, when a Group 10 metal such as Platinum was employed,
only N-coordination was observed. Reactions of racemic 2c and/or enantiopure 3b–c/4b–c with
[Pt(MeCN)terpy](NO3)2 or [PtI2(phen)] provided the platinum complexes 25b–c, 26b–c, 27b–c or 28b–c
(Scheme 9) [51,61]. Recrystallization of the complexes 25b–c, 26b–c and 27b–c from hot water was
necessary in order to remove the byproduct [Pt(OH)terpy]NO3. Under such conditions, the o-carborane
ligands 2b–c were deboronated to the corresponding 7,8-nido-carboran-7-yl)pyridylmethanol
complexes 25b–c. Deboronation was not observed in any of the m- or p-carborane derivatives,
consistent with their higher stability. The deboronation of o-carborane-containing ligands is known to
be enhanced when coordinated to metal centers [62–66]. The phenomenon is attributed to the electron
density being withdrawn from the boron cluster upon metal complexation. There are, however,
some reports, mainly dealing with PtII complexes where deboronation seems to occur prior to metal
complexation and most probably due to the nucleophilicity of the ligand itself [67,68].

The use of β-cyclodextrin (CD) as biodelivery agents for carborane clusters is of particular
relevance to their exploitation as unique hydrophobic pharmacophores in medicinal chemistry [7,8].
Chiral complexes 26b–c and 27–c form water-soluble supramolecular 1:1 host-guest β-CD adducts [51].
The nature of the carborane cage itself (i.e., the positional isomer and the overall charge) and the
chirality and nature of the substituent on the cage each contribute to its molecular recognition by β-CD.
S–27c forms a remarkably stable ternary system, involving, simultaneously, DNA metallointercalation
and β-CD encapsulation (Figure 7). Complexes 28b–c, containing two closo-carborane clusters, were
also treated with β-CD to provide the corresponding series of water-soluble 2:1 host-guest adducts [61].
DNA-binding studies demonstrated the avid binding affinity of these complexes for calf thymus DNA.



Crystals 2016, 6, 50 12 of 21
Crystals 2016, 6, 50 12 of 21 

 

N

2b-c

Acetone/H 2O

[Pt(MeCN)terpy](NO3)2

N
N N

Pt

N
N N

Pt

mp

OH

N

+

H
OH

H

2+

2NO3
-NO3

-

3b-c
4b-c

25b-c 26b-c
27b-c

N N

Pt

28b-c

m
p

OH
N

m
p

HO
N

2NO3
-

2+

 
Scheme 9. Syntheses of complexes 25–28. 

 
Figure 7. Model showing the ternary structure with intercalation of S–27c·β-CD from the major 
groove of the hexanucleotide. The d(GTCGAC)2 residues are depicted in green and the 
phosphodiester/ribose backbones in purple. The platinum(II)-terpy complex is depicted in red, the 
carborane cage is white, and the β-CD is yellow. Reproduced from Reference [50] with permission of 
The Royal Society of Chemistry. 
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3.1.4. Titanium

In situ deprotonation of 12 followed by reaction with TiCl4 afforded complex 29 (Scheme 10) [57].
This complex is an efficient catalyst for α-olefin polymerization to produce high molecular weight
polyethylene and poly(ethylene/methyl-10-undecannoate). Catalytic activity of complex 29 is clearly
superior to that of I (bottom Scheme 10) [69] and comparable to one of the most potent phenoxy–imine
Ti complexes (Ti-FI catalysts) [70].
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3.2. Complexes of Disubstituted 5–6 and 13–14

The 2-pyridyl disubstituted closo-carboranylmethyl alcohols 5–6 (Chart 1) or 13–14 (Chart 2),
constitute a second generation of ligands, where two pyridyl/quinolylmethylalcohol or oxazolinyl
chiral moieties radiate out of the cluster carbon atoms. The presence of two chiral carbons and the
different positional isomers offer enough molecular diversity to explore the coordination chemistry of
such ligands.

3.2.1. Cobalt

Racemic anti-5a (see Scheme 2 for nomenclature) formed the octahedral cobaltII complex 30 upon
reaction with CoCl2 (Scheme 11) [71]. The X-ray structure of 30 revealed a distorted geometry where
each cobaltII center is coordinated by all nitrogen and oxygen atoms of an anti-diastereomer of 5a that
is acting as a tetradentate N2O2-ligand. Crystals for the CoII complex are formed by a racemic mixture
of ∆-30 and Λ-30 units.
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The OH groups from anti-5a remained intact in complex 30 and therefore they can act as proton
donors for hydrogen bonding and were also observed in complex 16a (Scheme 3 and Figure 3).
Complex 30 forms homochiral ribbons (∆- or Λ-enantiomeric complexes), along the b axis via O–H¨¨¨Cl
hydrogen bond interactions (Figure 8). Thus, homochiral recognition seems to be happening in the
CoII complexes of anti-5a.
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3.2.2. Iron  

The reaction of anti-5a with FeCl2 provided the dinuclear ironIII complex 31 (Scheme 12) [55]. 
Anti-5a behaves also as a distinct tetradentate N2O2 ligand, as already observed in the previous Co 
complex 30 and confirms this ligand as a new type of C2-symmetric chiral building block. X-ray 
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(enantiomers indicated with arrows). All hydrogen atoms, except those for the CHOH group, are
omitted for clarity. Blue = N, red = O, pink = B, dark grey = C, violet = Co, green = Cl.

We showed that anti-5a is an unprecedented and distinct tetradentate N2O2-type ligand and
represents a new type of C2-symmetric chiral building block. Reported tetradentate N2O2 ligands
are mainly reduced to Schiff-base backbone ligands [72–74]. These ligands and their derivatives
coordinate predominantly in a planar arrangement to various metal ions giving trans geometries in
octahedral complexes (Figure 9). An increased propensity to form cis structures has been achieved
in some cases by increasing the backbone chain length. Carborane-based anti-5a ligand adopts
preferentially a cis-α configuration around the CoII center (Figure 9) and it is, therefore, able to produce
chiral-at-metal complexes.
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3.2.2. Iron

The reaction of anti-5a with FeCl2 provided the dinuclear ironIII complex 31 (Scheme 12) [55].
Anti-5a behaves also as a distinct tetradentate N2O2 ligand, as already observed in the previous
Co complex 30 and confirms this ligand as a new type of C2-symmetric chiral building block.
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X-ray structural analysis reveals that the alcohol groups are deprotonated, as already observed also
in the ironIII complex 22 (Scheme 5, Figure 4). As in the case of complex 30, the crystallization of
homochiral dimers in 31 suggests that enantiomeric forms of racemic anti-5a self-recognize to form
exclusively stereospecific, homochiral dinuclear complexes.
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Scheme 12. Synthesis of complex 31.

The coordination chemistry of the meso form of 5a (syn-5a; see Scheme 2 for nomenclature)
resulted in being more complicated than that of the chiral anti-form, probably as a result of the
syn-arrangement of the OH groups. After several attempts, the dinuclear ironIII complex 33 crystallized
and showed an unusual dinuclear ironIII complex with a mixed octahedral and square pyramidal
geometry (Figure 10).
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Complex 31 could be obtained in the solid state as a single phase, and the solid-state,
variable-temperature (2–300 K) magnetic susceptibility data using 0.03 and 0.5 T fields were measured.
It was found that an exchange coupling for both FeIII atoms in 31 was strongly antiferromagnetic.

3.2.3. Nickel, Palladium and Rhodium Complexes

Chiral NBN pincer complexes of disubstituted enantiopure oxazolinyl m-carboranes 13–14
(Chart 2), were prepared by their reaction with RhCl3¨ 3H2O, [Ni(COD)2] or [Pd(MeCN)4](BF4)2

under heating conditions (Scheme 13) [58]. Chiral rhodium complexes 32 (chloride form) and 35
(acetate form) were found to be an effective catalyst (1 mol%) for asymmetric conjugate reaction
of α,β-unsaturated esters, giving both a high enantiomeric excess (93%–94% ee). Lower ee were
obtained with complexes 36 and 37. The enantioselectivities were similar to those obtained with
the Phebox pincer complex, having a phenyl ring in place of the m-carborane (Scheme 13) [75].
Complexes 35–37 were also found to be active catalysts for the asymmetric reductive aldol reaction of
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benzaldehyde, tert-butyl acrylate and (EtO)2MeSiH. In this case, the ee was sensibly higher (91% ee)
than the corresponding Phebox pincer complexes (77%–87% ee) [76].

Reaction of the disubstituted 2-pyridyl closo-carboranylmethyl alcohols 5a, 5f and 6a (Chart 1) with
[PdCl2(MeCN)2] provided the pincer palladium complexes 44–46, respectively, under mild conditions
(Scheme 14) [52]. XRD of these complexes show unambiguously B–H activation of the carborane cages
at B(3/6)H in o-carborane or B(2/3)H in the m-carborane-based ligands. The structures of the three
complexes displayed exceptionally long Pd–Cl distances in the solid state (2.49–2.51 Å), suggesting
a strong trans influence of the carborane moieties and comparable with that for alkyl-based pincer Pd
complexes (2.49–2.52 Å). However, a combined study of experimental and calculated bond distances
reveals that two effects are operative in modulating the Pd–Cl distance in the crystal structures. One is
the trans influence of the carborane moieties, the other being the intermolecular moderate H-bonding
interactions among neighboring complexes in the solid state. Thus, it can be inferred that there
is a stronger trans influence of the meta-carborane than the ortho-carborane moieties in the pincer
complexes, as expected.
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Scheme 14. Syntheses of complexes 44–46.

Catalytic applications of 44 and 46 have shown the complexes are good catalyst precursors
in Suzuki coupling reactions in water, and with remarkably low amounts of catalyst loadings
(0.0001 mol %) and good functional group tolerance for the substrates. Complex 44 shows a better
catalytic profile than 46 and with excellent conversions and TON values ranging from 770,000 to
990,000, thus showing a very high catalytic activity which rivals previous reports on Suzuki coupling
performed by very low amounts of palladium catalysts, even with other pincer complexes [52].
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4. Conclusions and Perspectives

The coordination chemistry of N,O-type carborane-based ligands with TiIV, FeIII, CoII, RhIII, NiII,
PdII, PtII and ZnII has been summarized, along with the properties and applications of these metal
complexes. The above results nicely expand the already rich carborane chemistry and show how
introduction of the carborane framework into the otherwise conventional carbon-based ligands,
opens up new avenues in coordination chemistry with exciting metal-mediated reactivity and
properties. The convenient preparation of N,O-type carborane-based compounds, many of them
in one-pot reaction and from commercially available starting materials, make of these carborane
derivatives valuable ligands for coordination chemistry. The diverse coordination modes of such
ligands towards a variety of metals and their properties are all advantageous. The pyridine-containing
o-carboranylmethyl alcohol ligands 1–4 (Chart 1) are analogous to the (hydroxymethyl)pyridines
(hmpH; Scheme 2), or other derivatives of the latter. It has been, however, demonstrated that
the replacement of an H atom or a phenyl ring by a carboranyl moiety in these systems has
an enormous influence on the final metal complexes and properties. This led to the formation of
a dinuclear chiral iron complex combining magnetic, chiroptical and second-order optical nonlinear
properties. The same complex showed a fascinating case of spontaneous resolution on precipitation
or exposition to vapors. It has been described how the carborane moieties triggered the porosity of
an antiferromagnetic CoII complex. Platinum complexes incorporating o-carboranylmethyl alcohol
ligands formed supramolecular host-guest β-CD and/or DNA adducts. Titanium, nickel, palladium
and rhodium complexes provided active catalysts for a variety of chemical transformations such as
polymerization, enantioselective asymmetric conjugate reaction of α,β-unsaturated esters or aldol
reactions, and Suzuki coupling reactions in water and with very low catalytic loadings.

Another area of interest is that of chirality, as some of the present N,O-ligands are chiral and can
be easily obtained in enantiopure forms. This will certainly facilitate the use of such chiral ligands
and their corresponding complexes in NLO, ferroelectric or multifunctional materials. This review
highlights the versatility of carboranes as alternatives to carbon-based ligands in metal complexes for
solving problems that might spoil their applicability, such as, e.g., thermal or water stability, or just by
improving the activity or selectivity of catalysts. Boron chemistry in general, and carborane chemistry
in particular, is nowadays a very mature and established area of research. New developments are
appearing constantly and are limited only by our imagination.
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