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ABSTRACT 

Methanol is used commercially as a stabilizer in solutions of formaldehyde to prevent 

its precipitation. However, the methanol content of commercially available 

formaldehyde solutions differs from one supplier to another. The pH, dilution and R/F 

ratio have been demonstrated to be interdependent variables that can be manipulated to 

tailor the porous properties of RF carbon xerogels. This work considers the methanol 

contained in formaldehyde solutions as a new variable to be studied in conjunction with 

those just mentioned. For the purpose of this study, the influence of methanol on the 

final porous properties of RF carbon xerogels has been evaluated. It was found that 

carbon xerogels synthesized using formaldehyde solutions with lower concentrations of 

methanol showed a higher total pore volume and pore size, and in turn, a lower density 

and a greater porosity. The porosity of RF carbon xerogels could therefore be radically 

modified depending on the commercial formaldehyde solution used for their synthesis.  
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1. Introduction  

Carbon gels are nanoporous materials obtained by the polymerization of hydroxylated 

benzenes and aldehydes in the presence of a solvent following Pekala´s method [1]. 

Most carbon gels presented in the literature are synthesized using resorcinol and 

formaldehyde as precursors and water as solvent [2-5], although other precursors and 

reaction media can be used [6-9]. 

The process follows four main steps from the initial mixture of precursors to the final 

carbon gel [10]. First of all, polymerization and gelation take place, causing the solution 

to turn gradually into a solid state. Then, an ageing step generates crosslinking reactions 

that result in a stable polymeric structure. Next, the solvent is removed in a drying step. 

Finally, the dry material is subjected to high temperature treatment to produce the 

carbon gel.  

The drying step can be performed by one of three different methods, each of which 

generates different properties in the final gel: supercritical drying, freeze-drying and 

evaporative drying. These give rise to aerogels, cryogels and xerogels, respectively [5, 

11-16]. In this particular study, microwave radiation was used as heating source from 

the beginning to the end of the process, i.e. for accelerating the polymerization and 

crosslinking reactions, and also for the evaporative drying [17, 18]. This has been 

demonstrated to be a cost-effective process since it offers the possibility of synthesizing 

carbon gels on a large scale via a simple and fast procedure to yield very competitive 

and highly valued materials [17-22]. 

Over the last ten years, carbon xerogels have emerged as materials with a great added 

value owing to the fact that their porosity can be controlled and designed by selecting 
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the appropriate synthesis variables, both physical (i.e. temperature, time of synthesis, 

etc.) [2, 19] and chemical (i.e. pH, dilution, ratio R/F, etc) [23-26]. In addition, it has 

been demonstrated that all these variables are interdependent, making it necessary to 

study several variables at the same time, for which the application of statistical 

programs and a global assessment of the results are required. 

Methanol is used commercially as a stabilizer in formaldehyde solutions, and generates 

hemiacetal/acetal compounds which prevent the precipitation of the formaldehyde. The 

study of the influence of the proportion of methanol present in commercial 

formaldehyde solutions has attracted a great deal of attention owing to the fact that these 

solutions differ greatly in methanol content from one supplier to another. As an 

example, Table 1 shows different chemical suppliers and the percentages of methanol in 

their commercial formaldehyde solutions. It can be seen that the concentrations of 

methanol may differ substantially. It is well known that the physical and chemical 

properties of water and methanol also differ (i.e. dielectric constant, boiling point, 

surface tension, etc.) [27], and accordingly may have an influence in certain stages of 

the synthesis, such as the polymerization or drying steps. Indeed, RF gels synthesized 

with methanol as solvent have already been reported in the bibliography, and these 

carbon gels exhibit quite different properties to those synthesized in water [10, 28, 29]. 

Thus, the proportion of methanol in the formaldehyde solution is believed to affect the 

final porous properties of the RF xerogel. Accordingly, the aim of this work is to assess 

the influence that methanol contained in commercial formaldehyde solutions has on the 

final porous properties of RF carbon xerogels. 

2. Experimental 
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2.1.  Synthesis of carbon xerogels 

Carbon xerogels were synthesized by the polymerization of resorcinol (R) and 

formaldehyde (F), using deionized water as solvent and NaOH as catalyst of the 

reaction. First of all, resorcinol (Indspec, 99.6 wt. %) was dissolved in deionized water 

in an unsealed glass beaker under magnetic stirring until completely dissolved. In 

another beaker, formaldehyde (Química S.A.U., 37 wt. % formaldehyde, 0.6 wt. % 

methanol, 62.4 wt. % water) was mixed with methanol (AnalaR Normapur, 99.9 %) 

under stirring in order to obtain formaldehyde solutions with different proportions of 

stabilizer. Afterwards, both solutions were mixed and stirred until a homogeneous 

solution was obtained. Then, two different NaOH solutions were used in order to 

achieve the desired pH: a NaOH 5 M solution prepared from solid NaOH (AnalaR 

Normapur, 99.9 %) and a NaOH 0.1 M solution (Titripac, Merck). 

The proportions of each reagent depend on the dilution ratio (D), the R/F ratio, the pH 

and the percentage of methanol selected for each experiment. The dilution ratio is 

defined as the molar ratio of the total solvent to the reactants. Total solvent refers to the 

water and methanol contained in the formaldehyde solution and the amount of 

deionized water and methanol added, whilst reactants refers only to the resorcinol and 

formaldehyde. 

In the present work, dilutions between 5 and 8, R/F ratios from 0.3 to 0.7, pH values 

between 4 (pH with no catalyst added) and 7, and percentages of methanol from 0.6 

(already contained in the commercial formaldehyde solution employed) to 12.5, were 

used. These limits were selected taking into account other studies found in the 

bibliography [23]. The range of the methanol percentages was selected from the 

different commercial formaldehyde solutions available (see Table 1). 
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Each precursor solution was placed in a microwave oven at 85 ºC for about 3 hours for 

the gelating and ageing steps, according to the operating conditions described elsewhere 

[18, 23, 24]. The polymer was then dried by microwave heating until a mass loss of 

over 50 wt. % was recorded, giving rise to the organic gel. Next, The organic gel was 

carbonised in a tubular reactor for 2h at 700ºC under a N2 flow (150 mL min-1) to yield 

the desired carbon gel end product. 

The sample nomenclature selected throughout this study is as follows: “CX-pH-D-R/F-

M” where the CX is the abbreviation for the carbon xerogels and the pH, D, R/F and M

are 4 numerical values corresponding to the pH of the precursor solution, the dilution 

ratio, the R/F molar ratio and the percentage of methanol contained in the formaldehyde 

solution, respectively. 

2.2.  Sample characterization 

Sample particles of diameter 2-3 mm were previously outgassed at 120 ºC and 0.1 mbar 

overnight (Micromeritics VAcPrep 0.61) before being characterized. The porous 

properties of the carbon gel were analysed by means of different techniques: the meso-

macroporosity was determined by mercury porosimetry (Micromeritics AutoPore IV), 

while the microporosity was evaluated by nitrogen adsorption-desorption isotherm 

analysis at -196 ºC (Micromeritics Tristar 3020). Micrographs of the carbon xerogels 

were also obtained on a Zeiss DSM 942 scanning electron microscope. 

2.3.  Experimental design 
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As is well known, the final porous properties of carbon gels are affected by several 

variables which are interrelated [12, 18, 23, 24]. Therefore, the selection of the variables 

for tailoring the final properties is crucial. The biggest challenge in this study was to 

ensure that most of the possible combinations of pH, D, R/F and % MeOH were 

covered, taking into account that this is a four-dimensional study and an exponential 

number of combinations of variables is possible for each experiment. 

Accordingly, an experimental design of four variables was constructed based on 

Response Surface Methodology (RSM), using a Design Of Experiments (DOE) which 

allowed the largest possible number of combinations to be covered by the smallest 

possible number of experiments. A D-optimal design was applied to 146 experiments, 

from which a statistical model was obtained for the different responses of the system: 

mesopore volume, macropore volume, pore diameter, bulk density and porosity, etc. 

This experimental design was applied using Design-Expert 7®. 

3. Results and discussion: 

In order to present the large amount of results obtained in a clear manner, a sample 

(CX-6-5-0.3) obtained from a precursor solution with a pH of 6, a dilution ratio of 5 and 

a R/F molar ratio of 0.3 was taken as a reference. The pH, dilution ratio and R/F molar 

ratio were varied with respect to the reference sample. The other variables used were 

kept constant during the synthesis process. Every combination of variables was 

prepared using four different methanol concentrations (i.e. from 0.6 to 12.5 wt. %). A 

selection of the resulting samples is presented in Table 2. 



*Corresponding author. E-mail address: aapuente@incar.csic.es (A. Arenillas) 

As can be seen, a decrease in the concentration of methanol leads to an increase in the 

total pore volume (up to 218 %), pore size (up to 400 nm) and porosity (up to 64 %) 

and, as a consequence, to a decrease in density (up to 37 %). This strong influence is 

graphically shown in Figure 1. The corresponding variations for the reference samples 

are shown in Figure 1a, where it can be seen that the total pore volume increases as the 

concentration of methanol decreases.  

The same trend is also observed for the different pH, R/F molar ratio and dilution ratios 

(Figures 1b, 1c and 1d, respectively). However, the contribution of the mesopore and 

macropore volume to the total volume of pores is different as it depends on all the other 

chemical variables selected. Figure 1a shows mesoporous materials and, in this case, 

methanol only affects the volume of mesopores, since these samples do not have any 

macroporosity. However, Figure 1b shows samples with different a pH (i.e. a precursor 

solution pH of 5). Here it can be seen that not only is the total pore volume three times 

larger when 0.6 wt. % of methanol is applied instead of 12.5 wt. %, but also that the 

type of porosity has changed radically. In this case, the sample obtained with 0.6 wt. % 

of methanol is a macroporous material, while that obtained with 12.5 wt. % of methanol 

is mesoporous. These results show that a change in the proportion of methanol affects 

the porosity of the resulting material considerably.  

Figure 1c displays samples where the R/F molar ratio has been increased with respect to 

the reference ones. In this case, the increase in pore volume obtained is not directly 

proportional to the decrease in methanol, since the increase, when the methanol 

decreases from 4 to 0.6 wt. % is higher than in the case of the other formulations (see 

Table 2). In Figure 1d samples with different dilution ratios are shown. As can be 

observed, the total pore volume increases only slightly with the decrease in methanol 

content, but the type of pores obtained changes drastically in that the material obtained 
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is predominantly mesoporous when 12.5 wt. % of methanol solution is used, but totally 

macroporous when 4 wt. % of methanol is employed. It was not possible to synthesize 

carbon xerogels with 0.6 wt. % of methanol under the conditions used in this study, 

since gelation did not take place, and the precursor solution remained in a sol state.  

It is well known that the pH of the precursor solution has a strong effect on the porosity 

of carbon xerogels. Higher pH values enhance polymerization, leading to an increase in 

the number of clusters of lower size and as a consequence, a decrease in the pore size 

[18, 23, 24, 27, 30, 31]. For this reason, in Figure 2a, which corresponds to samples 

obtained with a pH value of 6, pore sizes are in the mesopore range (i.e. pores between 

5 and 25 nm, depending on the sample) whereas in Figure 2b, corresponding to samples 

with a pH of 5, pores of hundreds of nm may develop. Therefore, as the pH of the 

precursor solution decreases, not only does the pore size increase but also the total pore 

volume. Moreover, in both cases, a decrease in the methanol concentration generates an 

increase in the pore size, which is much higher when a lower pH is used (i.e. the pore 

size can be increased from 22 to 420 nm merely by decreasing the methanol content of 

the sample obtained with a precursor solution pH of 5). 

The R/F molar ratio is considered another important variable for controlling the porosity 

of carbon xerogels. It has been demonstrated that, provided that the rest of the variables 

are kept constant, an excess of formaldehyde promotes the formation and growth of 

clusters and produces a greater number of interconnections [12, 24]. A decrease in the 

R/F ratio displaces the reaction equilibrium to the products, giving rise to an increase in 

the rate of reaction and in the size of the clusters. The SEM micrographs in Figure 3 

show the effect of this variable on the size of the clusters in the carbon xerogel and, in 

turn, on the final porosity. Thus, from the left to the right, it can be seen that an increase 

in the R/F ratio leads to a decrease in the pore size and smaller clusters are formed. 
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However, when the two rows corresponding to two different methanol concentrations 

are compared, it is observed that the effect of the methanol concentration is even greater 

than the influence of the R/F ratio, as it is very difficult to distinguish differences 

between the R/F ratios when 12.5 wt. % is the percentage of methanol used. 

It has been demonstrated that chemical variables are interdependent [23, 24] and 

therefore, they must be studied simultaneously. As it is not possible to represent the 

variations and interdependence of four variables at the same time (i.e. pH, dilution, R/F 

ratio and percentage of methanol), Figure 4 only represents the combined effect of pH 

and dilution ratio on the mesopore volume for two different concentrations of methanol. 

The dilution ratio used in the precursor solution affects the final porosity of carbon 

xerogels in that the greater the dilution ratio, the greater the distance between the 

clusters of polymers formed, leading to materials with wider pores [23, 24]. The R/F 

ratio was fixed at 0.3 for this study, as illustrated in Figure 4, because it has been 

observed to yield a large mesopore volume, not only in this work but also in previous 

published studies [24]. Figures 4a and 4b show a three-dimensional surface plot with 

0.6 and 12.5 wt. % of methanol, respectively. Figure 4c and 4d display the 

corresponding contour plots for the same methanol concentrations. In these graphs, it 

can again be observed that a decrease in the concentration of methanol produces an 

increase in the mesopore volume. Moreover, the maximum is displaced to a higher 

value of pH and the area corresponding to mesopore volume has been reduced.  

It is not possible to synthesize samples with 0.6 wt. % of methanol under the conditions 

of this work, when the pH and dilution are low, since the precursor solution would boil 

and the process would get out of control. Neither was it possible to synthesize samples 

with a low pH and a high dilution ratio because more than 3h would be needed to reach 
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the gelation point, making the process too costly. For this reason these areas are not 

represented on the graph (Figure 4d).  

At some points on the plot, a decrease in pore volume seems to occur. However, the 

decrease observed is due to an enlargement of the pores, as a consequence of which 

some mesopores become macropores, leading to a decrease in the mesopore volume. 

This can also be observed in Figures 1b and 1d, where the type of porosity has been 

drastically modified. In other regions of the graph in Figure 4, an increase in the 

mesopore volume is apparent, as occurs in Figures 1a and 1c. 

All the samples were characterized by nitrogen adsorption in order to evaluate the 

microporosity developed in each case, besides the possible influence of methanol on 

this type of porosity. However, the microporosity of all the carbon xerogels remained 

more or less unchanged. Thus, all the samples in Table 1 present an similar BET surface 

area of ca. 600 m2/g, and a mean micropore size of ca. 0.9 nm. It can be inferred from 

this that the presence of methanol influences the size of the clusters and, in turn the 

meso-macroporosity of the carbon xerogels, though not the micropores that form inside 

the clusters. 

The reason for the influence of methanol content on the final size of the clusters formed 

is related to the role that methanol plays in the stabilization of formaldehyde solutions. 

The oxygen in the carbonyl group from formaldehyde is protonated under acidic 

conditions, which leads to the formation of hemiacetal. However, a sufficient amount of 

methanol allows the reaction to form acetals, which are more stable compounds [28]. 

Therefore, an increase in the concentration of methanol results in the formation of more 

hemiacetals, leaving less formaldehyde available to participate in the sol-gel reaction. 

This result is somewhat similar to the effect produced by the decrease in the R/F ratio in 
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the formulation of carbon xerogels that leads to the formation of smaller clusters. 

Polymeric structures with small clusters give rise to small voids between clusters and 

hence to samples with smaller pores and a lower pore volume. 

Conclusions 

In this study it has been demonstrated that the concentration of methanol present in 

commercial formaldehyde solutions has a significant influence on the porosity of RF 

carbon xerogels synthesized in a microwave oven. Provided that the rest of the variables 

used in the synthesis process are kept constant, carbon xerogels synthesized with a 

lower concentration of methanol show a higher total pore volume and pore size and, as a 

consequence, a lower density and a higher porosity. This effect occurs to different 

degrees depending on the other variables used in the synthesis process. In some cases, 

the type of porosity changes dramatically and samples obtained by the same recipe may 

present meso or macroporosity depending on the concentration of methanol in the 

commercial formaldehyde solution. On the other hand microporosity does not seem to 

be influenced by the presence of methanol. In short, the concentration of methanol can 

be considered a highly useful novel chemical variable for tailoring the porosity of 

carbon xerogels for specific applications. 
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Table 1. Variation of the methanol content in different available commercial solutions 
of formaldehyde. 

SUPPLIER Methanol concentration (wt. %) 

Fernández Rapado <1.3 

Panreac 9-14 

Solvech 9-15 

Merck Chemicals 10 

Oxidal 10-15 

Sigma-Aldrich 10-15 

Spi-Chem non specified 
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Table 2. Porosity parameters, derived from mercury porosimetry, of carbon xerogels 

obtained from 4 different recipes and in each case with 4 different methanol 

concentrations. 

 SAMPLE 
Vtot 

(cm3/g ) 

Vmeso 

(cm3/g) 

Vmacro 

(cm3/g) 

Pore 

diameter 

(nm) 

Bulk 

density 

(g/cm3) 

Porosity 

(%) 

CX-6-5-0.3-12.5 0.53 0.53 0.00 12 0.74 38 

CX-6-5-0.3-8 0.69 0.69 0.00 14 0.70 47 

CX-6-5-0.3-4 0.78 0.78 0.00 15 0.64 49 
Reference 

CX-6-5-0.3-0.6 0.89 0.89 0.00 18 0.59 52 

CX-5-5-0.3-12.5 0.90 0.88 0.02 22 0.50 44 

CX-5-5-0.3-8 1.37 0.82 0.54 46 0.46 64 

CX-5-5-0.3-4 1.94 0.11 1.83 101 0.35 67 

Different 

pH 

CX-5-5-0.3-0.6 2.55 0.03 2.52 420 0.30 72 

CX-6-8-0.3-12.5 1.50 1.18 0.33 47 0.43 63 

CX-6-8-0.3-8 1.53 0.14 1.39 65 0.43 64 

CX-6-8-0.3-4 1.58 0.04 1.55 124 0.42 64 

Different 

dilution 

CX-6-8-0.3-0.6 - - - - - - 

CX-6-5-0.7-12.5 0.28 0.28 0.00 13 0.95 26 

CX-6-5-0.7-8 0.33 0.33 0.00 13 0.92 30 

CX-6-5-0.7-4 0.46 0.46 0.00 14 0.80 36 

Different 

R/F 

CX-6-5-0.7-0.6 0.89 0.86 0.03 21 0.60 52 
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Figure 1. Influence of methanol concentration on the meso-macroporosity and total pore 

volume developed in carbon xerogels in combination with variation of the pH, R/F ratio 

and dilution of the precursor solution. 
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Figure 2. Variation of the pore size distribution of carbon xerogels due to different 

methanol proportions for two different precursor solution pH values: a) pH=6 and b) 

pH=5.  
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Figure 3. SEM images showing the influence of the R/F molar ratio and methanol 

concentration in the formaldehyde solution on the size of the clusters formed and 

therefore on the final porosity of carbon xerogels.  
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Figure 4. Three-dimensional surface plot and contour plot showing the combined effect 

of the dilution ratio and pH on the mesopore volume for two different methanol 

concentrations (R/F ratio fixed at 0.3). 


