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Transport fingerprints at graphene superlattice Dirac points induced by a boron nitride substrate
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We report peculiar transport fingerprints at the secondary Dirac points created by the interaction between
graphene and boron nitride layers. By performing ab initio calculations, the electronic characteristics of the moiré
patterns produced by the interaction between layers are first shown to be in good agreement with experimental
data, and further used to calibrate the tight-binding model implemented for the transport study. By means of
a real-space order-N quantum transport (Kubo) methodology, low-energy (Dirac point) transport properties are
contrasted with those of high-energy (secondary) Dirac points, including both Anderson disorder and Gaussian
impurities to respectively mimic short-range and long-range scattering potentials. Mean free paths at the secondary
Dirac points are found to range from 10 nm to a few hundreds of nm depending on the static disorder, while the
observation of satellite resistivity peaks depends on the strength of quantum interferences and localization effects.
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The understanding of the low-energy transport physics in
graphene has recently been the subject of intense debate. In
the presence of electron-hole puddles (produced by screened
trapped charges), the electronic conductivity exhibits a min-
imum at the Dirac point (almost temperature independent)
which contradicts the scaling theory of localization in two-
dimensional systems [1], and has been analyzed in terms of
percolation theory [2,3].

Perfectly flat hexagonal boron nitride (h-BN) has proved to
be an excellent substrate for graphene devices [4] enabling very
high mobilities, comparable to those of suspended graphene,
thanks to a strong reduction of electron-hole charge fluctua-
tions. However, this also results in a large enhancement of the
low-energy resistivity, with a puzzling power-law temperature
dependence, hardly described by the conventional Anderson
localization regime [5,6]. Different scenarios have been pro-
posed to explain this anomalous feature, such as a semiclassical
behavior of the resistivity in ultraclean samples with vanishing
density of states, or an unconventional localization regime
driven by defect-induced zero-energy modes [7–9].

Although h-BN couples only weakly to graphene, the 1.8%
lattice mismatch between them, and any rotational orientation
of their lattices give rise to moiré patterns that are observed by
scanning tunneling microscopy [10,11]. The presence of these
patterns suggests that h-BN generates a superimposed periodic
potential on graphene, significantly modifying its electronic
spectrum, as evidenced by the formation of two electron-hole
symmetric high-energy secondary Dirac points [12], revealed
in both atomic-scale scanning tunneling spectroscopic mea-
surements [11], as well as in various mesoscopic transport
measurements focusing on the formation of a fractal energy
spectrum (Hofstadter’s butterfly) in the presence of strong
external magnetic fields [13–16]. The zero-field resistivity
fingerprints of those secondary Dirac points remain, however,
elusive, varying significantly from sample to sample, with
values ranging from a few k� to about 15 k�. The ratio
between primary and secondary Dirac point resistivity is
also not understood, is sample dependent, and lacks an

understanding regarding the role of localization effects in the
absence of more in-depth temperature-dependent studies.

This Rapid Communication describes some fundamental
transport features at zero-energy and high-energy Dirac points
induced by the moiré superlattice potential, which are revealed
by varying the nature (short versus long range) and the
strength of a superimposed (static) disorder potential. The
electronic coupling between graphene and h-BN layers is
first investigated with ab initio calculations, providing a more
realistic and complete description of the generated moiré
potential, which can further be contrasted with simplified tight-
binding (TB) models. The transport methodology is based on
the Kubo-Greenwood formalism, successfully implemented
and validated for other forms of disordered graphene [17,18].
Additional weak scatterers are introduced using either the
Anderson disorder or the Gaussian potential, as generic short-
range and long-range disorders, respectively [19–25]. The
mean free paths obtained are compared with the resistivity
behaviors, pinpointing some general reinforcement of the
resistance in the vicinity of all Dirac points, whose values and
observability are, however, affected by the disorder nature and
the strength of quantum interferences. These results provide
some guidance for further exploration of high-energy Dirac
point transport under a controlled environment.

Electronic properties of graphene on boron nitride sub-
strates. Previous theoretical calculations based on density
functional theory (DFT) assumed perfectly eclipsed hon-
eycomb lattices of both two-dimensional (2D) structures,
neglecting any mismatch in their lattice constants. This
approximation breaks the symmetry of the two sublattices in
graphene, opening a band gap on the order of 50 meV, which
disagrees with most experimental data (although Hunt et al.
[15] observe gap formation in their transport measurements
for samples with long wavelengths, and suggest that many-
body interactions may play a role; see the discussion in the
Supplemental Material [26]). Here, we explicitly consider
the somewhat larger lattice constants of h-BN compared to
graphene and performed DFT calculations for three different
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FIG. 1. (Color online) (a) Main frame: Density of states com-
puted from DFT for moiré lattices with angles of 7◦, 11◦, and 21◦.
The arrows indicate the positions of the dips getting closer to zero
energy as the angle is decreased. Inset: Dependence of dip energy
on the wavelength λ. Black down (up) triangles are first-principles
data with the dip below (above) the Fermi level. Blue circles are data
from the diagonalized TB model. The dashed line is the expected
theoretical value (Edip; see text). Red squares are experimental data
from Ref. [11]. (b) DOS from the TB model including the moiré
potential using the original parameters of Ref. [29] (thick blue line)
compared to threefold magnified potential (thin red line), and the
DOS of pristine graphene (dashed black line). (c) Energy profile
representing the sublattice antisymmetric part of the potential (m∗)
for the moiré superlattice with φ = 7◦.

moiré patterns, corresponding to rotation angles of 7◦, 11◦, and
21◦ between graphene and h-BN lattices. The wavelengths of
these patterns λ (1.95, 1.30, and 0.65 nm) require supercells
with 248, 110, and 28 atoms, respectively. The DFT calcu-
lations, which explicitly include van der Waals interactions,
were performed using the SIESTA code [27,28].

Figure 1(a) shows the density of states (DOS) for the
three moiré structures with emerging superlattice features
(dips) indicated by arrows. These dips, which appear almost
symmetrically above and below the charge neutrality point,

TABLE I. Moiré potential parameters extracted from DFT result.

Angle (deg) A (meV) B (meV) C (meV) φ1 φ2

21 19 14 4 5.8 3.9
11 32 23 2 0.7 0.1
7 39 30 0 3.5 4.0

are due to the new Dirac states induced by the underlying
h-BN superlattice potential. Their energy depends on the
moiré periodicity [inset of Fig. 1(a)], in good agreement with
theory (Edip = 2π�vF /

√
3λ) and experimental literature [11].

Notice that a small electron-hole asymmetry appears due to the
interlayer interaction, but there is no band gap opening at the
primary Dirac point within our numerical resolution (8 meV).

The electronic properties of graphene on top of the polar
substrate can be reasonably described with a simplified tight-
binding model

Ĥ = vp · σ + m∗(r)σz + n(r)I, (1)

where the first term stems from pristine graphene while
the second and third terms take into account the substrate
influence. The Pauli matrices σ = (σx,σy,σz) operate on the
basis of the two graphene sublattices, p is the momentum
in the plane, m∗(r) is an effective-mass term that breaks
the sublattice symmetry locally, and n(r) is a long-range
potential symmetric in the sublattices. Both m∗ and n, have the
periodicity of the moiré pattern, λ. We quantify the strength
of the substrate potential from the values of the local energies
in our DFT calculations, which can be estimated, in analogy
to the Mulliken charges, from Ei = ∑

μ′ν ρμνHνμ, where ρ̂

is the electronic density matrix, Ĥ is the Hamiltonian matrix,
μ,ν denote localized atomic orbitals, and the primed sum runs
over all orbitals μ belonging to atom i. We focus only on the
changes in the local energy induced by the h-BN substrate by
taking 	Ei = ECBN

i − EC
i , where ECBN

i and EC
i denote the

local energies on C atoms in the moiré C/BN pattern and in
isolated graphene, respectively. As an illustration, Fig. 1(c)
shows the antisymmetric part (m∗) of the local potential 	Ei

for the moiré lattice with wavelength of 1.95 nm.
We next parametrize the effective moiré potential using the

simplified expression proposed by Sachs et al. [29]:

m∗ = 1

2

[
A sin

(
2πx

λ
+ φ1

)
+ B sin

(
2πy

λ
+ φ2

)
+ C

]
.

(2)

The average value of the modulated mass term m∗(r) (given
by C) is related to the width of the band gap of the system
(which we find to be negligibly small in our calculations). We
also find that the corrugation height of m∗(r) (determined by
the A and B parameters reported in Table I) depends on the
rotation angle (being stronger for larger wavelengths) and on
the interlayer distance (stronger for shorter distances), and can
be larger than previously reported.1

1The parameters given in Ref. [29] are A = 18.6 meV, B =
42.0 meV, φ1 = 1.884, and φ2 = 1.531, and were obtained from DFT
calculations considering different stacking configurations of graphene
on top of h-BN.
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Further increase in the strength of the underlying potential
can be expected from thicker h-BN layers above or below
the graphene sheet. Such variability in the values of A and B

translates into changes in the depth of the dips in the DOS
related to the secondary Dirac points, which is demonstrated
in Fig. 1(b). On the other hand, the energy position of these
Dirac points is unchanged with respect to the intensity of the
potential and follows the expected dependence with λ (Edip), as
shown in the inset of Fig. 1(a). Since secondary Dirac points are
more easily accessible by gating when they occur at moderate
energies (∼0.2 eV), in the following we focus on the transport
properties of the graphene/h-BN structure with the largest
possible moiré periodicity (∼14 nm), which is out of reach for
first-principles simulations. To better contrast the superlattice
potential effects with experimental transport data, we employ
the tight-binding model with values of A = 56 meV and
B = 126 meV [26].

Quantum transport methodology and results. The quantum
wave packet dynamics and Kubo conductivity are calcu-
lated using a real-space implementation and order-N algo-
rithms (Lanczos approach) [17,18,25,30]. The dc conductivity
σ (E,t) for energy E and time t is given by σ (E,t) =
e2ρ(E)	X2(E,t)/t , with ρ(E) being the DOS and 	X2(E,t)
the mean quadratic displacement of the wave packet at energy
E and time t :

	X2(E,t) = Tr[δ(E − H)|X̂(t) − X̂(0)|2]

Tr[δ(E − H)]
. (3)

A key quantity in the analysis of the transport properties is the
diffusion coefficient D(E,t) = 	X2(E,t)/t . D(t) exhibits a
transition from a short-time ballistic motion to a saturation
regime, from which the mean free path �e is extracted
from �e(E) = Dmax(E)/2v(E) [v(E) is the velocity derived
at short times]. The semiclassical conductivity σsc is given
by 1

2e2ρ(E)Dmax(E) and the semiclassical resistivity Rsc =
1/σsc(E). The contribution of quantum interferences is further
indicated by a time-dependent decay of D(E,t) for long
elapsed times. The spin degree of freedom is included as a
factor of 2 for σ and ρ, while calculations are performed with
systems of several tens of millions of carbon atoms and energy
resolution down to 0.54 meV. A modulation of the potential
profile is introduced on top of the above described tight-
binding model by taking on-site energies at random within
[−0.25γ0,0.25γ0], a common model for short-range scattering
potentials [1,19], with γ0 = −2.7 eV the nearest-neighbor
hopping. The Gaussian disorder is defined by a chosen density
of Coulomb impurities (0.125%) and a long-range scattering
potential, following commonly used parameters to mimic
screened charges trapped in the substrate [18,20–23]. The
contribution from NI impurities randomly distributed at ri

is given by renormalized on-site energies at orbital α with
εα = ∑NI

i=1 εi exp[−|rα − ri |2/(2ξ 2)], where ξ = 0.426 nm,
defines the effective potential range, while εi are chosen
at random within [−Wγ0/2,Wγ0/2], with W monitoring
the total disorder strength (we choose two representative
values W = 1 and W = 2 for introducing weak and strong
intervalley scattering, respectively). The results presented
below are obtained by averaging over six different random
configurations, for both Anderson disorder and Gaussian
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FIG. 2. (Color online) Mean free path for disordered graphene
without (dotted blue) and including the moiré potential m∗(r). (a) Case
with Anderson disorder for W = 0.5 (solid black), and (b) Gaussian
long-range disorder for W = 1 (solid black) and W = 2 (solid green).
Rescaled DOSs are shown as dashed red lines. Inset (a) D(E = 0,t)
(black circles) and D(E = Edip,t) (red squares) for Anderson disorder
with moiré potential (filled) and without moiré potential (empty).
Inset (b) D(E = 0,t) (black circles) and D(E = Edip,t) (red squares)
for the case W = 2. The dashed lines correspond to the maximum
diffusion for each case.

impurities. The energy scale of the disorder for the Anderson
model (∼0.67 eV) and the Gaussian model (2.7 eV) is much
bigger than the modulation of n(r) (∼6 meV, for 7◦), which
can therefore be neglected as an additional long-range and
sublattice-symmetric contribution.

Figure 2 shows the mean free paths computed for un-
supported graphene, compared to those of graphene on top
of h-BN with superimposed short-range Anderson (a) and
long-range Gaussian (b) disorder potentials. Mean free paths
are generally seen to strongly increase close to the zero-energy
Dirac point, as well as in the vicinity of the secondary Dirac
point (in the presence of the moiré superlattice potential),
although the amplitudes depend on the nature (short versus
long range) and intensity of the scattering potential. For long-
range disorder, �e(E) is found to be always larger inthe absence
of the moiré potential, whereas the case of short-range disorder
exhibits some opposite trend in the vicinity of secondary Dirac
points. Notice that for most of the chosen disorder parameters,
localization effects remain extremely weak [as evidenced by a
saturation behavior of the diffusion coefficient, Fig. 2(a) inset],
except for a strong on-site impurity potential [illustrated in
the case of Gaussian impurities and W = 2, Fig. 2(b) inset],
for which an energy-independent �e(E) ∼ 10 nm is obtained
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FIG. 3. (Color online) Resistivity with (solid black) and without
(dotted blue) moiré potential. (a) Case with Anderson disorder (W =
0.5). (b) Case with Gaussian potential (W = 1). The rescaled DOS is
shown for comparison (dashed red). Inset (b) Resistivity for the case
W = 2 using the semiclassical expression (dashed) and the quantum
resistivity at time t = 10 ps (solid).

[green solid line in Fig. 2(b)]. For such disorder strength,
as seen in Fig. 2(b) (inset), the diffusion coefficient shows
strong decay after reaching its maximum value, pinpointing
the emergence of quantum interferences.

The corresponding behaviours of the semiclassical resis-
tivity are reported in Fig. 3. The enhancement of the mean
free path in the vicinity of the high-energy Dirac points is
seen to be transformed into a reinforcement of the resistivity,
which stems from the strongly reduced density of states. In
addition to the standard zero-energy peak of the longitudinal
resistivity, two satellite resistivity peaks are formed in the
presence of the substrate-induced moiré potential, in clear
agreement with experimental results [13–15]. For low enough
disorder, the transport regime at the secondary Dirac points as
well as at the primary Dirac point remain, however, far from

a strong insulating regime given the large values of �e(E) ∈
[80 nm,1 μm], suggesting localization lengths several microns
long [17], and therefore limiting the observation of variable-
range hopping to vanishingly small temperatures [31].

The satellite resistivity peaks therefore remain observable
as long as quantum interferences are negligible, whereas the
emergence of localization effects is concomitant with the
vanishing of transport signatures of the secondary Dirac points.
This is illustrated in Fig. 3(b) when varying the disorder
strength from W = 1 to W = 2. For W = 2, as seen in
Fig. 2(b) (inset), the diffusion coefficient exhibits a marked
time-dependent decay after initial saturation, evidencing the
significant contribution of quantum interferences induced by
intervalley scattering [24]. The corresponding resistivities
reported in Fig. 3(b) (inset) show no traces of secondary
Dirac point, but an increasing resistivity with enhancement of
coherent localization effects (the dashed line gives Rsc whereas
the solid line denotes the quantum resistivity computed at a
length scale longer than �e, that is, including the localization
contribution).

In conclusion, fundamental transport features in graphene
induced by a moiré superlattice potential have been unraveled.
At the energy of the superlattice (secondary) Dirac points, an
increase of both the mean free paths and resistivity has been
obtained, confirming experimental data but also quantifying
the role of superimposed disorder in tuning the relative
resistivity between primary and secondary Dirac points. The
long localization lengths deduced from the mean free path
indicate a modest contribution of quantum interferences
and weak intervalley scattering. In contrast, whenever static
disorder leads to mean free paths in the order of 10 nm,
sizable quantum interferences develop and jeopardize the
identification of satellite resistivity peaks. It should be noted
that electron-hole asymmetric resistivity peaks, which are
usually observed in experiments, could be captured by further
adjusting our TB model.
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