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Abstract

Conceptual blending is understood to be a process that serves
a variety of cognitive purposes, including creativity, and has
been highly influential in cognitive linguistics. In this line
of thinking, human creativity is modeled as a blending pro-
cess that takes different mental spaces as input and combines
them into a new mental space, called a blend. According to
this form of combinatorial creativity, a blend is constructed
by taking the existing commonalities among the input men-
tal spaces—known as the generic space—into account, and
by projecting their structure in a selective way. Since input
spaces for interesting blends are often initially incompatible,
a generalisation step is needed before they can be blended.
In this paper, we apply this idea to blend input spaces speci-
fied in the description logic EL++ and propose an upward re-
finement operator for generalising EL++ concepts. We show
how the generalisation operator is translated to Answer Set
Programming (ASP) in order to implement a search process
that finds possible generalisations of input concepts. We ex-
emplify our approach in the domain of computer icons.

Introduction
The upward refinement—or generalisation—of concepts
plays a crucial role in creative processes for analogical
reasoning and concept invention, in particular conceptual
blending (Fauconnier and Turner 2002). In blending, one
combines two input concepts to invent a new one. In gen-
eral, however, this cannot be done because the combination
of two concepts may generate an unsatisfiable one due to
contradiction. However, by slightly generalising input con-
cepts we might be able to find a novel and useful combina-
tion of both. For instance, a ‘red French sedan’ and a ‘blue
German minivan’ can be blended to a ‘red German sedan’ by
generalising the first concept to a ‘red European sedan’ and
the second one to a ‘coloured German car’. The least general
generalisation of our input concepts—a ‘coloured European
car’—serves as an upper bound of the generalisation space
to be explored, and, in a certain sense, plays the role of the
so call generic space in conceptual blending, which states
the shared structure of both concepts.

This paper addresses the formalisation of such a general-
isation process and tackles the following question: How can
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we define and implement a generalisation operator for de-
scription logics (DLs) and what are its desired or necessary
properties in order to use it in the blending process?

We focus on the particular case of the description logic
EL++ (Baader, Brandt, and Lutz 2005; Baader, Brandt, and
Lutz 2008). This is an excellent starting point for our inves-
tigation for several reasons. First, EL++ is the underpinning
logic of the OWL 2 EL Profile, a recommendation of the
W3C. Second, EL++ offers a good tradeoff between expres-
sivity and efficiency of reasoning. Indeed, the EL++ syntax
and axioms are considered to be sufficiently expressive to
model large real-world ontologies. Finally, subsumption in
an EL++ TBox is computable in polynomial time (Baader,
Brandt, and Lutz 2005).

The generalisation of EL++ concepts has been studied
both in the DLs and in the Inductive Logic Programming
(ILP) literature, although from different perspectives. Whilst
approaches in DL focus on formalising the computation of
a least general generalisation (LGG) (also known as least
common subsumer) among different concepts as a non-
standard reasoning task (Baader 2005; Baader, Sertkaya, and
Turhan 2007; Turhan and Zarrieß 2013), approaches in ILP
are concerned on learning DL descriptions from examples
(Lehmann and Hitzler 2010). In both cases, however, find-
ing a LGG is a challenging task. Its computability depends
on the type of DL adopted and on the assumptions made over
the structure of concept definitions.

Our work relates to these approaches, but our main moti-
vation for generalising DL concepts is intrinsically different.
Although we do need to be aware of what concepts share
in order to blend them, it is not necessary (though desir-
able) to find a generic space that is also a LGG. A suffi-
ciently specific common subsumer will suffice. With this ob-
jective in mind, we propose an upward refinement operator
for generalising EL++ concepts which is inductively defined
over the structure of concept descriptions. We discuss some
of the properties typically used to characterise refinement
operators; namely, finiteness, properness and completeness
(van der Laag and Nienhuys-Cheng 1998). Briefly, a refine-
ment operator is said to be finite when it generates a finite set
of refinements; proper, when its refinements are not equiva-
lent to the original concept, and complete, when it produces
all possible refinements of a given concept.

Particularly, the generalisations produced by our opera-



concept description interpretation
A AI ⊆ ΔI

� ΔI

⊥ ∅
C �D CI ∩DI

∃r.C {x ∈ ΔI | ∃y ∈ ΔI .
(x, y) ∈ ∧y ∈ CI}

axiom satisfaction
C � D CI ⊆ DI

r1 ◦ · · · ◦ rn � r rI1 ; · · · ; rIn ⊆ rI

domain(r) � C rI ⊆ CI ×ΔI

range(r) � C rI ⊆ ΔI × CI

Table 1: Syntax and semantics of some EL++ contructors
and axioms. (Note:‘;’ is the usual composition operator in
relation algebra.)

tor are finite, but they can be sometimes equivalent to the
concept being generalised (thus, the operator is not proper),
and they are not all the possible ones (thus, the operator is
not complete). As we shall discuss, we sacrifice complete-
ness for finiteness (since we do not need to compute a LGG,
strictly speaking), but we need the successive applications
of the operator to always terminate. We point out, however,
how the properness property can be achieved.

We show how part of the upward refinement operator is
implemented in Answer Set Programming (ASP) (Gelfond
and Kahl 2014) and how we employ the search capabilities
of ASP to find a generic space among two EL++ input con-
cepts. The ASP search is part of an amalgamation process
(Ontañón and Plaza 2010) that models conceptual blending.
Throughout the paper, we use an example in the domain of
computer icon design.

Background and Running Example
The Description Logic EL++

In DLs, concept and role descriptions are defined inductively
by means of concept and role constructors over a finite set
NC of concept names, a finite set Nr of role names, and
(possibly) a finite set NI of individual names. As is com-
mon practice, we shall write A, B for concept names, C, D
for concept descriptions, r, s for role names, and a, b, for
individual names.

The semantics of concept and role descriptions is de-
fined in terms of an interpretation I = (ΔI , ·I), where
ΔI is a non-empty domain and ·I is an interpretation func-
tion assigning a set AI ⊆ ΔI to each concept name
A ∈ NC , a set rI ⊆ ΔI × ΔI to each role name
r ∈ Nr, and an element aI ∈ ΔI for each individual
name a ∈ NI , which is extended to general concept and
role descriptions. Table 1 shows the constructors of the de-
scription logic EL++ that are relevant for this paper, to-
gether with their interpretation. For a complete presenta-
tion of EL++ we refer to (Baader, Brandt, and Lutz 2005;
Baader, Brandt, and Lutz 2008).

A knowledge base usually consists of a finite set T of

terminological axioms, called TBox, which contains inten-
sional knowledge defining the main notions relevant to the
domain of discourse; and a finite setA of assertional axioms,
called ABox, which contains extensional knowledge about
individual objects of the domain. In this paper, we shall fo-
cus only on terminological axioms of the form C � D, i.e.
general concept inclusions (GCIs), and r1 ◦ · · · ◦ rn � r, i.e.
role inclusions (RIs), as well as axioms specifying domain
and range restrictions for roles. Table 1 shows the form of
these axioms, together with the condition for these to be sat-
isfied by an interpretation I. By L(T ) we refer to the set of
all EL++ concept descriptions we can form with the concept
and role names occurring in T .

RIs allow one to specify role hierarchies (r � s) and role
transitivity (r ◦ r � r). The bottom concept ⊥, in combina-
tion with GCIs, allows one to express disjointness of concept
descriptions, e.g. C�D � ⊥ tells that C and D are disjoint.
An interpretation I is a model of a TBox T iff it satisfies
all axioms in T . The basic reasoning task in EL++ is sub-
sumption. Given a TBox T and two concept descriptions C
and D, we say that C is (strictly) subsumed by D w.r.t. T ,
denoted as C �T D (C �T D), iff CI ⊆ DI (CI ⊆ DI

and CI = DI) for every model I of T . Analogously, given
two roles r, s ∈ Nr, we say that r is (strictly) subsumed by s
w.r.t. T , denoted as r �T s (r �T s), iff rI ⊆ sI (rI ⊆ sI

and rI = sI) for every model I of T . Finally, an equiva-
lence axiom C ≡ D is just an abbreviation for C � D and
D � C.

EL++ Running Example
To exemplify our approach, we take the domain of computer
icons into account. We consider computer icons as combi-
nations of signs (e.g., Document, MagnifyingGlass, Hard-
Disk, Pen, etc.) (Confalonieri et al. 2015). Signs are related
by qualitative spatial relations such as above, behind, etc.

In the ontology below, concept names are capitalised
(e.g. Sign) and role names are written in lower-case
(e.g. hasSign). We assume that a TBox T consists of two
parts: one part that contains the background knowledge
about the icon domain Tbk, and another part that contains
the domain knowledge about icon definitions Tdk.

Generally, an icon is related to different signs by means
of the hasSign role.

αbk1 : Icon � Thing
αbk2 : Sign � Thing
αbk3 : Document � Sign
αbk4 : HardDisk � Sign
αbk5 : MagnifyingGlass � Sign
αbk6 : Pen � Sign
αbk7 : domain(hasSign) � Icon
αbk8 : range(hasSign) � Sign

αbk9 : Document � HardDisk � ⊥
. . . . . .
αbk15 : MagnifyingGlass � Pen � ⊥

Sign concepts are disjoint (αbk9 -αbk15 ) and they are
related by spatial relationships isAbove, isBehind, isLeft
and isRight that are modelled as roles. These roles are
subsumed by a more generic role that is isInSpatialRelation



whose domain and range is the Sign concept. Spatial re-
lationships are transitive as expressed by axioms αbk22 -αbk26 .

αbk16 : domain(isInSpatialRelation) � Sign
αbk17 : range(isInSpatialRelation) � Sign
αbk18 : isAbove � isInSpatialRelation
αbk19 : isBehind � isInSpatialRelation
αbk20 : isLeft � isInSpatialRelation
αbk21 : isRight � isInSpatialRelation

αbk22 : isAbove ◦ isAbove � isAbove
. . . . . .
αbk26 : isInSpatialRelation ◦ isInSpatialRelation �

isInSpatialRelation

Given the axioms above, we can describe some icons in the
domain knowledge of a TBox.

Example 1. SearchHardDisk is an icon that consists
of two signs MagnifyingGlass and HardDisk, where the
MagnifyingGlass sign is above the HardDisk sign. An-
other icon is the EditDocument icon, where the Pen sign is
above the Document sign. Both icons are shown in Figure 1:

αdk1 : SearchHardDisk ≡ Icon � ∃hasSign.HardDisk�
∃hasSign.(MagnifyingGlass � ∃isAbove.HardDisk)

αdk2 : EditDocument ≡ Icon � ∃hasSign.Document�
∃hasSign.(Pen � ∃isAbove.Document)

In the paper, we will show how we can create new EL++

concepts by blending existing concepts in the domain
knowledge of a TBox. Specifically, we will see how to gen-
erate the following concept representing a new blended icon:

Icon � ∃hasSign.Document � ∃hasSign.
(MagnifyingGlass � ∃isAbove.Document)

Intuitively, given two input concepts, a new concept is cre-
ated by taking the commonalities and some specific parts
of the input concepts into account (Figure 1). For instance,
both SearchHardDisk and EditDocument are icons that
consist of two signs with one sign above the other one
(the generic space). Then, if we keep the MagnifyingGlass
sign from SearchHardDisk and the Document sign from
EditDocument, and we ‘relax’ the HardDisk and Pen
signs, we can blend the generalised input concepts of
SearchHardDisk and EditDocument into a new concept rep-
resenting a preview-document icon.1

The process of conceptual blending is characterised in
terms of amalgamation (Ontañón and Plaza 2010), an ap-
proach that has its root in case-based reasoning and focuses
on the problem of combining solutions coming from mul-
tiple cases. According to this approach, input concepts are
generalised until a generic space is found, and pairs of gen-
eralised versions of the input concepts are ‘combined’ to cre-
ate blends.

1Of course, there are some combinations of generalised in-
put concepts that are not interesting. For instance, a concept such as
Icon � ∃hasSign.MagnifyingGlass � ∃hasSign.(Pen � ∃isAbove.
MagnifyingGlass) should be discarded. This issue relates to blend
evaluation and it is not addressed in this paper. We refer the
interested reader to (Confalonieri et al. 2015) where a discussion
about the use of argumentation to evaluate conceptual blends is
presented.

Icon ⊓ ∃hasSign.HardDisk ⊓ ∃hasSign.
(MagnifyingGlass ⊓ ∃isAbove.HardDisk) 

Generalisation

H di

MGS

Blend

Input 1

Icon ⊓ ∃hasSign.Document ⊓ ∃hasSign.
(Pen ⊓ ∃isAbove.Document) 

Input 2

D

Generalisation

Generic Space

Icon ⊓ ∃hasSign.Document ⊓ ∃hasSign.
(MagnifyingGlass ⊓ ∃isAbove.Document) 

Icon ⊓ ∃hasSign.Sign ⊓ ∃hasSign.
(Sign ⊓ ∃isAbove.Sign) 

Icon ⊓ ∃hasSign.Sign ⊓ ∃hasSign.
(MagnifyingGlass ⊓ ∃isAbove.Sign) 

Icon ⊓ ∃hasSign.Document ⊓ ∃hasSign.
(Sign ⊓ ∃isAbove.Document) 

Figure 1: Blending the SearchHardDisk and EditDocument
icon concepts into a new concept representing a preview-
document icon.

Computational concept blending by amalgamation
Formally, the notion of amalgam can be defined in any repre-
sentation language L for which a subsumption relation be-
tween formulas (or descriptions) of L can be defined, and
therefore also in L(T ) with the subsumption relation �T
for a given EL++ Tbox T .

Given two descriptions C1, C2 ∈ L(T ), a most gen-
eral specialisation (MGS) is a description Cmgs such that
Cmgs �T C1 and Cmgs �T C2 and for any other descrip-
tion D satisfying these properties, D �T Cmgs. A least
general generalisation (LGG) is a description Clgg such that
C1 �T Clgg and C2 �T Clgg and for any other description
D satisfying these properties, Clgg �T D.

Intuitively, a MGS is a description that has all the infor-
mation in both the original descriptions C1 and C2, while a
LGG contains that which is common to them.

An amalgam of two descriptions is a new description
that contains parts from these original descriptions. For in-
stance, an amalgam of ‘a red French sedan’ and ‘a blue Ger-
man minivan’ is ‘a red German sedan;’ clearly there are al-
ways multiple possibilities for amalgams, like ‘a blue French
minivan’.

For the purposes of this paper we can define an amalgam
of two descriptions as follows:
Definition 1 (Amalgam). Let T be a Tbox in EL++. A de-
scription Cam ∈ L(T ) is an amalgam of two descriptions
C1 and C2 (with LGG Clgg) if there exist two descriptions
C ′

1 and C ′
2 such that:

1. C1 �T C ′
1 �T Clgg ,

2. C2 �T C ′
2 �T Clgg , and

3. Cam is a MGS of C ′
1 and C ′

2

In the next section, we define an upward refinement operator
that allows us to find generalisations of EL++ concept de-
scriptions needed for computing the amalgams as described
above, although we may generalise concepts C1 and C2 be-
yond the LGG Clgg . We do this to guarantee termination, as
we shall explain below.



Refinement Operators
Refinement operators are a well known notion in Induc-
tive Logic Programming where they are used to structure
a search process for learning concepts from examples. In
this setting, two types of refinement operators exist: spe-
cialisation (or downward) refinement operators and general-
isation (or upward) refinement operators. While the former
constructs specialisations of hypotheses, the latter contructs
generalisations.2

Generally speaking, refinement operators are defined over
quasi-ordered sets. A quasi-ordered set is a pair 〈S,�〉
where S is a set and � is a binary relation among elements
of S that is reflexive (a � a) and transitive (if a � b and
b � c then a � c). If a � b, we say that b is more general
than a, and if also b � a we say that a and b are equivalent.
A generalisation refinement operator is defined as follows.

Definition 2. A generalisation refinement operator γ over
a quasi-ordered set 〈S,�〉 is a function such that ∀a ∈ S :
γ(a) ⊆ {b ∈ S | a � b}.
A refinement operator γ can be classified according to some
desirable properties (van der Laag and Nienhuys-Cheng
1998). We say that γ is:

• locally finite if the number of generalisations generated
for any given element by the operator is finite, that is,
∀a ∈ S : γ(a) is finite;

• proper if an element is not equivalent to any of its gener-
alisations, i.e., ∀a, b ∈ S , if b ∈ γ(a), then a and b are not
equivalent;

• complete if there are no generalisations which are not gen-
erated by the operator, i.e., ∀a, b ∈ S it holds that if a � b,
then b ∈ γ∗(a) (where γ∗(a) denotes the set of all ele-
ments which can be reached from a by means of γ in a
finite number of steps).

When a refinement operator is locally finite, proper, and
complete it is said to be ideal.

An ideal specialisation refinement operator for EL has
been explored in (Lehmann and Haase 2010). In what fol-
lows, we will define a generalisation refinement operator for
EL++ and discuss its properties.

A Generalisation Refinement Operator for EL++

In any description logic the set of (complex) concept de-
scriptions are ordered under the subsumption relation form-
ing a quasi-ordered set. For EL++ in particular they form a
bounded meet-semilattice with conjunction as meet opera-
tion and � as greatest element as well as ⊥ as least element.

In order to define a generalisation refinement operator for
EL++ we will need some auxiliary definitions.

Definition 3. Let T be a TBox in EL++. The set of subcon-
cepts of T is given as

sub(T ) =
⋃

C�D∈T
sub(C) ∪ sub(D)

2A deeper analysis of refinement operators can be found in
(van der Laag and Nienhuys-Cheng 1998).

where sub is inductively defined over the structure of con-
cept descriptions as follows:

sub(A) = {A}
sub(⊥) = {⊥}
sub(�) = {�}

sub(C �D) = {C �D} ∪ sub(C) ∪ sub(D)

sub(∃r.C) = {∃r.C} ∪ sub(C)

Based on sub(T ), we define the upward cover set of atomic
concepts and roles. sub(T ) guarantees the following up-
ward cover set to be finite.

Definition 4. Let T be a Tbox in EL++ (with concept names
from NC). The set of upward covers3 of an atomic concept
A ∈ NC ∪{�,⊥} and of a role r ∈ Nr with respect to T is
given as:

UpCov(A) ={C ∈ sub(T ) | A �T C (1)

and there is no C ′ ∈ sub(T )
such that A �T C ′ �T C}

UpCov(r) ={s ∈ Nr | r �T s (2)

and there is no s′ ∈ Nr

such that r �T s′ �T s}
We can now define our generalisation refinement operator
for EL++ as follows:

Definition 5. Let T be a TBox in EL++. We define the gener-
alisation operator γ inductively over the structure of concept
descriptions as shown in Figure 2.

Given a refinement operator γ, EL++ concepts are related
by refinement paths as follows:

Definition 6. A finite sequence C1, . . . , Cn of concepts is a
concept refinement path C1

γ−→ Cn from C1 to Cn of a gen-
eralisation operator γ if C2 ∈ γ(C1), . . . , Cn ∈ γ(Cn−1).
D can be reached from C by γ if there exists a refinement
path from C to D. γ∗(C) denotes the set of all concepts that
can be reached from C by means of γ. Sometimes we write
C �γ D instead of D ∈ γ(C).

That γ is indeed a generalisation refinement operator as de-
fined in Definition 2 can be proven by applying structural
induction on EL++ concepts to show that C �γ D implies
C � D, in a similar way as in the proof of Proposition 11
from (Lehmann and Hitzler 2010).

As far as the properties of γ are concerned, we can ob-
serve the following. Our definition of UpCov for concepts
and roles only considers the set of subconcepts present in a
Tbox T . On the one hand, this guarantees that γ is finite,
since at each generalisation step, the set of possible gener-
alisations is finite. On the other hand, however, this implies

3Notice that the set of upward covers we define only takes into
accout subconcepts already present in the TBox. Therefore, strictly
speaking, its elements may not be covers with respect to subsump-
tion in EL++.



γ(A) = UpCov(A)

γ(	) = UpCov(	) = ∅
γ(⊥) = UpCov(⊥)

γ(C �D) = {C′ �D | C′ ∈ γ(C)} ∪ {C �D′ | D′ ∈ γ(D)}

γ(∃r.C) =

{
γr(∃r.C) ∪ γC(∃r.C) whenever UpCov(r) = ∅ or C = 	
{	} otherwise

γr(∃r.C) = {∃s.C | s ∈ UpCov(r)}
γC(∃r.C) = {∃r.C′ | C′ ∈ γ(C) ∧ C′ � range(r)}

Figure 2: A generalisation refinement operator for EL++. range(r) is defined in Table 1.

that γ is not complete, since it cannot find all possible up-
ward covers of a concept w.r.t. subsumption in EL++.4

Regarding the properness property, γ is not proper since
there exist cases in which the generalisations produced by γ
are equivalent to the concept being generalised. One way to
guarantee the properness of γ is by rewriting the concept that
we want to generalise into equivalent normal forms before
and after each generalisation steps. We will investigate how
normalisation can be done as future research.

For the blending, we are interested in finding a common
generalisation G (generic space) between two concepts.

Example 2. Let us consider the EL++ concepts
EditDocument and SearchHardDisk defined in Exam-
ple 1. It can be checked that:

EditDocument
γ−→ Icon � ∃hasSign.Sign � ∃hasSign.

(Sign �∃isAbove.Sign)
SearchHardDisk

γ−→ Icon � ∃hasSign.Sign � ∃hasSign.
(Sign � ∃isAbove.Sign)

Therefore, G = Icon� ∃hasSign. Sign � ∃hasSign.
(Sign � ∃isAbove.Sign) is a generic space for
EditDocument and SearchHardDisk.

It is worth to discuss that since γ is not complete, we cannot
guarantee that the generic space between two EL++ con-
cepts is a least general generalisation. Nevertheless, since
the concepts and generalisations that γ finds form a bounded
semilattice, we can ensure that we can always find a generic
space between two concepts. We believe that not finding a
least general generalisation is not a weakness of our ap-
proach since we are interested in finding a generic space that
allow us to create new EL++ concepts from existing ones by
conceptual blending.

Implementing Upward Refinement in ASP
We consider two TBoxes T1 and T25 and we assume that
T1 and T2 have the same background knowledge about icon
domain but different domain knowledge which, in our case,
contain icon definitions.

4For instance, if T contains two axioms A � B, A � C, and
we generalise A (in the domain knowledge), then γ(A) = {B,C}
while a possible generalisation of A w.r.t. �T is B � C.

5We assume to have two TBoxes because we want our imple-
mentation to be general, that is, to also work in a scenario in which
we align concepts described using different background ontologies.

In order to find a generic space between two icons, we
generalise their definitions using the upward refinement op-
erator in Figure 2 implemented in ASP.

The current status of the implementation considers two
types of generalisation: γ(A) that generalises an atomic con-
cept by its upward cover and γC(∃r.C) that generalises a
concept that fills the range of a role. We reserve the com-
plete implementation of γ as future work. In this setting, the
domain knowledge of a TBox T is generalised in a step-wise
transition process. In the following, t denotes a step-counter
that represents the number of modifications made to the do-
main knowledge part of T . Table 2 shows the main EDB and
IDB predicates used in the ASP implementation.

Modeling EL++ concepts in ASP
For each concept name A ∈ NC in a TBox T , we state the
facts:

hasConcept(T , A, t) (3a)
isAtomicConcept(T , A, t) (3b)

isBackgroundConcept(T , A) (3c)

For each role r ∈ Nr in a TBox T , with domain(r) � C
and range(r) � D, we state the facts:

hasRole(T , r, t) (4a)
hasRoleRange(T , r,D, t) (4b)

hasRoleDomain(T , r, C, t) (4c)
isBackgroundRole(T , r) (4d)

For each inclusion axiom A � B ∈ T and A, B are atomic
concepts, we state the fact:

hasParentConcept(T , A,B, t) (5)

Similarly, for each role inclusion axiom r � s ∈ T , we state
the fact:

hasParentRole(T , r, s, t) (6)

For each inclusion axiom A � C ∈ T , in which A is an
atomic concept and C is a complex concept, we call C the
concept definition of A and denote it as ADef within the
following ASP facts:

hasConcept(T ,ADef , t) (7a)
isComplexConcept(T ,ADef , t) (7b)

hasParentConcept(T , A,ADef , t) (7c)
isBackgroundConcept(T ,ADef ) (7d)

For each Ci in the complex concept C = C1 � . . .�Cn, we
make a case distinction and state the following facts:



EDB predicates Description
spec(T ) A reference to a TBox T
hasConcept(T , C, t) A concept C belongs to a TBox T at step t
hasParentConcept(T , A,B, t) A concept B subsumes A in a TBox T at step t
isComplexConcept(T , C, t) A concept C is a complex concept in a TBox T at step t
complexCInvolvesCon(T , C,A, t) A concept C contains a concept A in a TBox T at step t
complexCInvolvesRole(T , C, r, A, t) A concept C contains a role r whose range is filled by A in a TBox T at step t

IDB predicates Description
notEqual(T1, T2, t) The TBoxes T1, T2 are not equivalent at step t
conceptsNotEquivalent(T1 , T2 ,, t) The concepts in the TBoxes T1, T2 are not equivalent at step t
complexCConceptNotEq(T1, T2, C,A, t) A concept A in C is not equivalent in the TBoxes T1, T2 at step t
complexCRoleConceptNotEq(T1, T2, C, r, A, t) A concept A filling the role r of C is not equivalent in the TBoxes T1, T2 at step t
poss(a, T , t) An upward refinement step a is executable in a TBox T at step t
exec(a, T , t) An upward refinement step a is executed in a TBox T at step t

Table 2: Overview of the main EDB and IDB predicates used to formalise the upward refinement process in ASP.

1. if Ci = B:

complexCInvolvesCon(T ,ADef , B, t) (8)

2. if Ci = ∃r.A:

complexCInvolvesRole(T ,ADef , r, A, t) (9)

3. if Ci = ∃r.D:

hasConcept(T ,DDef , t) (10a)
isComplexConcept(T ,DDef , t) (10b)

complexCInvolvesRole(T ,ADef , r,DDef , t) (10c)
isBackgroundConcept(T ,DDef ) (10d)

The concepts belonging to the domain knowledge part
Tdk of a TBox T are modeled in a similar way but
without the isBackgroundConcept/3 facts. Besides, we
model the concept � as the fact hasConcept(T ,Thing , t),
and for each concept name A ∈ NC , which is not
already subsumed by other concept names, we add a
fact hasParentConcept(T ,A,Thing , t). We check for
(in)equality of TBoxes by a rule notEqual(T1, T2, t) ←
conceptsNotEquivalent(T1 , T2 ,, t). The rule is triggered
by additional rules if, for T1 and T2, at step t, atomic con-
cepts, roles and complex concepts are not equal.

Formalising upward refinement in ASP
In what follows, we refer to the upward operator types we
implemented as γA and γC . γA stands for the generalisa-
tion of an atomic concept (first row in Fig. 2) and γC for
the generalisation of a concept filling the range of a role.
Each upward refinement operator type is an action; to this
end, we model each operator type via a precondition rule, an
inertia rule, and an effect rule. Preconditions are modelled
with a predicate poss/3 that states when it is possible to ex-
ecute an operator type. Inertia is modelled with a predicate
noninertial/3 that states when an element of a concept in T
remains unchanged after the execution of a refinement oper-
ator type. Effect rules model how a refinement operator type
changes a concept in the domain knowledge. We represent
the execution of an upward refinement operator type with
atoms exec(γx, T , t), to denote that a generalisation opera-
tor type γx ∈ {γA, γC} is applied to T at a step t.

Upward refinement of atomic concepts. A fact
exec(genConcept(C ,A,B), T , t) denotes the general-
isation of a concept A to a concept B in a complex concept
C of a TBox T at step t using γA. The precondition rule for
generalising A is:

poss(genConcept(C,A,B), T1, t)← (11)
not isBackgroundConcept(T1, C),

complexCInvolvesCon(T1, C,A, t),

hasParentConcept(T1, A,B, t),

complexCConceptNotEq(T1, T2, C,A, t),

not exec(genConcept(C,A,B), T2, t), spec(T2)

There are several preconditions for generalising an atomic
concept in a complex concept C. First, C must not be a
background concept since we do not want to modify the
background knowledge of a TBox T . Second, the con-
cept C involves a concept A that has a parent concept
B in the subsumption hierarchy defined by the axioms
of the TBox. Third, the definition of C in the TBoxes
is not equivalent (complexCConceptNotEq/4 ). The atom
complexCConceptNotEq/4 is true either when one of the
TBoxes does not contain C or when the definitions of (the
structure of) C are different. Another condition is that C has
not been generalised in the other TBox.

We also need a simple inertia rule for generalising a con-
cept in a complex concept. This is as follows:

noninertial(T , C,A, t)← exec(genConcept(C,A, ), T , t)
(12)

noninertial atoms will cause a concept A to remain in the
complex concept C in a TBox T , as defined via rule (15a).

Upward refinement of range concepts. A fact
exec(genConceptInRole(C , r ,A,B), T , t) denotes
the generalisation of a concept A to a concept B when A
fills the range of a role r in a complex concept C of a TBox
T at step t using γC . The precondition rule for generalising



a concept A is:

poss(genConceptInRole(C, r,A,B), T1, t)← (13)
not isBackgroundConcept(T1, C),

complexCInvolvesRole(T1, C, r, A, t)

hasParentConcept(T1, A,B, t),

complexCRoleConceptNotEq(T1, T2, C, r, A, t),

not isNotInRoleRange(T1, r, B), spec(T2),
not exec(genConceptInRole(C, r,A,B), T2, t), spec(T2)

The preconditions for generalising a concept filling the role
of a complex concept C are similar to the case of gener-
alising an atomic concept. First, C must not be a back-
ground concept. Second, C involves a role in which the
concept to be generalised has a parent concept in the sub-
sumption hierarchy of the TBox. Then, the definitions of
the concept to be generalised must not be equivalent in the
TBoxes. (complexCRoleConceptNotEq/4 ). Another con-
dition is needed in the case of this generalisation, that is, the
concept that we want to use to generalise the range of a role,
must be in the range of r. This is checked by means of the
atom isNotInRoleRange/3 . Finally, the concept to be gen-
eralised must have not been generalised in the other TBox.

The inertia rule for generalising a concept that fills the
range of a role in a TBox is analogous to the inertial rule for
generalising a concept:

noninertial(T , C,A, t)← (14)
exec(genConceptInRole(C, A, ), T , t)

noninertial atoms will cause a concept A to remain in the
range of a role as defined via rule (15b).

Inertia. The following rules state which concepts remain
in a TBox T when they are inertial.

complexCInvolvesCon(T , C,A, t+ 1)← (15a)
complexCInvolvesCon(T , C,A, t),

not noninertial(T , C,A, t)

complexCInvolvesRole(T , C, r, A, t+ 1)← (15b)
complexCInvolvesRole(T , C, r, A, t),

not noninertial(T , C,A, t)

Besides, other inertia rules are needed for expressing that
all the concepts and roles of the background knowledge and
their subsumption relations remain in a TBox T . We omit
them.

Effects. The following rules state which concepts change
in a TBox T when they are generalised.

complexCInvolvesCon(T , C,B, t+ 1)← (16a)
complexCInvolvesCon(T , C,A, t),

exec(genConcept(C,A,B), T , t)

complexCInvolvesRole(T , C, r, B, t+ 1)← (16b)
complexCInvolvesRole(T , C, r, A, t),

exec(genConceptInRole(C, r,A,B), T , t)

Upward refinement search
We use ASP for finding a generic space and the generalised
versions of the concepts in the domain knowledge of T ,
which can lead to a blend. This is done by successively gen-
eralising the concepts in the domain knowledge by means
of the upward operator steps we described in the previous
subsection. Again, this is a first implementation and does
not capture the recursive definition of the upward refinement
operator that we leave as future work.

A sequence of generalisation operator types defines a re-
finement path.
Definition 7 (Refinement path). Let T be a TBox, let
{γ1

x, . . . , γ
n
x} be the set of generalisation steps for T , t1 <

· · · < tn be refinement steps and γx ∈ {γA, γC}. The set
of atoms P = {exec(γ1

x, T , t1), · · · , exec(γn
x , T , tn)} is a

refinement path of T .
Refinement paths are generated with the following choice

rule, that allows one or zero refinement operators per T at
each step t:

0{exec(a, T , t) : poss(a, T , t)}1← (17)
not genericReached(t), spec(T )

The only generalisations that are executed are those
whose preconditions are satisfied. Refinement paths lead
from the input TBoxes to a generic space, which is a gener-
alised TBox that contains the commonalities of the concepts
in the domain knowledge. A generic space is reached, if the
generalised TBoxes are equals. The notEqual predicate is
used to determine if a generic space is reached.

notGenericReached(t)←spec(T1), spec(T2), (18a)
notEqual(T1, T2, t), T1 = T2

← notGenericReached(t) (18b)

The constraint (18b) ensures that the generic space is
reached in all stable models. The ASP program generates
one stable model for each combination of generalisation
paths that lead to the generic space.
Example 3. Let us consider the SearchHardDisk and
EditDocument concepts in Example 1 representing icons
in the domain knowledge of two TBoxes SearchHD and
EditDoc. Their refinement paths are:

PSearchHD = {exec(genConceptInRole(SearchHDDef,

hasSign,HardDisk, Sign,SearchHD , 0),

exec(genConceptInRole(SearchHDDefDef, isAbove,

HardDisk, Sign),SearchHD , 1)}
exec(genConcept(SearchHDDefDef,

MagnifyingGlass, Sign),SearchHD , 2),

PEditDoc = {exec(genConcept(EditDocDefDef, Pen, Sign),

EditDoc, 0),

exec(genConceptInRole(EditDocDef, hasSign,Document,

Sign),EditDoc, 1),

exec(genConceptInRole(EditDocDefDef),

isAbove,Document, Sign),EditDoc, 2)}



After applying the respective generalisation operators a
generic space is reached. It is easy to check that this cor-
responds to the generic space in Example 2.

Blending EL++ concepts
In Definition 1, we defined the blends of two EL++ concepts
in terms of amalgams. Once a generic space between two
concepts has been determined, blends are created by com-
puting the MGS of pairs of generalised concepts. In EL++

the MGS of two EL++ concepts is just their conjunction.
Then we will have to normalise this conjunction to obtain
the most concise description of the newly created concept.
This is just a rough description of conceptual blending
in EL++, and normalisation for newly created blends still
needs to be studied in detail (this also relates to the opera-
tor properness). Blending will also need to consider an in-
terleaved evaluation and generation process in order to find
the best pairs of generalised concepts for creating interesting
blends.

Example 4. Let us consider C1 = SearchHardDisk, C2 =
EditDocument, G in Example 2 and the refinement paths
PSearchHD , PEditDoc in Example 3. The generalisations
of C1 and C2 by applying the generalisation steps 0-1 in
PSearchHD and step 0 in PEditDoc respectively are:

C′
1 = Icon � ∃hasSign.Sign � ∃hasSign.

(MagnifyingGlass � ∃isAbove.Sign)
C′

2 = Icon � ∃hasSign.Document � ∃hasSign.
(Sign � ∃isAbove.Document)

Then, the conjunction C ′
1 � C ′

2 = (Icon � ∃hasSign.
Sign� ∃hasSign. (MagnifyingGlass �∃isAbove.Sign))
� (Icon� ∃hasSign.Document� ∃hasSign. (Sign
�∃isAbove.Document)). C ′

1 � C ′
2 is simplified to ob-

tain the blend concept Icon� ∃hasSign. Document�
∃hasSign.(MagnifyingGlass �∃isAbove.Document) by
normalisation.

Conceptual blending in EL++ as described in this paper is
a special case of blending as modelled in (Bou et al. 2014)
and implemented for CASL theories in (Eppe et al. 2015).

Related Work
There exist several works that relate to ours from different
perspectives, that are, approaches to conceptual blending of
ontologies, approaches for finding the LGG in the EL fam-
ily, and approaches that uses ASP for reasoning over DL
ontologies.

Conceptual blending of ontologies in DLs has been ex-
plored in (Hois et al. 2010; Kutz et al. 2014) where blends
are computed as colimits of algebraic specifications. As
such, the blending process is not characterised in terms of
amalgamation, the input concepts are not generalised, and
the generic space is assumed to be given.

Several approaches for generalising ontology concepts in
the EL family exist in the DLs and ILP literature.

On the one hand, in DL approaches the LGG is defined in
terms of a non-standard reasoning task over a TBox (Baader
2003; 2005; Baader, Sertkaya, and Turhan 2007; Zarrießand

Turhan 2013; Turhan and Zarrieß 2013). Generally speak-
ing, since the LGG w.r.t. general TBoxes in the EL fam-
ily does usually not exist, these approaches propose several
‘workarounds’ for computing it. For instance, (Baader 2003;
2005) devises the exact conditions for the existence of the
LGG for cyclic EL-TBoxes based on graph-theoretic gen-
eralisations. (Baader, Sertkaya, and Turhan 2007) propose
an algorithm for computing good LGGs w.r.t. a background
terminology. (Zarrießand Turhan 2013; Turhan and Zarrieß
2013) specify the conditions for the existence of the LGG for
general EL- and EL+-TBoxes based on canonical models.
As already commented in the introduction, our work relates
to these approaches, but it is different in spirit, since we do
not need to find the LGG between (two) EL++ concepts for
the kind of application we are developing.

ILP approaches, on the other hand, study the LGG in
terms of generalisation and specialisation refinement opera-
tors. Specialisation rsefinement operators have been defined
for learning DL ontologies (Lehmann and Hitzler 2008;
Lehmann and Haase 2010) and for measuring the similar-
ity of EL concepts (Sánchez-Ruiz et al. 2011; 2013).

Finally, some of the approaches that combine ASP for rea-
soning over DL ontologies are (Swift 2004; Eiter et al. 2008;
Ricca et al. 2009).

Conclusion and Future Works
In this paper, we defined an upward refinement operator for
generalising EL++ concepts for conceptual blending. The
operator works by recursively traversing their descriptions.
We discussed the properties of the refinement operator. The
operator is finite, can be proper (by allowing a normalisa-
tion before each refinement step), but it is not complete. We
claimed, however, that completeness is not an essential prop-
erty for our needs, since being able to find a generic space
between two EL++ concepts, although not a LGG, is already
a sufficient condition for conceptual blending.

We presented a first implementation of the refinement op-
erator in ASP. We showed how to model the description
of EL++ concepts in ASP and to formalise two refinement
operator types for generalising the domain knowledge of a
TBox. The stable models of the ASP program contain the
generalisation steps needed to be applied in order to gener-
alise two EL++ concepts until a generic space is reached.
We discussed how the blend of two EL++ concepts, defined
in terms of their most general specification, can be obtained
by their conjunction. We exemplified our approach in the
domain of computer icon design.

As future works, we plan to continue with the implemen-
tation of the EL++ generalisation operator, to investigate the
normalisation rules needed for the operator to be proper and
for normalising the blends, as well as to implement a con-
ceptual blending algorithm. We also aim at studying the re-
lationship between the category of CASL theories (Mosses
2004) and signature morphisms and the category of EL++

concept descriptions and subsumption relation.
We consider the work of this paper to be a fundamental

step towards the challenging task of defining and implement-
ing an upward refinement operator for more expressive DLs
in the context of conceptual blending.
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