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This work studies the aggregation operators on the set of all possible membership degrees
of typical hesitant fuzzy sets, which we refer to as H, as well as the action of H-automor-
phisms which are defined over the set of all finite non-empty subsets of the unitary inter-
val. In order to do so, the partial order 6H, based on a-normalization, is introduced, leading
to a comparison based on selecting the greatest membership degrees of the related fuzzy
sets. Additionally, the idea of interval representation is extended to the context of typical
hesitant aggregation functions named as the H-representation. As main contribution, we
consider the class of finite hesitant triangular norms, studying their properties and analyz-
ing the H-conjugate functions over such operators.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The fuzzy set theory was introduced as a mathematical framework to deal with the incompleteness of information of real
systems and the necessity of combining granularity and flexibility in the representation of such information in practical rea-
soning tasks. Since first introduced by Zadeh [44], many extensions of the fuzzy set theory have been conceived.

Type-2 Fuzzy Sets (T2FSs) are an important generalization of classical fuzzy sets able to model vague concepts via more
flexible (non-precise) membership functions. Some of the main results on this generalization are summarized in [18,19].
Their flexibility in the representation of the ambiguity comes coupled to severe problems in their practical applications.
Interval-valued fuzzy sets (IVFSs) were conceived [30,45] as a particular class of T2FSs which captures the imprecision of
the membership degree as an interval, reflecting the measure of vagueness and uncertainty in the width of such intervals.
Further significant results are also Atanassov’s intuitionistic fuzzy sets [1] (AIFSs), taking into account concepts of intuition-
istic logic by considering the hesitation related to the dual construction of (non-)membership degrees. See more details in
[2,4]. An integrated approach, named as the interval-valued intuitionistic fuzzy set theory [3] is born from the combination
of the concept of IVFS and AIFS by relaxing the complementary operation and modelling the membership degrees by means
avarra.es
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of intervals or Atanassov’s intuitionistic pairs. Another direction of research, but with analogous results, considers vague sets
(see, e.g., [8,22]).

On the hall of approaches related to many-valued fuzzy sets, this work focuses on the study of Hesitant Fuzzy Logic (HFL)
whose foundations come from the theory of Hesitant Fuzzy Sets (HFSs). This theory was recently introduced in [33,34] as an
appropriate tool to deal with multi-criteria decision making. Thus, it would be possible to take a set of values grouped to-
gether based on certain criteria, in order to define the membership degree of an element in a HFS.
1.1. Related works on aggregating information based on HFSs

Very frequently, distinct approaches to deal with multi-criteria decision making use aggregation operators to group the
information prior to the reasoning phase. These operators have an important role in fuzzy reasoning, as presented in
[10,11,15,17,18,46,47]. Very relevant examples of aggregation operators often used for decision making are the Weighted
Averaging (WA) and Ordered Weighted Averaging (OWA) operators, which are based on weighting vectors, and their corre-
sponding continuous extensions C-WA and C-OWA [43]. These operators have been subsequently generalized to produce
aggregated information based on confidence indexes and weighting vectors, giving rise to Confidence Induced Weighted
Aggregation (CIWA) and Confidence Induced Ordered Weighted Aggregation (CIOWA) operators [38] (a review of such oper-
ators is included in Section 2).

Moreover, different versions of these operators have been proposed thereafter to aggregate information provided as non-
classical fuzzy sets. By using these operators, decision making algorithms are able to deal with different representations of
uncertainty. Regarding HFSs, Xia et al. propose a series of such aggregation operators so that they can be used in situations in
which there exist difficulties in expressing the membership degree of an element as a scalar value. Further studies [40,42]
have produced a wide family of aggregation operators and concepts of entropy and cross-entropy for hesitant fuzzy infor-
mation are discussed including their desirable properties. In [13], some correlation coefficient formulas for HFSs are derived
and applied to clustering analysis under hesitant fuzzy environments. In [48], extensions for the hesitant context of the Bon-
ferroni mean and some of their variants were proposed and applied in multi-criteria decision making.

Research on HFSs has also explored the application of aggregation operators with purposes other than WA operators. In
[28], the concept of hesitant fuzzy linguistic term set was introduced to manage hesitation in qualitative contexts and ap-
plied in group making decision in [29]. Interesting results related to distances and other similar measures for HFSs are pre-
sented in [41]. Additionally, in [37], aggregation operators for HFSs were introduced along with the relationship between
HFSs and AIFSs. In [20], a mutual transformation of the entropy into the similarity measure for HFSs was proposed and a
partial order on HFSs based on the normalization of hesitant fuzzy elements was also proposed in [41].

More recently, aggregation operators defined over HFSs and their application to multiple attribute decision making are
studied in [26,35,36,39]. Furthermore, interval-valued hesitant preference relations were introduced in [12] describing
uncertain evaluation information in group decision making processes.
1.2. Relevance of new aggregation functions for HFSs by integration of formal concepts from Fuzzy Logic and Lattice Theory

It is well known that the information provided by inference systems modelled by the Fuzzy Logic and founded on the
Fuzzy Set Theory can be formally discussed and compared in terms of the partial ordered sets defined in accordance with
the Lattice Theory. In lattice-valued fuzzy set theory, aggregation functions are increasing operators with respect to the order
of the lattice [24,25].

Despite the diversity in the above literature describing on aggregation information related to the set H of hesitant fuzzy
sets (HFSs), except the recent results presented in [20] dealing with a partial order relation on HFSs, the major contributions
have considered only relations based on distance or score functions to order the hesitant fuzzy elements. As one can easily
notice, they are not partial orders since there exist at least two hesitant fuzzy elements associated to the same score image.
Moreover, these approaches cannot provide an explicit definition of a hesitant aggregation function (HAF) on H. Conse-
quently, they can be applied to many distinct scenarios but they are only able to specify aggregation operators on H which
extend some well known aggregation function on [0,1].

Differently from such literature which define specific HAFs even without a formal concept of an HAF, in this paper the
definition of HAFs is consistent with the definition of aggregation functions valued in the complete bounded lattice
ðH;6HÞÞ, whenever the partial order 6H is fixed according to [24,25]. As the main benefit, the minimum criteria for a mul-
tidimensional HFA F : Hn ! H can be formalized.

Founded on the Lattice Theory, distinct ways to obtain partial ordered HFSs on H are presented, which are based on two
general normalization principles. By fixing one of this normalization and defining a binary relation 6H as the more intuitive
partial order on H, we are able to compare (by reporting to the usual order on [0,1]) one by one all the corresponding most
relevant elements of a compatible pair of normalized hesitant fuzzy sets. So, when an HAF is formally defined according to
the bounded lattice-valued fuzzy aggregation functions, as considered in [24], we obtain the definition of a hesitant t-norm
in ðH;6HÞ consistently with the definition of a valued t-norm in ([0,1],6). Inspired by the OWA-like operators, many oper-
ators have been defined for the context of HFS theory. In addition, four classes of OWAs are reported in order to show that
OWA operators can also be defined on the lattice ðH;6HÞ.
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1.3. Main purposes of this work

This paper studies the aggregation operators for the class of Typical Hesitant Fuzzy Sets (THFSs), i.e. for those fuzzy sets
defined over the set H #}ð½0;1�Þ of all finite non-empty subsets of the unitary interval [0,1]. Additionally, we introduce a
novel partial order 6H, which is based on r-permutation followed by a-normalization. Consequently, it is possible to discuss
the monotonous information aggregation between typical hesitant fuzzy elements with respect to the complete bounded
lattice ðH;6HÞ.

The notion of Typical Hesitant Fuzzy Aggregation Function (THAF) on the lattice ðH;6HÞ extends the notion of fuzzy
Aggregation Function (AF) on the usual lattice ([0,1],6). This notion of THAF is compatible with the one introduced in
[11,24,25], connecting the general concept of AF on bounded partially ordered sets and that on bounded lattices. Moreover,
it is also consistent with the order information performed on LI , i.e. on the set of all the closed subintervals of the unit inter-
val [0,1], well-known as the underlying lattice of interval-valued fuzzy set theory (or equivalently, of Atanassov’s intuition-
istic fuzzy set theory) [15]. This work provides reasonable criteria to guarantee the (strict) isotonicity of THAFs (mainly
related to t-norms) which is compatible with the corresponding logical construction on THFSs, what constitutes a significant
advantage in using the partial order on ðH;6HÞ.

As main contribution of this work, we propose two natural methodologies to produce THAFs from AFs, in accordance to
ðH;6HÞ. Thus, by using an ordered aggregation operator M as AF we can define two ordered aggregation operators bM and eM
as THAF from such methodologies, meaning that more relevant information can be considered from the partial order 6H.

In addition to the construction method for THAFs from AFs, we introduce in this paper the Finite Hesitant Triangular
Norms (FHTNs), studying their main properties and analyzing the action of H-automorphisms over such operators.

1.4. Paper outline

The paper is organized as follows. After the preliminaries in Section 2, THFSs are defined in Section 3 as subsets of finite
and non-empty fuzzy sets of the unitary interval. Section 3 includes as well the definition of a-normalization over finite
HFSs to compare the values in THFSs. In Section 4, two natural methodologies to obtain THAFs from AFs are considered,
(a) the class of eM , whose definition is based on a-normalization of fuzzy sets and (b) the class of bM , identified as an H-rep-
resentation of a given aggregation function M. The main properties of AFs, as well as the conditions under which such prop-
erties are preserved in both classes of THAFs are also discussed, particularly those related to FHTNs. Section 6 introduces the
H-automorphisms analyzing the THAFs obtained as conjugate functions by action of such automorphisms in the class of
FHTNs, including a description of conditions under which they verify the main properties of THAFs. Finally, Section 7 reports
the main results and further work.

2. Preliminaries

In this section, we review basic concepts of aggregation functions on the unitary interval [0,1], their main properties and
examples, including the important class of triangular norms. We also recall the definition of an automorphism on [0,1].

Definition 1 [9, Definition 0]. An automorphism is a function /: [0,1] ? [0,1] which is bijective and increasing. Notice that,
each automorphism / is continuous, strictly increasing and /(0) = 0 and /(1) = 1.
Definition 2 [11, Definition 1]. An aggregation function of dimension n (n-ary aggregation function) is an increasing func-
tion M: [0,1]n ? [0,1] such that M(0, . . . ,0) = 0 and M(1, . . . ,1) = 1.
Definition 3 [11, Definitions 2 and 3]. Let M: [0,1]n ? [0,1] be an n-ary aggregation function.

(i) M is said to have an annihilator a 2 [0,1] if M(x1, . . . ,xn) = a whenever a 2 {x1, . . . ,xn}.
(ii) M is said to be strictly increasing if it is strictly increasing as a real function on [0,1]n, if M has no annihilator, or if it is

strictly increasing in ([0,1]n{a})n if a is an annihilator of M.
(iii) M is said to have divisors of zero if there exist x1, . . . , xn 2 ]0,1] such that M(x1, . . . ,xn) = 0.
(iv) M is said to be idempotent if M(x, . . . ,x) = x for any x 2 [0,1].

For the particular case of binary AFs we recall the following definitions.

Definition 4 [11, Definition 2]. Let M be a binary aggregation function.

(i) M is said to be symmetric if M(x,y) = M(y,x) for any x, y 2 [0,1].
(ii) M is said to be associative if M(M(x,y),z) = M(x,M(y,z)) for any x, y, z 2 [0,1].
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Example 1. Let (w1,w2, . . . ,wn) 2 [0,1]n be a non-negative weighting vector such that
Pn

i¼1wi ¼ 1. Additionally, let r be a per-
mutation such that xr(i) is the ith greatest element xi. Let li 2 [0,1] be the confidence level associated with each xi. For all (x1-

,x2, . . . ,xn) 2 [0,1]n, we have the following definitions:

1. Weighted Averaging Operator, WA: [0,1]n ? [0,1] given by
WAðx1; x2; . . . ; xnÞ ¼
Xn

i¼1

wi � xi; ð1Þ
is one of the most fundamental aggregation operators and has been applied in many areas, especially in those related to mul-
ti-attribute decision making.
2. Confidence Induced Weighted Aggregation Operator, CIWA: [0,1]n ? [0,1], given by
CIWAðx1; x2; . . . ; xnÞ ¼
Xn

i¼1

wi � li � xi; ð2Þ
was introduced in [38] and extends the WA in order to also consider the confidence level related to the familiarity of the
expert with the professional field.
3. Ordered Weighted Averaging Operator, OWA: [0,1]n ? [0,1] given by
OWAðx1; x2; . . . ; xnÞ ¼
Xn

i¼1

wi � xrðiÞ; ð3Þ
was originally introduced by Yager in [43] to aggregate scores associated with the satisfaction of multiple criteria, in which
the aggregated arguments are rearranged in descending order, and the weight vector is merely associated with their ordered
positions.
4. Confidence Induced Ordered Weighted Averaging Operator, CIOWA: [0,1]n ? [0,1] given by
CIOWAðx1; x2; . . . ; xnÞ ¼
Xn

i¼1

wi � lrðiÞ � xrðiÞ; ð4Þ
provides a parameterized family of aggregation operators, which includes many of the well-known operators such as: (i) the
minimum operator when w1 = 1 and wj = 0 for j – 1; (ii) the maximum operator when wn = 1 and wj = 0 for j – n; and (iii)
the arithmetic median operator when wj ¼ 1

n. For more details, see [38].

We recall now the concept of t-norm which plays a key role, to model conjunctions in Fuzzy Logic or intersections in fuz-
zy set theory.

Definition 5 [23, Definition 2.2]. A triangular norm (t-norm in short) is an associative, symmetric and binary aggregation
function T: [0,1]2 ? [0,1] such that T(1,x) = x for all x 2 [0,1]. A strictly increasing continuous t-norm is called a strict t-norm.

A particular type of continuous t-norms is that of the Archimedean t-norms (see, e.g., [23]).

Definition 6 [23, Definition 6.7]. A continuous t-norm T is said to be Archimedean if T(x,x) < x for all x2]0,1[.
It is worth to remark that the one above is not the usual definition of Archimedean t-norm in the literature. Nevertheless,

both definitions are equivalent when dealing with continuous t-norms ([23]). Any strict t-norm (i.e., any continuous and
strictly increasing t-norm) is necessarily an Archimedean t-norm.

The following result, already presented in [23,32], shows that any strict t-norm is just the image of the conjugate function
of the product t-norm TP(x,y) = x � y.

Theorem 1. A t-norm T is strict if and only if there exists an automorphism u on the unitary interval such that
Tðx; yÞ ¼ u�1ðuðxÞ �uðyÞÞ; 8x; y 2 ½0;1�:
3. Hesitant fuzzy sets

According to [41], a Hesitant Fuzzy Element (HFE) is an element of }([0,1]), the powerset of unitary interval [0,1]. By
restricting HFSs, this section introduces the complete bounded lattice ðH;6HÞ, where H denotes the set of Typical Hesitant
Fuzzy Elements (THFEs), i.e. the subset of finite and nonempty HFEs and 6H indicates the corresponding partial order on H.

Definition 7 [34]. Let }([0,1]) be the set of all subsets of the unitary interval and U be a nonempty set. Let lA: U ? }([0,1]),
then a Hesitant Fuzzy Set (HFS) A defined over U is given by
A ¼ fðx;lAðxÞÞ : x 2 Ug: ð5Þ
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Although a HFE could be any subset of [0,1], practical works dealing with hesitant fuzzy sets frequently restrict to finite
sets [40,41]. Notice that, if for some x 2 U, lA(x) = ; then A makes no sense [34]. Other works on HFSs also assume explicitly
or implicitly that the memberships of HFSs are finite and nonempty subsets (see this, e. g. in [21,37,41,47]).

This paper considers finite and nonempty HFSs. This is formally presented in the next definition.

Definition 8. Let H #}ð½0;1�Þ be the set of all finite non-empty subsets of the interval [0,1], and let U be a non-empty set. A
Typical Hesitant Fuzzy Set (THFS) A over U is given by Eq. (5), where lA : U ! H.

Each X 2 H is called a Typical Hesitant Fuzzy Element of H (THFE) and the number of its elements, i.e. the cardinality of
X, is referred to as #X.

The set of all unitary subsets on }([0,1]) is called the set of diagonal or degenerate elements of H and is denoted by DH,
i.e. DH ¼ fX 2 H : #X ¼ 1g. In addition, interval-valued and Atanassov’s intuitionistic fuzzy values as well as the diagonal
elements of H are all seen as fuzzy values and they can be seen as THFSs.

3.1. Partial orders on H

We start this section showing that the usual inclusion order # , restricted to the set H #}ð½0;1�Þ, it is not suitable to com-
pare THFSs. Thus, we consider a normalization process on subsets of H and introduce the new partial order 6H such that
ðH;6HÞ is a complete bounded lattice. Particularly, there are two opposite principles for such normalization:

(i) a-normalization, by removing elements of the set having more elements, and
(ii) b-normalization, by adding elements to the set with a lower number of elements.

Both principles are described in the following sections. In particular, the b-normalization principle was also suggested in
[41] (see also [20,39,47]).

3.1.1. The complete bounded lattice ðH; # Þ
Clearly, ðH; # Þ is a complete bounded lattice. However the inclusion relation # is not a suitable partial order for THFEs -

since it does not match the usual order on [0,1] when dealing with diagonal elements, i.e. ðDH; # Þ�ð½0;1�;6Þ. Therefore, it
should only be used as an auxiliary order on H, similarly to what usually happens in interval-valued fuzzy set theory, where
the main order is the product order (see [5,14,31]).

3.1.2. The complete bounded lattice ðH;6HÞ
In order to compare two arbitrary THFEs with a partial order on H, we first consider applying normalization for them to

have the same cardinality. Then, the comparison is performed by confronting one by one the values of the normalized THFEs.
Additionally, distinct normalization processes determine distinct orders on H.

When Nn ¼ f1; . . . ;ng, for all X 2 H, a mapping rX : N#X ! X defines a permutation such that, for any i 2 N#X�1, we have
that
rXðiÞ < rXðiþ 1Þ:
That is, for any X;Y 2 HðmÞ ¼ fX 2 H : #X ¼ mg, with m 2 N, we have that
X6HðmÞY iff rXðiÞ 6 rYðiÞ for each i 2 Nm: ð6Þ
Now, the two normalization processes are defined:

(i) Let }(m)(X) = {A # X: #A = m}. Given n 2 N, m 6 n and a family ðAmÞm2Nn
of sets such that Am 2 }ðmÞðNnÞ, with #Am = m.

The a-normalization determined by ðAmÞm2Nn
is obtained by the function a : H�N! H whose definition is given by
aðX; kÞ ¼
X; if #X 6 k;

frXðiÞ : i 2 Akg; otherwise:

�
ð7Þ
And, based on the a-normalization stated by Eq. (7), it is possible to choose, for each m 2 N, the m greatest elements of X. So,
we obtained the normalized set a(X,m) 2 }(m)(X) determined by Am = {n �m + 1,n �m + 2, . . . ,n}.

(ii) Let ðBmÞm2Nn
be a family of functions where each function Bm : H! H is such that BmðXÞ [ X 2 HðmÞ when #X 6m. The

b-normalization determined by ðBmÞm2Nn
is obtained by the function b : H�N! H given by
bðX; kÞ ¼
X; if #X P k;

X [ BkðXÞ; otherwise:

�
ð8Þ
Let c be a (a-) b-normalization function. Given two sets X;Y 2 H the sets c(X,#Y) and c(Y,#X) belong to Hðminð#X;#YÞÞ, i.e.
they have the same cardinality.
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From now on we consider only a-normalization, since it is reasonable to our main proposal. In particular, given two
THFSs X and Y, we will always consider in their a-normalization n = max (#X,#Y), m = min (#X,#Y) and
Am = {n �m + 1,n �m + 2, . . . ,n}.

Example 2. Let X ¼ f0:4;0:5;0:6g;Y ¼ f0:1;0:5;0:6;0:7g 2 H. Then m = 3, n = 4 and therefore A3 = {2,3,4}. In this conditions
we obtain that aðX;YÞ ¼ aðX;4Þ ¼ X and aðY;XÞ ¼ aðY ;3Þ ¼ frY ðiÞ : i 2 A3g ¼ f0:5;0:6;0:7g. Therefore aðX;YÞ<Hð3ÞaðY;XÞ. So,
by the a-normalization we obtain two sets with the same cardinality (m) which allows us to compare them using the strict
partial order <HðmÞ .

Additionally, by normalizing, it is possible to extend the order on HðmÞ in Eq. (6) for H. For instance, if we consider the
a-normalization then, for X;Y 2 H, we have that
1 Not
X6HYiffðaðX;#YÞ<HðmÞaðY;#XÞÞ or ðaðX;#YÞ ¼ aðY;#XÞ and #Y 6 #XÞ: ð9Þ
Thus, according to Eq. (9), the following holds:

(i) if m = #X < #Y then X6HY iff X6HðmÞaðY;mÞ;
(ii) otherwise, if m = #Y 6 #X, we can conclude that X6HY iff aðX;mÞ<HðmÞY .
Example 3. Consider X ¼ f0:6;0:3; 0:8g;Y ¼ f0:8;0:5g 2 H. By Eqs. (7) and (9), since m = min (#X,#Y) = 2, for all i 2 {1,2} it
holds that ra(Y,3)(i) 6 ra(X,2)(i), meaning that Y6H2aðX;2Þ ¼ f0:6;0:8g. Therefore, we obtain that XPHY .
Remark 1. The score function is frequently applied in recent works, see e.g. [26,39], in order to deal with ordered aggrega-
tion operators in HFL. In this paper, we provide another option to compare HFSs which is compatible with the partial order
6H. For instance, let X ¼ f0:6;0:3;0:8g;Y ¼ f0:8;0:5g 2 H. According to [40], Definition 2, based on the score function
s : H;! ½0;1�, we have that X � Y since sðXÞ ¼ 1

3 ð0:6þ 0:3þ 0:8ÞPS
1
2 ð0:8þ 0:5Þ ¼ sðYÞ, meaning that X is superior to Y.1

However, based on the bounded lattice ðH;6HÞ and by Example 3, it is immediate than Y6HX. Thus, the interpretation of the
partial order 6H considers the most significant corresponding elements, by the a-normalization and r-permutation, when X
and Y are compared.

There exist other possibilities to compare THFEs which are not based on normalization. For X;Y 2 H,

(i) when m = min(#X,#Y), we have that
XEHY iff ðX ¼ YÞ or ð9i 2 Nm;rXðiÞ < rY ðiÞ and 8j < i;rXðjÞ ¼ rY ðjÞÞ;
(ii) alternatively, we have !  !

X^HY iff

1
#X

X
x2X

x <
1

#Y

X
y2Y

y or
1

#X

X
x2X

x ¼ 1
#Y

X
y2Y

y and #X
Y
x2X

x 6 #Y
Y
y2Y

y :
Hereinafter, we will use the partial order 6H, performing the comparison by selecting the greatest values of each THFE.
Moreover, the notation X�HY will be used to express that X and Y are not comparable w.r.t. the order 6H, i.e. neither X6HY
nor Y6HX.

Clearly, the partial order 6H as well as the results obtained in the following could be easily adapted from a- to b-
normalization.

Proposition 1. ðH;6HÞ is a bounded lattice with the bottom and top elements given by 0 = {0} and 1 = {1}, respectively.
Proof. Let X;Y 2 H, m = #X and n = #Y. Then, the join-operation of X and Y, denoted by X _ Y, is defined as:
X _ Y ¼
aðX;nÞ; if aðX;nÞ ¼ aðY ;mÞ;
frXðiÞ _ raðY ;mÞðiÞ : i 2 Nmg [ frYðiÞ : i 2 Nn�mg; if aðX;nÞ– aðY ;mÞ and m 6 n;

fraðX;nÞðiÞ _ rYðiÞ : i 2 Nng [ frXðiÞ : i 2 Nm�ng; otherwise:

8><>:

And, analogously, the meet-operation of X and Y is given by
X ^ Y ¼

X; if aðX;nÞ ¼ aðY;mÞ and n 6 m;

Y; if aðX;nÞ ¼ aðY;mÞ and m < n;

frXðiÞ ^ raðY ;mÞðiÞ : i 2 Nmg; if aðX;nÞ– aðY;mÞ and m 6 n;

fraðX;nÞðiÞ ^ rYðiÞ : i 2 Nng; otherwise:

8>>><>>>:

e that � is not a partial order because is not antisymmetric, e.g. sðXÞ ¼ sðf0:2;0:7; 0:8gÞ ¼ sðf0:3;0:4;0:5;0:6; 0:7;0:9gÞ.
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Notice that X _ 1 = 1 and X ^ 0 = 0, and consequently ðH;6HÞ is a bounded lattice. h
4. Typical hesitant aggregation functions

We consider in this section two distinct methods for extending AFs to THAFs in accordance with the Lattice Theory. In
order to illustrate our proposal we focus on four classes of THAFs, generated from the AFs in Section 2. We study the con-
ditions under which the idempotency and monotonicity properties, the annihilator and neutral elements together with the
divisors of zero are verified by n-ary THAFs. Additionally other properties are also investigated for binary THAFs.

4.1. Main concepts of THAFs

We present in this section two methods to generate THAFs from AFs, both preserving monotonicity with respect to the
partial order 6H and the boundary conditions:

Definition 9. Let M : Hn ! H be an n-ary function.
(i) M is an n-ary THAF if
[M1] M is isotonic w.r.t. the partial order 6H such that Mð0; � � � ;0Þ ¼ 0 and Mð1; . . . ;1Þ ¼ 1.

By Definition 9, the maximun and minimun operators are extended to HFL:

Example 4. Let X1;X2; . . . ;Xn 2 H. The operators M^;M_ : Hn ! H given by
M^ðX1; . . . ;XnÞ ¼ X1 ^ . . . ^ Xn; M_ðX1; . . . ;XnÞ ¼ X1 _ . . . _ Xn ð10Þ
are THAFs. Moreover, any combination of
V

and
W

is also a THAF. See, e.g, the max–min functions
BSðX1; . . . ;XnÞ ¼
_m
i¼1

^
Xj2Si

Xj ð11Þ
where S ¼ fSigm
i¼1 is a family of subsets of {X1, . . . ,Xn}.
Proposition 2. Let M: [0,1]n ? [0,1] be an n-ary AF, rX : N#X ! X be a permutation and aðAmÞ : H�N! H be an a-normaliza-
tion determined by ðAmÞm2Nn

. Then, for all X1; . . . ;Xn 2 H, an n-ary function eM : Hn ! H given by
eMðX1; . . . ;XnÞ ¼
fMðrX1 ðiÞ; . . .rXnðiÞÞ : 1 6 i 6 mg; if #X1 ¼ . . . ¼ #Xn;eMðaðX1;mÞ; . . . ;aðXn;mÞÞ; otherwise;

(
ð12Þ
is a THAF when m = min{#X1, . . . ,#Xn}.
Proof. eMð0; . . . ;0Þ ¼ eMðf0g; . . . ; f0gÞ ¼ fMð0; . . . ;0Þg ¼ f0g ¼ 0. Analogously, eMð1; . . . ;1Þ ¼ 1. Without loss of generality, we
analyze the isotonicity with respect to the first component. Let X1; . . . ;Xn;Y1; . . . ;Yn 2 H. If Xj<HYj then we have that

aðXj;mÞ6HðmÞaðYj;mÞ, for all 1 6 j 6 n. For simplicity, we will denote a(Xj,m) byfXj . Thus, since M is a non-decreasing function,

for each 1 6 i 6m, MðreX1
ðiÞ; . . . ;reXn

ðiÞÞ 6 MðreY1
ðiÞ; . . . ;reYn

ðiÞÞ. Therefore, we obtain that eMðfX1 ; . . . ;fXnÞ6H
eMðfY1 ; . . . ;fYnÞ. So,

we can conclude that eMðX1; . . . ;XnÞ6H
eMðY1; . . . ;YnÞ. h

Another natural and simple way to obtain THAFs from an AFs is the following:

Proposition 3. Let M: [0,1]n ? [0, ] be an AF. Then, for all X1; . . . ;Xn 2 H, a function bM : Hn ! H given by Eq. (13), is a THAF.
bMðX1;X2; . . . ;XnÞ ¼ fMðx1; . . . ; xnÞ : xi 2 Xi for each i ¼ 1; . . . ;ng ð13Þ
Proof. bMð0; . . . ;0Þ ¼ eMðf0g; . . . ; f0gÞ ¼ fMð0; . . . ;0Þg ¼ f0g ¼ 0. Analogously, bMð1; . . . ;1Þ ¼ 1. Let X1;Y1 2 H. Again, we just
analyze the isotonicity with respect to the first component. First, suppose that #Y1 6 # X1 then, for each y1 2 Y1 and xi 2 Xi

such that 2 6 i 6 n, it holds that M rX1 r�1
Y1
ðy1Þ

� �
; x2; . . . ; xn

� �
6 Mðy1; x2; . . . ; xnÞ. So, clearly, bMðX1;X2; . . . ;XnÞ

6H
bMðY1;X2; . . . ;XnÞ. And now, in other case, if # Y1 < #X1 then, for each xi 2 Xi such that 1 6 i 6 n, we have that

Mðx1; . . . ; xnÞ 6 M rY1 r�1
X1
ðx1Þ

� �
; . . . ; xn

� �
. Therefore, bMðX1;X2; . . . ;XnÞ6H

bMðY1;X2; . . . ;XnÞ. h

In Remark 2, we briefly recall some well-known HAFs, in the sense of [38].



Table 1
Examples of THAFs.

k Operator THAFs

M1ðX1;X2Þ ¼ f0:72;0:54:0:6;0:42;0:8;0:62g
1 HFWA gM1 ðX1;X2Þ ¼ f0:8;0:54gdM1 ðX1;X2Þ ¼ f0:72;0:54;0:8;0:62g

M2ðX1;X2Þ ¼ f0:2904;0:2724;0:348;0:33;0:48;0:462g
2 CIHFWA gM2 ðX1;X2Þ ¼ f0:512;0:87gdM2 ðX1;X2Þ ¼ f0:888;0:87;0:512;0:694g

M3ðX1;X2Þ ¼ f0:68;0:56;0:5;0:38;0:8;0:68g
3 HFOWA gM3 ðX1;X2Þ ¼gM1 ðX1;X2ÞdM3 ðX1;X2Þ ¼dM1 ðX1;X2Þ

M4ðX1;X2Þ ¼ f0:228;0:216;0:282;0:27;0:48;0:468g
4 CIHFOWA gM4 ðX1;X2Þ ¼gM2 ðX1;X2ÞdM4 ðX1;X2Þ ¼dM2 ðX1;X2Þ
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Remark 2. Let (w1,w2, . . . ,wn) 2 [0,1]n be a non-negative weighting vector such that
Pn
i¼1

wi ¼ 1. Additionally, for all

ðX1;X2; . . . ;XnÞ 2 Hn, let r be a permutation ordering such elements in a way that Xr(i) is the i-th largest element of all Xi and
whenever i = 1(1)n and 0 6 li 6 1, li are the corresponding confident levels of Xi. For all ðX1;X2; . . . ;XnÞ 2 Hn we report the
following definitions:

1. Hesitant Fuzzy Weighted Averaging Operator, HFWA : Hn ! H given by
HFWAðX1;X2; . . . ;XnÞ ¼
[

x12X1 ;...;xn2Xn

Xn

i¼1

wi � xi; ð14Þ
2. Hesitant Fuzzy Confidence Induced Weighted Aggregation Operator, denoted by CIHFWA : Hn ! H and given by
CIHFWAðX1;X2; . . . ;XnÞ ¼
[

x12X1 ;...;xn2Xn

Xn

i¼1

wi � li � xi; ð15Þ
3. Hesitant Fuzzy Ordered Weighted Averaging Operator, HFOWA : Hn ! H given by
HFOWAðX1;X2; . . . ;XnÞ ¼
[

x12X1 ;...;xn2Xn

Xn

i¼1

wi � xrðiÞ; ð16Þ
4. Confidence Induced Ordered Weighted Aggregation Operator, CIHFOWA : Hn ! H given by
CIHFOWAðX1;X2; . . . ;XnÞ ¼
[

x12X1 ;...;xn2Xn

Xn

i¼1

wi � lrðiÞ � xrðiÞ: ð17Þ
Table 1 presents three examples for the above four classes of THAFs which are conceived with three distinct definitions.
The first one, indexed by Mk; k 2 N4, is related to the operators reported in Remark 2; the second and third definitions are
related to the methodologies to obtain THFSs, given by Definitions 2 and 3, respectively. In Table 1 we consider the following
THFEs,
X1 ¼ f0:6;0:3;0:8g; X2 ¼ f0:8:0:5g 2 H
as well as the weighting vector w = (0.4,0.6). The examples of CIHFWAs and CIHFOWAs are obtained when we consider that,
for i 2 N2 and j 2 N3, each xij 2 Xi is associated to a confidence level lij. In this case-study, they are expressed as
Xl

1 ¼ fð0:1; 0:6Þ; ð0:5; 0:3Þ; ð0:6; 0:8ÞgÞ and Xl
2 ¼ fð0:6;0:8Þ; ð0:9;0:5Þg.

Some comments related to the THAFs in Table 1:

(i) Mk, with k 2 N4, were obtained by applying Eqs. (14)–(17) making explicit all the information represented by the
THFSs;

(ii) Since aðX1;2Þ6H2 X2, by Eq. (9) we have that X1PHX2. This implies that:
(ii-a) By Eq. (12), it holds that
gM1ðX1;X2Þ ¼gM1ðf0:6;0:8g;X2Þ ¼ f0:8 � 0:4þ 0:8 � 0:6;0:6 � 0:4þ 0:5 � 0:6g;
resulting on the simplified expression of gM1 in Table 1. One can observe that when M is an AF, only the relevant information
is extracted from both the partial order 6H and the a-normalization process is represented by the THAF eM .
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(ii-b) Additionally, by Eq. (13), it holds that
bM1ðX1;X2Þ ¼ bM1ðf0:6;0:8g;X2Þ
¼ f0:6 � 0:4þ 0:8 � 0:6;0:6 � 0:4þ 0:5 � 0:6;0:3 � 0:4þ 0:8 � 0:6;0:3 � 0:4þ 0:5 � 0:6;0:8 � 0:4þ 0:8 � 0:6;0:8
� 0:4þ 0:5 � 0:6g:
See line 3 at Table 1. Now, when M is an AF, the relevant information, which is extracted from a-normalization process is
represented by the THAF bM .

(iii) According to Eqs. (12) and (13) together with the statements in Example 3, since X26HX1, we have that
gM3ðX1;X2Þ ¼gM1ðX1;X2Þ
and dM3ðX1;X2Þ ¼dM1ðX1;X2Þ, as stated in Table 1. Analogous considerations can be obtained based on the fact that Xl
1PHXl

2.
(iv) By Remark 1, X1 � X2. Thus, by applying Eq. (16), we obtain that
M3 ¼ f0:8 � 0:4þ 0:6 � 0:6;0:8 � 0:4þ 0:8 � 0:6;0:8 � 0:4þ 0:3 � 0:6;0:5 � 0:4þ 0:6 � 0:6;0:5 � 0:4þ 0:8 � 0:6;0:5 � 0:4
þ 0:3 � 0:6g:
Analogously, since Xl
1 � Xl

2, it results in
M4 ¼ fð0:6 � 0:8Þ � 0:4þ ð0:1 � 0:6Þ � 0:6; ð0:6 � 0:8Þ � 0:4þ ð0:5 � 0:3Þ � 0:6; ð0:6 � 0:8Þ � 0:4þ ð0:6 � 0:8Þ � 0:6; ð0:9 � 0:5Þ
� 0:4þ ð0:1 � 0:6Þ � 0:6; ð0:9 � 0:5Þ � 0:4þ ð0:5 � 0:3Þ � 0:6; ð0:9 � 0:5Þ � 0:4þ ð0:6 � 0:8Þ � 0:6g:
Both simplified results are included in Table 1.

4.2. Properties of AFs preserved by THAFs

Firstly, this section reports the main properties of AFs based on remarkable works [10,11,17–19,27,43]. After this concep-
tual section and compatible with the two methodologies to obtain THAFs introduced in Section 4.1, by Definitions 2 and 3,
this work introduces two theorems discussing the conditions under which properties verified by AFs are preserved by their
corresponding THAFs.

Definition 10. Let M : Hn ! H be an n-ary THAF.

(i) M has an annihilator element A 2 H if
[M2] MðX1; . . . ;XnÞ ¼ A whenever A 2 {X1, . . . ,Xn};

(ii) M has a neutral element E 2 H if
[M3] Mð E; . . . ; E|fflfflfflffl{zfflfflfflffl}

ðk�1Þ�times

;X; E; . . . ; E|fflfflfflffl{zfflfflfflffl}
ðn�kÞ�times

Þ ¼ X for each X 2 H and 1 6 k 6 n.

(iii) M has a divisor of zero if
[M4] there exists ðX1; . . . ;XnÞ 2 ðH n f0gÞn such that MðX1; . . . ;XnÞ ¼ 0.

(iv) M is idempotent if
[M5] MðX; . . . ;XÞ ¼ X for any X 2 H.

(v-a) M has only trivial idempotent elements if
[M5-b] MðX; . . . ;XÞ ¼ X iff X = 1 or X = 0.

(v) M is strictly isotonic if
[M6] for each X1;Y1; . . . ;Xn;Yn 2 H n f0;1g such that Xi6HYi, for each i = 1, . . . , n and Xj – Yj for some j = 1, . . . , n,
MðX1; . . . ;XnÞ<HMðY1; . . . ; YnÞ.

In the following some additional definitions are considered for binary THAFs. For that, let M0ðXÞ ¼ X and
Mkþ1ðXÞ ¼ MðX;MkðXÞÞ be the inductive definition of the binary operation.

Definition 11. Let M be a binary THAF. It follows that:

(vii) M has a nilpotent element T 2 H n f0;1g if
[M7] there exists n 2 N, such that MnðT; . . . ; TÞ ¼ 0;

(viii) M is symmetric if
[M8] MðX1;X2Þ ¼ MðX2;X1Þ, for all X1;X2 2 H;

(ix) M is associative if
[M9] MðMðX1;X2Þ;X3Þ ¼ MðX1;MðX2;X3ÞÞ for all X1;X2;X3 2 H;
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(x) M verifies the Archimidean property if
[M10] for all X;Y 2 H=f0;1g, there exists n 2 N such that MnðXÞ<HY;

(xi) M satisfies the cancelation law if
[M11] MðX1;X2Þ ¼ MðX1; ZÞ implies that X1 = 0 or X2 = Z.
Theorem 2. Let M: [0,1]n ? [0,1] be a n-ary AF. Then, it follows that:

(i) eM is an n-ary THAF iff M is an n-ary aggregation function;
(ii) eM has an annihilator element iff M has an annihilator element;

(iii) eM has a divisor of zero iff M has a divisor of zero;
(iv) eM is idempotent iff M is idempotent;
(v) eM has a nilpotent element iff M has a nilpotent element;

(vi) If n = 2 then eM is symmetric iff M is symmetric;
(vii) If n = 2 then eM is associative iff M is associative;

(viii) If n = 2 then eM is Archimedean iff M is Archimedean;
fMðx1; . . . ; xnÞg6HfMðy1; . . . ; ynÞg:
Proof. Consider X1;X2; . . . ;Xn 2 H.

(i) ()) By Definition 2, it follows that fMð0; . . . ;0Þg ¼ eMðf0g; . . . ; f0gÞ ¼ eMð0; . . . ;0Þ ¼ 0 ¼ f0g. Therefore, M(0, . . . ,0) = 0.
Analogously, M(1, . . . ,1) = 1. If xi 6 yi for each i 2 Nn, then eMðfx1g; . . . ; fxngÞ6H

eMðfy1g; . . . ; fyngÞ and so, by definition of
6H, M(x1, . . . ,xn) 6M(y1, . . . ,yn).
(�) Straightforward from Proposition 2.

(ii) ()) Let A be an annihilator element of eM and {a} = a(A,1). If xi 2 [0,1] for any i 2 Nn and xk = a for some k 2 Nn, then
A ¼ eMðfx1g; . . . ; fxk�1g;A; fxkþ1g; . . . ; fxngÞ ¼ eMðfx1g; . . . ; fxk�1g; fag; fxkþ1g; . . . ; fxngÞ
¼ fMðx1; . . . ; xk�1; a; xkþ1; . . . ; xnÞg
It is only possible if #A = 1 and, therefore M(x1, . . . ,xk�1,a,xk+1, . . . ,xn) = a.
(�) Let A = {a} 2 {X1, . . . ,Xn} such that a is an annihilator of M. Then, whenever {xi} = a(Xi,1), for all 1 6 i 6 n, it holds thateMðX1; . . . ;XnÞ ¼ eMðaðX1;1Þ; . . . ;A; . . . ;aðXn;1ÞÞ ¼ fMðx1; . . . ; a; . . . ; xnÞg ¼ fag ¼ A.

(iii) ()) If ðX1; . . . ;XnÞ 2 ðH n f0gÞn is a divisor of zero of eM and m = min (#X1, . . . ,#Xn), then 0 ¼ eMðX1; . . . ;XnÞ ¼eMðfX1 ; . . . ;fXnÞ ¼ fMðreX1
ðiÞ; . . . ;reXn

ðiÞÞ : 1 6 i 6 mg. Therefore, for each 2 Nm;MðreX1
ðiÞ; . . . ;reXn

ðiÞÞ ¼ 0, which means

that ðreX1
ðiÞ; . . . ;reXn

ðiÞÞ is a divisor of zero of M.

(�) If (x1, . . . ,xn)2]0,1[n is a divisor of zero of M, then eMðfx1g; . . . ; fxngÞ ¼ fMðx1; . . . ; xnÞg ¼ f0g ¼ 0. So, ({x1}, . . . , {xn}) is

a divisor of zero of eM .
(iv) ()) Let eM be an idempotent function. Then for any x 2 [0,1], fxg ¼ eMðfxg; . . . ; fxgÞ ¼ fMðx; . . . ; xÞg. Therefore,

M(x, . . . ,x) = x.

(�) Let M be an idempotent function. It follows that eMðX; . . . ;XÞ ¼ fMðrXðiÞ; . . .rXðiÞÞ : i 2 N#Xg ¼
frXðiÞ : i 2 N#Xgg ¼ X.

(v) ()) If eM has a nilpotent element T 2 H=f0;1g, then we have that:
fMnðti; . . . ; tiÞ : i 2 Nmg ¼ eMnðT; . . . ; TÞ ¼ 0 ¼ f0g
where ti = rT(i) and m ¼ T. Therefore, it holds that Mn(ti, . . . , ti) = 0 for any i 2 Nm, i.e. each ti is a nilpotent element of M.
(�) Suppose M has a nilpotent element t2]0,1[, then for some n 2 N we have that: 0 ¼ fMnðt; . . . ; tÞg ¼ eMnðftg; . . . ; ftgÞ. So,eM has ftg 2 H n f0;1g as a nilpotent element.

(vi) ()) Consider that eM verifies the symmetry property. Then, it holds that fMðx1; x2Þg ¼ eMðfx1g; fx2gÞ ¼eMðfx2g; fx1gÞ ¼ fMðx2; x1Þg.
(�) Now, suppose that M is a symmetric function and consider m = min(#X1,#X2), then we have that:
eMðX1;X2Þ ¼ eMðeX1; eX2Þ ¼ fMðreX 1

ðiÞ;reX 2
ðiÞÞ : i 2 Nmg ¼ fMðreX 2

ðiÞ;reX 1
ðiÞÞ : i 2 Nmg ¼ eMðX2;X1Þ:
(vii) ()) Now, if eM is associative, then for all x1, x2, x3 2 [0,1], we have that:
fMðx1;Mðx2; x3ÞÞg ¼ eMðaðfx1g;1Þ; eMðaðfx2g;1Þ;aðfx3g;1ÞÞ ¼ eMð eMðaðfx1g;1Þ;aðfx2g;1ÞÞ;aðfx3g;1ÞÞ
¼ fMðMðx1; x2Þ; x3Þg
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Therefore, it holds that M(x1,M(x2,x3)) = M(M(x1,x2),x3).
(�) Consider X1;X2;X3 2 H, h = min (# X1,#X2), k = min(#X2,#X3) and m = min (#X1,#X2,#X3).
Suppose M as an associative function, then we have that:
eMðX1; eMðX2;X3ÞÞ ¼ eMðX1; eMðaðX2; kÞ;aðX3; kÞÞÞ ¼ eMðaðX1;mÞ;að eMðaðX2; kÞ;aðX3; kÞÞ;mÞÞ

¼ fMðreX 1
ðiÞ;MðreX 2

ðiÞ;reX 3
ðiÞÞ : i ¼ 1; . . . ;mg ¼ fMðMðreX 1

ðiÞ;reX 2
ðiÞÞ;reX 3

ðiÞÞ : i ¼ 1; . . . ;mg

¼ eMðað eMðaðX1; hÞ;aðX2;hÞÞ;mÞ;aðX3;mÞÞ ¼ eMð eMðaðX1; hÞ;aðX2;hÞÞ;X3Þ ¼ eMð eMðX1;X2Þ;X3Þ
(viii) ()) Let X;Y 2 H n f0; 1g, then for each x 2 X and y 2 Y, there exists n 2 N such that Mn(x) < y. Let n0 be the greatest of
such n. Then, for each x 2 X and y 2 Y, Mn0 ðxÞ < y. Consequently, eMn0 ðXÞ ¼ fMn0 ðxÞ : x 2 Xg<HY .
(�) Suppose now that M is Archimedean. Since eM is Archimedean, it follows that for each x, y 2 (0,1), there exists
n 2 N such that eMnðfxgÞ<Hfyg. Since eMnðfxgÞ ¼ fMnðxÞg, we conclude that Mn(x) < y.

And, we conclude that Theorem 2 is verified. h
Remark 3. For any aggregation function M, eM does not have a neutral element, is not strictly isotonic and does not satisfy

the cancellation law. In fact, suppose that eM have a neutral element E, and let m = #E, the for any X 2 HðmÞ, we have that

X ¼ eMðE; . . . ; E;X; E . . . ; EÞ ¼ eMðE; . . . ; E; Y; E . . . ; EÞ ¼ Y , for Y ¼ X [ f
P

x2Xxg, which is impossible. Moreover, sinceeMðf0:2g; f0:3gÞ ¼ eMðf0:2g; f0:3; 0:4gÞ then eM neither satisfies the cancellation law nor is strictly isotone.
Theorem 3. Let bM : ½0;1�n ! ½0;1� be an n-ary aggregation function as in Eq. (13). Then, it follows that:

(i) bM is an n-ary THAF iff M is a n-ary aggregation function;
(ii) bM has an annihilator element iff M has an annihilator element;

(iii) bM has a neutral element if M has a neutral element;
(iv) bM is has a divisor of zero iff M has a divisor of zero;
(v) if bM is idempotent then M is idempotent;

(vi) bM is strictly isotone iff M is strictly increasing;
(vii) bM has a nilpotent element iff M has a nilpotent element;

(viii) If n = 2 then bM is symmetric iff M is symmetric;
(ix) If n = 2 then bM is associative iff M is associative;
(x) If n = 2 then bM is Archimedean then M is Archimedean;

(xi) If n = 2 and bM satisfies the cancelation law then M satisfies the cancelation law.
(xii) If n = 2, M is strict and satisfies the cancellation law, then bM satisfies the cancelation law.
Proof

(i) ()) By Definition 2, it follows that bMð0; . . . ;0Þ ¼ fMð0; . . . ;0Þg ¼ f0g ¼ 0. Analogously, bMð1; . . . ;1Þ ¼ 1. For each
i 2 Nn, if xi 6 yi then fxig6Hfyig. So, fMðx1; . . . ; xnÞg ¼ bMðfx1g; . . . ; fxngÞ6H

bMðfy1g; . . . ; fyngÞ ¼ fMðy1; . . . ; ynÞg. There-
fore, M(x1, . . . ,xn) 6M(y1, . . . ,yn).
(�) Straightforward from Proposition 3.

(ii) ()) Let A be an annihilator of bM , xi 2 [0,1] for any i = 1, . . . , n. Then for every k 2 Nn we have that
A ¼ bMðfx1g; . . . ; fxk�1g;A; fxkþ1g; . . . ; fxngÞ ¼ fMðx1; . . . ; xk�1; a; xkþ1; . . . ; xnÞ : a 2 Ag
So, for each a 2 A, it follows that M(x1, . . . ,xk�1,a,xk+1, . . . ,xn) = a.
(�) Let A = {a} 2 {X1, . . . ,Xn} such that a is an annihilator of M. Then, for all 1 6 i 6 n, it holds thatbMðX1; . . . ;A; . . . ;XnÞ ¼ fMðx1; . . . ; a; . . . ; xnÞ : xi 2 Xig ¼ fag ¼ A.

(iii) Let e be the neutral element of M. Then it holds that:bMðfeg; . . . ; feg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðk�1Þ�times

;X; feg; . . . ; feg|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
ðn�kÞ�times

Þ ¼ fMð e; . . . ; e;|fflfflfflffl{zfflfflfflffl}
ðk�1Þ�times

x ; e; . . . ; e|fflfflfflfflffl{zfflfflfflfflffl}
ðn�kÞ�times

Þ : x 2 Xg ¼ X.

(iv) ()) If (x1, . . . ,xn)2]0,1[n is a divisor of zero of M, then bMðfx1g; . . . ; fxngÞ ¼ fMðx1; . . . ; xnÞg ¼ f0g ¼ 0. So, ({x1}, . . . , {xn}) is
a divisor of zero of eM .
(�) If ðX1; . . . ;XnÞ 2 ðHf0gÞn is a divisor of zero of bM then f0g ¼ bMðX1; . . . ;XnÞ ¼ fMðx1; . . . ; xnÞ : xi 2 Xi for each i 2 Nng.
Therefore, for every xi 2 Xi, with i 2 Nn, M(x1, . . . ,xn) = 0.

(v) Suppose that bM is an idempotent function on H. Then, for any x 2 [0,1], fxg ¼ bMðfxg; . . . ; fxgÞ ¼ fMðx; . . . ; xÞg. There-
fore, M(x, . . . ,x) = x.
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(vi) ()) Suppose that bM is strictly increasing function on H. Taking xi, yi 2 [0,1] such that xi 6 yi for i 2 Nn and xj – yj for
some j 2 Nn, we obtain Xi ¼ fxig6Hfyig ¼ Yi for each i and Xj – Yj for some j, which means that:

fMðx1; . . . ; xnÞg ¼ bMðX1; . . . ;XnÞ<H
bMðY1; . . . ;YnÞ ¼ fMðy1; . . . ; ynÞg. Therefore, M(x1, . . . ,xn) < M(y1, . . . ,yn).

(�) Suppose that M is strictly increasing. Without loss of generality, we consider the case bMðX;X2; . . . ;XnÞ andbMðY ;X2; . . . ;XnÞ for X2; . . . ;Xn;X;Y 2 H when X<HY . By Eq. (9) we have the following two cases:
1. If aðX;mÞ<HðmÞaðY;mÞ, where m = min (#X,#Y), then by Eq. (6), for each 1 6 i 6m we have that rX(i) 6 rY(i) and

rX(k) < rY(k) for some 1 6 k 6m. So, because M is isotone, M(rX(i),x2, . . . ,xn) 6M(rY(i),x2, . . . ,xn) for each i 2 Nm.
And because M is strictly isotone, M(rX(k),x2, . . . ,xn) 6M(rY(k),x2, . . . ,xn) for some k 2 Nm. Therefore,bMðX;X2; . . . ;XnÞ ¼ fMðx; x2; . . . ; xnÞ : xi 2 Xi for i = 2, . . . , n and x 2 Xg<HfMðy; x2; . . . ; xnÞ : xi 2 Xi for i = 2, . . . , n

and y 2 Yg ¼ bMðY;X2; . . . ;XnÞ
2. If a(X,m) = a(Y,m) and #Y < #X, for each i > p ¼ # bMðY;X2; . . . ;XnÞ, rbMðX;X2 ;...;XnÞ

ðiÞ is an upper bound ofbMðaðX;mÞ;X2; . . . ;XnÞ, and so að bMðX;X2; . . . ;XnÞ; pÞ ¼ að bMðY ;X2; . . . ;XnÞ; pÞ. Thus, since

# bMðY ;X2; . . . ;XnÞ < # bMðX;X2; . . . ;XnÞ, then bMðX;X2; . . . ;XnÞ<H
bMðY ;X2; . . . ;XnÞ.

(vii) ()) Suppose M has a nilpotent element t2]0,1[, then for n 2 N we have that bMnðftgÞ ¼ fMnðtÞg ¼ 0. So, bM has the nil-
potent element ftg 2 H n f0;1g.

(�) If bM has a nilpotent element T 2 H n f0;1g, it follows that: fMnðtÞ : t 2 Tg# bMnðTÞ ¼ 0. Therefore, Mn(t) = 0 for
each t 2 T.

(viii) (�) Consider that bM verifies the symmetry property. Then, it holds that fMðx1; x2Þg ¼ bMðfx1g; fx2gÞ ¼bMðfx2g; fx1gÞ ¼ fMðx2; x1Þg. So, M satisfies the symmetry property.
()) Conversely, suppose that M is a symmetric function, then we have that:
bMðX1;X2Þ ¼ fMðx1; x2Þ : xi 2 Xi; i 2 f1;2gg ¼ fMðx2; x1Þ : xi 2 Xi; i 2 f1;2gg ¼ bMðX2;X1Þ:
(ix) ()) Let M be an associative function, for all X1, X2, X3 2 [0,1], we have that:
bMðX1; bMðX2;X3ÞÞ ¼ bMðX1; fMðx2; x3Þ : xi 2 Xi; i 2 f2;3ggÞ ¼ fMðx1;Mðx2; x3ÞÞ : xi 2 Xi; i 2 f1;2;3gg ¼ fMðMðx1; x2Þ; x3Þ

: xi 2 Xi; i 2 f1;2;3gg ¼ bMðfMðx1; x2Þ : xi 2 Xi; i 2 f1;2gg;X3Þ ¼ bMð bMðX1;X2Þ;X3ÞÞ
(�) Now, if bM is associative then, for all x1, x2, x3 2 [0,1], we have that:
fMðx1;Mðx2; x3ÞÞg ¼ bMðfx1g; bMðfx2g; fx3gÞÞ ¼ bMð bMðfx1g; fx2gÞ; fx3gÞ ¼ fMðMðx1; x2Þ; x3Þg
Therefore, it holds that M(x1,M(x2,x3)) = M(M(x1,x2),x3).
(x) ()) Let X;Y 2 H n f0; 1g, then for each x 2 X and y 2 Y, there exists n 2 N such that Mn(x) < y. Let n0 the greater of such

n. Then, for each x 2 X and y 2 Y, Mn0 ðxÞ < y. So, bMn0 ðXÞ6HfMn0 ðxÞ : x 2 Xg<HY .

(�) Suppose now that M is Archimedean. Since bM is Archimedean, it follows that for each x, y 2 (0,1) there exists

n 2 N such that bMnðfxgÞ<Hfyg. So, because bMnðfxgÞ ¼ fMnðxÞg, we have that, Mn(x) < y.
(xi) Suppose that bM verifies the cancellation law. If M(x1, x2) = M(x1, z) then bMðfx1g; fx2gÞ ¼ bMðfx1g; fzgÞ, what

implies {x1} = 0 or {x2} = {z}, or equivalently that x1 = 0 or x2 = z, respectively. Therefore, M verifies the cancellation
law.

(xii) Let M be a function satisfying the cancelation law. We prove by induction in X1 that if, bMðX1;X2Þ ¼ bMðX1; ZÞ then X1 = 0
or X2 = Z. The base case is X1 = {x1}. In this case bMðX1;X2Þ ¼ bMðX1; ZÞ means that {M(x1,x2): x2 2 X2} = {M(x1,z):z 2 Z}
and so for each x2 2 X2 exists z 2 Z such that M(x1,x2) = M(x1,z) and for each z 2 Z exists x2 2 X2 such that M(x1,x2) = -
M(x1,z). Because M satisfies the cancellation law, either x1 = 0 or x2 = z. Therefore, if x1 = 0 then X1 = 0 and if x1 – 0 then
for each x2 exists z 2 Z such that x2 = z and for each z 2 Z there exists x2 2 X2 such that x2 = z. Therefore, in this last case,
X2 = Z.
Suppose, that x1 R X1 and x1 is an upper bound of X1. If bMðX1 [ fx1g;X2Þ ¼ bMðX1 [ fx1g; ZÞ, thenbMðX1;X2Þ [ bMðfx1g;X2Þ ¼ bMðX1; ZÞ [ bMðfx1g; ZÞ. Because M is strict in the first component, thenbMðX1;X2Þ \ bMðfx1g;X2Þ ¼ bMðX1; ZÞ \ bMðfx1g; ZÞ ¼ ;. Therefore, bMðX1;X2Þ ¼ bMðX1; ZÞ and bMðfx1g;X2Þ ¼ bMðfx1g; ZÞ.
Thus, from the inductive hypotheses, X1 = 0 or X2 = Z, and by base case, {x1} = 0 or X2 = Z. So, X2 = Z or X1 = {0} = {x1}
which means that X1 [ {x1} = 0.

And, we conclude that Theorem 3 is verified. h

4.2.1. Representable THAFs
In the following, the embryonic idea of representation in the context of THAFs is introduced. Such idea extends the inter-

val representation as presented in [5–7,16,31] to the context of THAFs.

Definition 12. Let M be an n-ary THAF. M is an H-representation of an n-ary AF M, denoted by M�HM, if
Mðx1; . . . ; xnÞ 2 MðX1; . . . ;XnÞ when X1; . . . ;Xn 2 H and xi 2 Xi for any i 2 Nn.
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Clearly, bM is an H-representation of M. Notice also that not all n-ary THAFs M are H-representations of some n-ary AF M,
e.g., M : H! H as a THAF defined by MðXÞ ¼ frXð#XÞg, or equivalently, MðXÞ ¼ fmaxðXÞg, for each X 2 H.

5. Finite hesitant triangular norms

Extending the study of t-norm class, one of the most relevant class of aggregation functions which plays an important role
in many applications of Fuzzy Logic [16,23], in this section we discuss the condition under which an H-t-subnorm can be
obtained from a t-subnorm by applying the two methodologies introduced in Section 4.

Definition 13. Let T be a binary THAF. T is said to be a typical hesitant t-subnorm, H-t-subnorm in short, if it is
commutative, associative and T ðX;YÞ6HX ^ Y . T is said to be a typical hesitant t-norm, H-t-norm if it is an H-t-subnorm
with 1 as the neutral element.
Lemma 1. Let M1 and M2 two AFs. M1 6M2 iff gM16H
gM2 .
Proof. ()) Suppose that M1 6M2. Let Xi 2 H with i = 1, . . . n and m = min (#X1, . . . ,#Xn). Then by definition of 6H, it holds
that
 gM1ðX1; . . . ;XnÞ ¼ fM1ðrX1 ðiÞ; . . . ;rXn ðiÞÞ : i ¼ 1; . . . ;mg6HfM2ðrX1 ðiÞ; . . . ;rXnðiÞÞ : i ¼ 1; . . . ;mg ¼gM2ðX1; . . . ;XnÞ:
(�) If gM16H
gM2 , then trivially for each xi 2 [0,1], with i = 1, . . . , n, then
fM1ðx1; . . . ; xnÞg ¼gM1ðfx1g: . . . ; fxngÞ6H
gM2ðfx1g: . . . ; fxngÞ ¼ fM2ðx1; . . . ; xnÞg:
Therefore, by definition of 6H, M1(x1, . . . ,xn) 6M2(x1, . . . ,xn). h
Corollary 1. Let T: [0,1]2 ? [0,1]. Then eT is an H-t-subnorm iff T is a H-t-subnorm.
Proof. Straightforward from Theorem 2 and Lemma 1. h
Corollary 2. Let T:[0,1]2 ? [0,1]. Then bT is an H-t-norm iff T is a t-norm.
Proof. Straightforward from Theorem 3. h
Proposition 4. Let T be an H-t-subnorm. Then, T 	 : H2 ! H defined by
T 	ðX;YÞ ¼
T ðX;Y; Þ if X _ Y – 1;

X ^ Y; otherwise:

�

Proof. Straightforward. h
Corollary 3. If T is a t-subnorm then eT 	 is a H-t-norm.
Proof. Straightforward from Corollary 1 and Proposition 4. h
Proposition 5. Let T : H2 ! H be an H-t-norm. It follows that:

(i) If T verifies the cancellation law then it is strictly isotone;
(ii) if T is strictly isotonic then it has only trivial idempotent elements;

(iii) if T is strictly monotone then it has no divisors of zero.
Proof. Let T : H2 ! H be an H-t-norm, and X1;X2;X3 2 H.

(i) If X – 0 and Y < Z then by isotonic T ðX;YÞ 6 T ðX; ZÞ. If T satisfies the cancellation law and T ðX;YÞ ¼ T ðX; ZÞ, then X = 0
or X = Z, which is a contradiction. Therefore, T is strictly isotonic.
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(ii) The existence of neutral element 1 and the strict monotonicity of T implies that T ðX;XÞ < T ðX;1Þ ¼ X, for all
X 2 H n f0;1g. Therefore, T has only trivial idempotent elements.

(iii) The assumption that A is a divisor of zero, i.e., T ðA;XÞ ¼ 0 for some X 2 H n f0;1g implies that X
n ¼ x

n : x 2 X
� �

2 H is
such that T ðA;XÞ ¼ T A; X

n

� 	
¼ 0. This is a contradiction, since it violates the strict monotonicity of T .

Therefore, Proposition 5 is verified. h
Corollary 4

(iv) if T verifies the cancellation law, it has only trivial idempotent elements;
(v) if T verifies the cancellation law, it has no divisors of zero.
Proof. Straightforward from Proposition 5. h
Definition 14. An H-t-norm T : H2 ! H strictly monotone and continuous is called a strict H-t-norm.
Proposition 6. Let T : H2 ! H be an H-t-norm. It follows that:

(vi) if T is strict then it is strictly monotone;
(vii) if T is strict then it verifies the Archimedean property;

(viii) if T is strict then it verifies the cancellation law;
(ix) if T verifies the Archimedean property, it has only trivial idempotent elements.
Proof. Let T : H2 ! H be an H-t-norm.

(vi) Follows from Definition 14.
(vii) If T is a strictly monotone, by assertion (ii), it has only trivial idempotent elements. Then, it follows that, for all

X;Y 2 H n f0;1g, T ðX;XÞ < T ðX;1Þ ¼ X. And so, it is clear that there exist at most finitely many integer n with
T nðXÞ<HY , i.e. T is also Archimedean.

(viii) Follows immediately from assertions (i) and (vi).
(ix) In order to prove assertion (ix), let T be an H-t-norm which verifies the Archimedean property. Then, for each

X 2 H n f0;1g; T ðX;XÞ<HX. So, no X 2 H n f0;1g is an idempotent element.

Therefore, Proposition 6 is verified. h

Fig. 1 summarizes the assertions in Propositions 5 and 6, denoting by CðZDÞ; CðSMÞ; CðIEÞ; CðCLÞ; CðSÞ and CðAPÞ to the clas-
ses of H-t-norms which satisfy the properties M4, M6, M5-a, M11, and M10.

6. H-automorphisms acting on typical hesitant aggregation functions

In the following we describe how to obtain an H-automorphism /̂ on H from an automorphism / on [0,1]. We also inves-
tigate two relevant aspects in Theorems 4 and 5: the action of an H-automorphism on a binary THAF T and the preservation
of its main properties in the class of H-t-norms.
Fig. 1. Commutative diagram of H-t-norms.
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Definition 15. A function U : H! H is an H-automorphism if it is bijective and, for each X; Y 2 H, X6HY iff U(X) 6U(Y).
By Definition 15, H-automorphisms are closed under the composition and the inverse of an H-automorphism also is an

H-automorphism:

Proposition 7. Let AutðHÞ be the set of all H-automorphisms. Then ðAutðHÞ; 
Þ is a group.
Proof. Trivially, the composition of bijective and isotonic functions on a set, in this case H, is also bijective and isotonic.
Therefore, H-automorphisms are closed under composition. The composition of functions is always associative and the
identity function I, defined by IðXÞ ¼ X for all X 2 H, is an H-automorphism such that ðH 
 IÞðXÞ ¼ HðXÞ ¼ ðI 
HÞðXÞ. There-
fore, ðAutðHÞ; 
Þ has a neutral element. Thus, from the definition of H-automorphism, the inverse of an H-automorphism also
is an H-automorphism, and we can conclude that ðAutðHÞ; 
Þ is a group. h
Lemma 2. Let U : H! H be an H-automorphism. Then for each X 2 H such that #X P 2, #U(X) P 2.
Proof. By the definition of ^, for every Xi 2 H with i 2 Nn, if #
Pn

i¼1Xi ¼ 1 then Xj ¼
Pn

i¼1Xi for some j 2 Nn. Also, observe that
H-automorphisms are isomorphisms over the lattice ðH;6HÞ and so Uð

Pn
i¼1XiÞ ¼

Pn
i¼1UðXiÞ. Suppose that for some X 2 H with

n = #X P 2, U(X) = {y} for some y 2 [0,1]. Without loss of generality we can consider that rX(1) – 0. Then defining

Xi ¼ frX ð1Þ
j : j < ig [ frXðiÞg [ frXðiÞ þ rX ðiþ1Þ�rX ðiÞ

j : i < j 6 ng, clearly from definition of _ for the lattice ðH;6HÞ;X ¼
Pn

i¼1 and

X – Xi. So, fyg ¼ UðXÞ ¼ Uð
Pn

i¼1XiÞ ¼
Pn

i¼1UðXiÞand therefore,U(Xi) = {y} which is in contradiction with the bijectivity ofU. h
Proposition 8. Let /̂ : H! H be an H-automorphism. Then for each x 2 [0,1] there exists y 2 [0,1] such that /̂ðfxgÞ ¼ fyg.
Proof. Suppose that for some x 2 [0,1], #U({x}) P 2. Then, by Lemma 2, #{x} = #U�1(U({x})) P 2 which is an absurd. h
Theorem 4. /̂ : H! H is an H-automorphism iff there exists an automorphism /: [0,1] ? [0,1] such that, for all X 2 H, it follows that
b/ðXÞ ¼ f/ðxÞ : x 2 Xg: ð18Þ
Proof. ()) Let /̂ : H! H be an H-automorphism and define /: [0,1] ? [0,1] by /ðxÞ ¼ r/̂ðfxgÞð1Þ. By Proposition 8, it is clear
that / is an automorphism and that /̂ and / satisfy Eq. (18).

(�) Let /: [0,1] ? [0,1] be an automorphism. First, suppose X; Y 2 H such that X – Y. We have two cases, there exists
�x 2 X � Y or �y 2 Y � X. Based on the automorphism /, we have that: (i) /ð�xÞ– /ðyÞ, for all y 2 Y; or (ii) /ðxÞ – /ð�yÞ, for all
x 2 X. Both cases imply {/(x): x 2 X} – {/(y):y 2 Y}, which means that /̂ðXÞ – /̂ðYÞ. Therefore /̂ is an injective function over
H. In addition, since / is an automorphism, for all Y 2 H, if X = {/�1(y): y 2 Y} then /̂ðXÞ ¼ fð/ 
 /�1ÞðyÞ : y 2 Yg ¼ Y . So, /̂ is a
bijective function over H. Now, considering the a-normalization and m = min (#X,#Y), for X;Y 2 H, suppose that X6HY . One
of the two next cases is held:

(i) aðX;#YÞ<HðmÞaðY ; #XÞ: since / is a non-decreasing function and denoting a(X,m) by eX and a(Y,m) by eY , for each
1 6 i 6m, we have that /ðreX ðiÞÞ 6 /ðreY ðiÞÞ. Thus, we obtain that /̂ðeXÞ ¼ f/ðreX ðiÞÞ : 1 6 i 6 mg6Hf/ðreY ðiÞÞ :

1 6 i 6 mg ¼ /̂ðeY Þ, implying that /̂ðXÞ6H/̂ðYÞ.
(ii) a(X,#Y) = a(Y,#X) and #Y6#X: for each 1 6 i 6m, we have that /ðreX ðiÞÞ ¼ /ðreY ðiÞÞ. Thus, we obtain that

/̂ðeXÞ ¼ f/ðreX ðiÞÞ : 1 6 i 6 mg6Hf/ðreX ðiÞÞ : 1 6 i 6 mg ¼ /̂ðeY Þ, which also means that /̂ðXÞ6H/̂ðYÞ.

In both cases, /̂ is a non-decreasing function on H. h
Proposition 9. Let /: [0,1] ? [0,1] be an automorphism and let /̂ : H! H be the H-automorphism defined from / in Eq. (18).
Then it holds that
d/�1 ¼ /̂�1:
Proof. Let X 2 H. Then /̂ðd/�1ðXÞÞ ¼ /̂ðf/�1ðxÞ : x 2 Xg ¼ f/ð/�1ðxÞÞ : x 2 Xg ¼ X So, d/�1 is an inverse of /̂. h

Given a function F : Hn ! H and an H-automorphism U, the action of U on F is the function FU : Hn ! H called conjugate
function of F and defined by
FUðX1; . . . ;XnÞ ¼ U�1ðFðUðX1Þ; . . . ;UðXnÞÞÞ: ð19Þ
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Theorem 5. Let T : H2 ! H be a binary THAF and U : H! H be an H-automorphism defined by / in Eq. (18). It follows
that:
(i) T U is an H-t-norm iff T is an H-t-norm;
(ii) T U has an annihilator element iff T has an annihilator element;

(iii) T U has divisors of zero iff T has divisors of zero;
(iv) T U is idempotent iff T is idempotent;
(v) T U is strictly isotonic iff T is strictly isotonic;

(vi) T U is Archimedean iff T is Archimedean;
(vii) T U verifies the cancellation law iff T verifies the cancellation law;

(viii) T U has a nilpotent element iff T has a nilpotent element;
Proof. Let T : H2 ! H be a binary THAF, U : H! H be an H-automorphism and T / : H2 ! H be its conjugate function.

(i) If T is an H-t-norm, for all X1;X2;X3 2 H, it follows that:

(1) T U is symmetric:

T UðX1;X2Þ ¼ U�1ðT ðUðX1Þ;UðX2ÞÞÞ ¼ U�1ðT ðUðX2Þ;UðX1ÞÞÞ ¼ T UðX2;X1Þ

(2) T U is associative:

T UðT UðX1;X2Þ;X3Þ ¼ T UðU�1ðT ðUðX1Þ;UðX2ÞÞÞ;X3Þ ¼ U�1ðT ðT ðUðX1Þ;UðX2ÞÞ;UðX3ÞÞ
¼ U�1ðT ðUðX1Þ; T ðUðX2ÞÞ;UðX3ÞÞÞ ¼ T UðX1; T UðX2;X3ÞÞ

(3) T U has 1 as neutral element:

T UðX1;1Þ ¼ U�1ðT ðUðX1Þ;Uð1ÞÞÞ ¼ U�1ðT ðUðX1Þ;1ÞÞ ¼ U�1ðUðX1ÞÞ ¼ X1
(ii) If T has an annihilator element A 2 H we get that
T UðX;U�1ðAÞÞ ¼ U�1ðT ðUðXÞ;UðU�1ðAÞÞÞÞ ¼ U�1ðT ðUðXÞ;AÞ ¼ U�1ðAÞ:
Thus, U�1(A) is an annihilator of T U.
(iii) If X;Y 2 H n f0;1g are such that T ðX;YÞ ¼ 0, then T UðU�1ðXÞ;U�1ðYÞÞ ¼ U�1ðT ðX;YÞÞ ¼ 0. Since, U�1(X) – 0 and U�1(-

Y) – 0, then U�1(X) is a divisor of zero of T U.
(iv) If T is idempotent and U is an H-automorphism, property M5 is fulfilled by the conjugate of T :
T UðX;XÞ ¼ U�1ðT ðUðXÞ;UðXÞÞÞ ¼ U�1ðUðXÞÞ ¼ X; for all UðXÞ 2 H:
(v) Let T be strictly isotonic function. In this case we have the following: T UðX;YÞ ¼
U�1ðT ðUðXÞ;UðYÞÞÞ<HU�1ðT ðUðXÞ;UðZÞÞÞ ¼ T UðX; ZÞ, whenever X – 0 and Y<HZ. So, T U is also a strictly isotonic
function.

(vi) Let the H-t-norm T be Archimedean and U is an H-automorphism. Then, for each X;Y 2 H n f1; 0g, we have that
UðXÞ;UðYÞ 2 H n f1;0g. Therefore, because T is Archimedean there exists n 2 N such that T nðUðXÞÞ<HUðYÞ and so,
ðT UÞnðXÞ ¼ U�1ðT nðUðXÞÞÞ<HY , i.e. T U also is Archimedean.

(vii) Let T be a H-t-norm verifying the cancellation law, whereas U is an H-automorphism. If T UðX;YÞ ¼ T UðX; ZÞ, then
because U�1 is bijective, T ðUðXÞ;UðYÞÞ ¼ T ðUðXÞ;UðZÞÞ. Since T verifies the cancellation law, we have that U(X) = 0
implies that X = 0 or U(Y) = U(Z) and, in this case, we can conclude that Y = Z.

(viii) Let T be a nilpotent element of T . So, T 2 H n f0;1g and based on the H-automorphism U, it also means that
U�1ðTÞ 2 H n f0;1g. So, there exists n 2 N such that T nðTÞ ¼ 0 and it follows that
ðT UÞnðU�1ðTÞÞ ¼ U�1ðT nðUðU�1ðTÞÞÞ ¼ U�1ðT nðTÞÞ ¼ U�1ð0Þ ¼ 0. Therefore, it holds that T UðU�1ðTÞÞ ¼ 0. This shows
U�1(T) is a nilpotent element of T U.

The converse follows by the previous proof and the fact that U�1 is an H-automorphism and ðT UÞU
�1

¼ T . h
7. Final remarks

In this paper we have studied the THAFs defined over the set of all typical hesitant fuzzy sets by considering two
methodologies, both compatible with the partial order 6H, whose definition is based on a-normalization and r-permutation.
The main advantage of such methods against other similar methods is the intuitive way to deal with the monotonicity of
THAFs. This intuitive way can be extended to construct ordered aggregation operators for THFEs, as requirements for
modelling and grouping the information obtained from different sources.
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Together with the main properties of THAFs extended from AFs, we also investigate their conjugate functions obtained by
action of H-automorphisms. In particular, the class of H-t-norms was considered and the conditions under which main prop-
erties of such aggregation functions are preserved by their conjugate functions were also presented.

Further work intends to investigate other theoretical aspects related to typical hesitant fuzzy t-conorms (H-t-conorms)
and negations (H-negations) including other fuzzy connectives. Such investigation provides foundations to make use of Hes-
itant Fuzzy Logic in several applied fields, such as decision making.
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