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Effects of rigid or adaptive confinement on colloidal self-assembly.
Fixed vs. fluctuating number of confined particles

J. Pȩkalski,1 N. G. Almarza,2 and A. Ciach1
1Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Poland
2Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid, Spain

(Received 15 April 2015; accepted 15 May 2015; published online 28 May 2015)

The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles
are studied in the one dimensional lattice model solved exactly in the grand canonical ensemble
(GCE) in Pȩkalski et al. [J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction
defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states
corresponding to self-assembly into clusters. Both fixed and adaptive boundaries are studied. For
fixed boundaries, there are particular states in which, for equal average densities, the number of
clusters in the GCE is larger than in the canonical ensemble. The dependence of pressure on density
has a different form when the system size changes with fixed number of particles and when the
number of particles changes with fixed size of the system. In the former case, the pressure has a
nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding
system is accompanied by formation of a larger number of smaller clusters. In the case of elastic
confining surfaces, we observe a bistability, i.e., two significantly different system sizes occur with
almost the same probability. The mechanism of the bistability in the closed system is different to
that of the case of permeable walls, where the two equilibrium system sizes correspond to a different
number of particles. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4921787]

I. INTRODUCTION

Confinement has a significant effect on fluids when the
separation between the confining surfaces is comparable with
the characteristic structural length of the confined fluid.1,2 In
simple fluids, such pore thicknesses are of order of Ångströms.
The effects of confinement depend on whether the boundaries
are rigid or adaptive. In the latter case, mechanical equilibrium
between the stress in the solid walls resulting from the swelling
or shrinking of the pore and the solvation force1,2 induced
on the walls by the confined fluid can lead to contraction
or expansion of the pore.3 Similar dependence on the type
of confinement is expected in the case of self-assembling
systems, but on different length and energy scales.4–10 The
packing effects of molecules are replaced in this case by the
packing effects of micelles, clusters, or layers that are much
larger and softer.

In this work, we focus on colloidal self-assembly in
thermodynamic conditions corresponding to self-assembly
into clusters or layers in the bulk.8,11–15 We study rigid and
elastic boundaries, and consider separations of the confining
walls comparable with a few structural units. The adaptive
confinement in this case means confining surfaces that are
soft and separated by hundreds of nanometers. Important
examples of such a confinement exist in organelles or in
lipid or polymeric vesicles. One can expect that the shape
of the outer membrane and the ordering inside the vesicle or
organelle influence each other in a way that depends on the
elasticity of the membrane. We shall consider self-assembly

in systems with fixed boundaries and with boundaries with
different elasticities, from stiff to very soft.

Some of the membranes are permeable, while some other
are not. Thus, a question arises if fluctuations of the number of
confined particles have any effect on the properties of a self-
assembling system confined by rigid or adaptive boundaries.
This question motivates our present study. We ask how the
effects of confinement on the self-assembling system depend
on the contact with a reservoir of particles.

The above problems are very difficult for realistic models
of self-assembling systems confined by elastic boundaries.
In order to gain some first insight, however, one can consider
simplified models. In this work, we consider the simple generic
model of the system with competing short-range attraction
and longer-range repulsion (SALR) that can be solved
exactly.16 The model was solved exactly and systematically
analyzed in the bulk16–18 and in confinement19 in the grand
canonical ensemble (GCE). Recently, a procedure to extract
full canonical information from grand-canonical results has
been proposed in Ref. 20. In principle, it is possible to
apply this technique to our exact GCE results. However, in
the current problem, the presence of energetic terms and
low temperature pose numerical difficulties in the mapping
procedure between the results in both ensembles. For this
reason, we decide to perform Monte Carlo (MC) simulations
in the canonical ensemble (CE).

In the case of fixed boundaries, we address the question of
how the fluctuations of the positions and sizes of the clusters
(their dynamical assembly and dissociation) are coupled with
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the fluctuations of the number of particles in the system. In
the case of inhomogeneous distribution of particles, it is not a
priori obvious that the largest fluctuations in the total number
of particles lead to the largest differences between the density
profiles in the canonical and grand canonical ensembles. We
shall compare the density profiles and the pressure in the
GCE and CE ensembles, with the average number of particles
in the GCE equal to the number of particles N0 in the CE.
We shall pay particular attention to values of N0 that are too
small or too large for a given system size L for formation of
periodically distributed layers of particles that minimizes the
system energy. Roughly speaking, in the SALR systems, the
minimum energy is assumed when the individual clusters have
the lowest energy (no intra-cluster repulsion) and are separated
by the smallest distances corresponding to no inter-cluster
repulsion. When the number of particles is too small or too
large for a given L for formation of the optimal bulk structure,
some structural deformations must occur. Our purpose is to
compare these deformations and their effect on the mechanical
properties in the GCE and CE.

Adaptive boundaries were studied in Ref. 21 in the
case of fixed number of discs surrounded by particles kept
by laser tweezers. The system exhibited bistability; either
hexagonal structure (and modified boundaries) or concentric
rings of particles occurred. We observed a different bistability
in Ref. 19, where we studied particles interacting with the
SALR potential and confined by boundaries, whose separation
could be varied at the cost of elastic energy. When the average
number of particles is too small or too large for given L for
formation of the optimal bulk structure, some compromise
must occur between the excess of the free energy associated
with the structural deformations and the elastic energy cost
due to adjusting the size of the compartment to the optimal
structure of the confined fluid. We obtained exact results for a
one-dimensional (1d) model in GCE and required mechanical
equilibrium between the fluid-induced solvation force and the
elastic force present when the system shrinks or expands. We
found that when the equilibrium width of the empty container
corresponded to the largest stress of the confined colloidal
system, two significantly different system sizes were almost
equally probable. The large size fluctuations are accompanied
by absorption or evaporation of a whole cluster. Clearly, for
fixed number of particles, such large size fluctuations are not
possible. Hence, the permeability plays an important role in
the case of elastic boundaries. In this work, we verify if in the
case of fixed number of particles the bistability of the system
size can still exist due to some other mechanism.

We present the model and the simulation methods in
Sec. II. The density profiles are described and compared
with the results obtained in the GCE in Sec. III. The
mechanical properties are discussed in Sec. IV. We compare
the dependence of pressure on density in the CE (fixed N
and varying L) and in the GCE for several fixed values
of L and varying ⟨N⟩. The dependence of pressure on
the system size for fixed N or ⟨N⟩ in the CE or GCE,
respectively, is also discussed. In Sec. V, we consider elastic
boundaries and compute the average system size as a function
of N for various elastic constants of the walls. For selected
cases, the histograms for the fluctuating width of the system

are presented. Section VI contains a short summary and
concluding remarks.

II. THE MODEL AND THE METHODS

In this section, we briefly describe the model and the
methods used for its analysis. More detailed descriptions of
the model and the transfer matrix method used for finding
the exact solutions of the model in the GCE can be found in
Ref. 19.

A. The model

We consider a one-dimensional (1d) lattice model and
assume an isotropic effective pair interaction potential of
the SALR type. The ranges of the competing attractive and
repulsive parts are chosen such that small clusters are formed
for some range of thermodynamic variables. Namely, we
assume that the nearest neighbors attract each other and
the third neighbors repel each other, i.e., the effective pair
interaction potential is

V (∆x) =



−J1 for |∆x | = 1,
+J2 for |∆x | = 3,
0 otherwise,

(1)

where J1 is the energy of attraction, J2 is the energy of
repulsion, the unit distance is the particle diameter σ, and
∆x is the distance between two sites of the lattice. Such a
shape of the effective potential can be found for charged
particles in solvents that induce short range attraction between
the particles, e.g., for lysozyme molecules in water22 or for
colloids in a solvent containing short-chain polymers.12

In Refs. 16–18, we assumed periodic boundary conditions
and extensively investigated the spontaneous pattern formation
of particles in the bulk. In order to study the effects of
confinement on the self-assembled structures, we changed
the boundary conditions of the model from periodic to rigid
or elastic in Ref. 19. In the current study, we continue the
investigation of the confined system with particles interacting
via the pair potential given by Eq. (1). The confinement is
assumed to be electrically neutral; hence, the interaction of
the particles with the walls is short range. The Hamiltonians
in the canonical and grand canonical ensembles take the forms,

U[{ ρ̂}] = 1
2

L
x=1

L
x′=1

ρ̂(x)V (x − x ′) ρ̂(x ′) + h1 ρ̂(1) + hL ρ̂(L)

(fixed N), (2)

H[{ ρ̂}] = U[{ ρ̂}] − µ

L
x=1

ρ̂(x) (fixed µ), (3)

where h1 and hL are the energies of the interactions between
the confining walls and the particles located at the 1st and the
Lth site, respectively, ρ̂(x) is the occupancy operator such that
ρ̂(x) = 1 if the x-th site is occupied and ρ̂(x) = 0 otherwise,
and µ is the chemical potential. The number of particles N
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(fixed in the canonical ensemble) is given by

N =
L

x=1

ρ̂(x). (4)

As in Ref. 19, we assume that the confinement can be
either rigid or elastic. For rigid boundary conditions, the
distance L between the confining walls is fixed, while in the
case of elastic walls, we assume that it may oscillate around
L0, which is the equilibrium width of an empty system. The
Hamiltonian of the system with elastic boundary conditions is
for the case of permeable walls,

H = H + k(L − L0)2, (5)

where k is the elastic constant, and for the fixed number of
particles, the Hamiltonian takes the form,

U = U + k(L − L0)2. (6)

We set the energy of attraction J1 as energy unit and
introduce the following dimensionless variables

T∗ = kBT/J1, β∗ = J1/kBT, J∗ = J2/J1, (7)
h∗1 = h1/J1, h∗L = hL/J1, µ∗ = µ/J1 (8)

where kB is the Boltzmann’s constant and T is the temperature.
From now on, we set J∗ = 3, h∗1 = h∗L = ±1 and study the role
of the temperature and the chemical potential or the number
of particles. For the selected parameters, energy (2) takes the
minimum when clusters composed of 3 particles are separated
by 3 empty sites, and a cluster is attached to each boundary.
Such an optimal structure is possible only for L = 2N − 3.

B. The computational method

In order to find the exact solution of the model in the
GCE for T > 0 the transfer matrix method was applied. We
have found exact expressions for the partition function and
the local density. The details of the derivations are provided
in the Appendix of Ref. 19. Here, we will present only the
final formula for the partition function with a brief description
of the notation. The partition function for the system of size
L = 3M + j with M a natural number and j = 0,1,2 is given
by

Ξ =

Ŝ(1)

′
Ŝ(M )

eβ
∗ρ̂(1)h∗1TM−1[Ŝ(1), Ŝ(M)]eβ∗ρ̂(L)h∗L eβ

∗H∗
j
[Ŝ(M )]

,

(9)

where Ŝ(n) = ( ρ̂(3n − 2), ρ̂(3n − 1), ρ̂(3n)) with n = 1, . . . ,M
and T is the transfer matrix with the matrix elements defined
as

T(Ŝ(n), Ŝ(n + 1)) ≡ e−β
∗H∗t [Ŝ(n), Ŝ(n+1)], (10)

where

H∗t [Ŝ(n), Ŝ(n + 1)]

=

3n
x=3n−2

�
− ρ̂(x) ρ̂(x + 1) + J∗ ρ̂(x) ρ̂(x + 3) − µ∗ ρ̂(x)�.

(11)

′
Ŝ(M ) and H∗j depend on j and the rather lengthy expressions

are provided in Appendix A. Having a formula for the partition
function, one can derive exact expressions for the pressure and
the local density. For more details as well as for asymptotic
expressions of the exact solutions, see Ref. 19.

C. The simulation methods

In the current study, we compare the exact solution
obtained in GCE with results of MC simulation in CE. In
addition to the simulations in the CE, we also carried out
some runs in the GCE with the aim of cross-checking the
consistency between the simulation codes and the numer-
ical treatments based on the transfer matrix methods. The
simulation procedures make use of the Metropolis criterion23

implemented for two kinds of MC steps: translations of one
particle in the canonical ensemble and particle insertions or
deletions in the grand canonical ensemble. For each step,
a trial configuration is generated and it is accepted with
probability: min [1,exp(−β∆H)], where ∆H is the change
of the Hamiltonian in the trial step. The trial configuration
for a particle translation is generated by moving a randomly
chosen particle to a randomly chosen empty site, which is
equivalent to choose two sites of the lattice x and x ′ so that
ρ̂(x) , ρ̂(x ′), and interchange their occupancy states so that
ρ̂trial(x) = ρ̂(x ′) and ρ̂trial(x ′) = ρ̂(x). A MC step in the grand
canonical simulations implies the insertion or deletion of one
particle, this is achieved by choosing at random one site of the
lattice, x, and generating the trial configuration by flipping its
occupancy state from its current value ρ̂(x) to the trial value
ρ̂trial(x) = 1 − ρ̂(x).

The computation of pressure from simulation of lattice
models is usually carried out by means of the integration of
the grand potential in the GCE, because the known relation
for the canonical ensemble: βp = −(∂(βA)/∂V )N,T (where A
is the Helmholtz free energy and V is the generalized volume)
is hard to translate into an efficient numerical procedure due
to the discreteness of the volume in lattice systems. We have
found, however, that for our 1d system, it is feasible to compute
the pressure p(N,L,T) in the CE, by an algorithm based on
the discretization of the derivative of A(N,L,T) with respect
to the system size as

p±(N,L,T) = ∓[A(N,L ± 1,T) − A(N,L,T)]. (12)

The pressure, in the terms of the canonical partition function
Q(N,L,T), can be written as

p±(N,L,T) = ± 1
β

ln
Q(N,L ± 1,T)

Q(N,L,T) . (13)

The two ways of discretization, p+ and p−, lead to two different
methods of computing the pressure, the virtual expansion, and
the virtual contraction, respectively, from a direct analysis
of the configurations from a simulation run at conditions
(N,L,T).

In the virtual expansion, an empty site is added at a
randomly chosen position of the system. For a confined system
of size L, there are L + 1 possibilities of performing such
an insertion, namely, L − 1 cases where the inserted site is
located between two sites of the system plus two insertions
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between the walls and the first or last site. Considering the
L + 1 possible ways of inserting an empty site on each of the
microstates of the system of size L with N occupied sites (with
0 ≤ N ≤ L), we get L + 1 − N identical copies of each of the
microstates of the system of size L + 1 and N occupied sites
(see Appendix B). Let us denote by ρ⃗L a given configuration of

the system with N particles and L sites, with potential energy
given by U( ρ⃗L). If we define ρ⃗L+1( ρ⃗L, k) as the configuration
with N particles of a system with L + 1 sites built from ρ⃗L by
inserting a site at position k and denote by


ρ⃗L

the sum over
all possible microstates of this system with N particles and L
sites, then we can write Eq. (13) as

p+(N,L,T) = 1
β

ln


ρ⃗L
exp [−βU( ρ⃗L)]L

k=0 exp [−βU( ρ⃗L+1( ρ⃗L, k)) + βU( ρ⃗L)]
(L + 1 − N)ρ⃗L

exp [−βU( ρ⃗L)] (14)

= kBT ln


L + 1
L + 1 − N

exp [−β∆Uins]

L

, (15)

where ⟨·⟩L is the average value of · when sampled on a system
of size L, and ∆Uins is the difference between the energies of
the systems with L + 1 and L sites. Analogously, a formula
for pressure p− computed by the virtual contraction scheme
can be derived

p−(N,L,T) = −kBT ln


L − N
L

exp [−β∆Udel]

L

, (16)

where ∆Udel = U( ρ⃗L−1) −U( ρ⃗L) is the variation of energy
when a configuration ρ⃗L−1, of N particles and L − 1 sites
is generated by eliminating one of the empty sites from
the configuration ρ⃗L of a system with N particles and L
sites. The virtual contraction method is inefficient at high
densities; therefore, we used it only for verification of the
results obtained via the virtual expansion method, since by
construction we expect

p+(N,L,T) = p−(N,L + 1,T). (17)

In order to calculate properties of the system with elastic
boundary conditions described by the Hamiltonian U given
in Eq. (6), one needs to perform two additional types of MC
steps. The first one is the intercalation of an empty site into
a randomly chosen place of the system; the second one is the
removal of a randomly chosen empty site of the system. The
acceptance probability of the first move for system with L sites
and N particles is

A(L + 1|L) = min

1,exp[−β∆U ] L + 1

L + 1 − N


, (18)

where ∆U is the change of the energy after the size
modification. Analogously, the probability of acceptance of
the move in which an empty site is removed is given by

A(L − 1|L) = min

1,exp[−β∆U ]L − N

L


. (19)

Notice that this procedure resembles a lattice version of
isothermal-isobaric (N pT) simulation, in which the energy
term introduced through the elastic force plays the role of the
external field.

III. DISTRIBUTION OF PARTICLES BETWEEN RIGID
WALLS

In this section, we consider a system containing N0
particles between rigid walls separated by a fixed distance
L. The main question is how the particles self-assemble if N0
is such that the equilibrium bulk structure is not possible, but
it is big enough to form clusters. The distribution of particles
for fixed N0 will be compared with the distribution of particles
in the open system, where the number of particles N fluctuates
in such a way that ⟨N⟩ = N0.

In Fig. 1, the density profiles obtained by the MC
simulations in the CE are compared with the exact results
obtained in the GCE by the transfer matrix method described
in Ref. 19. We chose L = 50, T∗ = 0.3, and several values of
N0. In each case, the chemical potential in the GCE was fixed
to the value that corresponds to ⟨N⟩ = N0. We used the exact
expression for density as a function of the chemical potential
that was obtained in Ref. 19. For L = 51, the optimal number
of clusters for the considered range of µ∗ is 9 (hence N = 27),
since the sequence of three occupied sites followed by three
empty sites can be formed, with two clusters adsorbed at the
attractive surfaces. The energy for such a structure assumes a
minimum (there are as many attracting pairs as possible with
no repulsion). For L = 50, only a small defect in the ordered
structure occurs. We can see a very good agreement between
the two ensembles for small as well as for large number of
particles. For N = 24 corresponding to eight clusters, however,
the number of maxima in the GCE is larger than in the CE. This
result is even more surprising when we consider the fluctuation
of the number of particles in the GCE (Fig. 2). One can see
that the largest discrepancy between the density profiles does
not occur for the largest fluctuation of the number of confined
particles in the GCE.

In order to understand why the distributions of the
particles in the two ensembles are different when one cluster
in the CE “is missing,” let us consider the ground state (GS),
T∗ = 0. The microstates present in the GS for L = 15 and
N = 5,6,7 are shown in Fig. 3. The GS in Fig. 3 shows that
even small fluctuations of the number of particles—addition
of one particle in our case—can lead to a significant change in
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FIG. 1. Comparison of the GCE (dashed line) and the CE (solid line) density
profiles for L = 50 at T ∗= 0.3 and N = 22 or µ∗=−0.339 04 (a), N = 23 or
µ∗=−0.211 27 (b), N = 24 or µ∗=−0.026 32 (c), N = 25 or µ∗= 0.221 59
(d), N = 26 or µ∗= 1.088 57 (e). Repulsion to attraction ratio J∗= 3 and
attractive walls with h∗1= h

∗
L =−1 are considered for all the cases.

the distribution of the particles. This is the case when ⟨N⟩ is a
multiple of 3, and there is a free space for an extra cluster (with
no cluster-cluster repulsion). When one additional particle
enters the system, the energy change is J∗ − 1 when one
of the clusters grows to contain 4 particles, or 0, when the
new particle is sufficiently far from the clusters, or one of
the clusters together with the new particle form two clusters
composed of two particles. In Fig. 3, bottom row, the two latter
cases are shown. The states shown in Fig. 3 are energetically
favorable for J∗ > 1. Thus, in the GCE with ⟨N⟩ = 6, such

FIG. 2. The standard deviation of the number of particles σN divided by the
average number of particles ⟨N ⟩ for L = 50, T ∗= 0.3, J∗= 3, and attractive
walls with h∗1= h

∗
L =−1. The red squares indicate the values of the chemical

potential taken for the density profiles in Fig. 1.

FIG. 3. Typical microscopic states present in the GS of the model with
J∗= 3, attractive walls with h∗1= h

∗
L =−1 and L = 15 in the CE with N = 5

(a), N = 6 (b), and N = 7 (c). For N = 5,7, the GS is degenerate. Blue color
denotes the occupied sites, while white the empty sites.

microstates will appear quite often. As a result, an additional
maximum in the average density profile occurs.

The above simple considerations show that spatial distri-
bution of particles in the CE and GCE can be qualitatively
different. This qualitative difference is not present for the
largest fluctuation of the number of particles in the GCE.
Even a small fluctuation of the number of particles can lead
to a change of the number of clusters, because the sizes of the
clusters can fluctuate, especially when N is not a multiple of 3.
When ⟨N⟩ is small enough, the additional clusters can occupy
the empty space and no inter-cluster repulsion appears.

The system size for which the described qualitative
difference between the ensembles is still present can be
thousands of times larger then the particle diameter and it
increases upon cooling. Such effect follows from the very
large correlation length ξ between the particles in this model.16

If L ≫ 2ξ, we do not expect the ensembles to be different,
because in such a case the density profile in the middle of
the slit is uniform. Thus, the ensembles are equivalent in
thermodynamic limit.

On the other hand, we have observed differences between
the ensembles for very low densities, too small for clustering.
In this limit, the differences follow from the high density
fluctuations in the GCE.20 Interestingly, when two clusters
can be formed in the system, we have obtained results very
similar to those shown in Fig. 1(b) of Ref. 20, but with two
particles replaced by two clusters.

IV. EQUATION OF STATE IN A SYSTEM CONFINED
BY RIGID WALLS

In this section, we compute pressure for fixed number of
confined particles N0 as a function of the distance between
the confining surfaces L. From these results, we obtain the
pressure as a function of density, p(ρ), for given N0. For
comparison, we present p(ρ) calculated exactly in the GCE
by the transfer matrix method described in Ref. 19. In the
GCE, we consider fixed L and µ and calculate p(µ) and ρ(µ)
to obtain p(ρ) for given L. The shape of p(ρ) in the GCE
depends on the commensurability between L and the period
of the energetically favorable structure. We shall compare the
results obtained in the CE for fixed N0 with the p(ρ) lines
obtained in the GCE for six system sizes L.

In Fig. 4, the results for the reduced pressure as a function
of the average density for CE and GCE are presented. Note
the discrepancy between the CE and GCE for ρ ≈ 0.55, where
the periodically ordered clusters consisting of 3 particles
are separated by 3 empty sites. In the GCE, p(ρ) increases
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FIG. 4. Reduced pressure as a function of density for J∗= 3, T ∗= 0.5, and
attractive walls (h∗1= h

∗
L =−1). Upper panel: Canonical Monte Carlo (CMC)

simulation for the number of particles N0= 25 and different system sizes L,
obtained via virtual insertion method. Lower panel: GCE exact results for
pressure vs. density for different system sizes, L = 50,51,52,53,54,55.

monotonically, although for ρ ≈ 0.55, the slope is very large,
and an inflection point is present. We should stress that in the
CE, N0 is fixed and the density changes because of the change
of L. In contrast, in the GCE L is fixed, and the density changes
because µ, and as a result ⟨N⟩, changes. In the GCE, there are
different branches of p(ρ) for different L. One may interpret
the nonmonotonic p(ρ) in the CE as a consequence of the
jumps between the different branches of p(ρ) in the GCE for
L and L − 1.

In order to separate the effect of the fluctuation of the
number of particles and the effect of the method by which the
density changes, we compare the p(L) curves in the CE with N0
particles and in the GCE with ⟨N⟩ = N0. In Fig. 5, the pressure
is shown as a function of L for the CE with N0 = 21 and for
GCE with ⟨N⟩ = 21. The GCE curve was obtained by finding
for each system size L the value of the chemical potential
µ0 such that ρ(µ0) ≈ N0/L. We used the exact expression
for density obtained in Ref. 19. For such chemical potential,
the pressure was computed from the approximate formula βp
= − lnΞ(µ0,L + 1,T) + lnΞ(µ0,L,T), which is the 1d lattice
version of the standard expression p = −(∂Ω/∂V )µ,T . We
also present the density profiles for L = 35,36,37,38, where
p changes rapidly in a nonmonotonic way. In the case of
attractive surfaces, the periodic structure where three occupied
sites are separated by three empty sites is possible for L = 39
and corresponds to seven clusters. For L < 39, either the
clusters are bigger, or the distances between them are smaller.
In both cases, the repulsion between the particles is present,

FIG. 5. Upper panel: reduced pressure as a function of the system size L for
J∗= 3 and T ∗= 0.5 in the case of attractive walls (h∗1= h

∗
L =−1). Red curve

with squares: CMC simulation for 21 particles. Black curve with bullets: exact
results in the GCE with the average number of particles equal to 21. Lower
panels: ((a)–(d)) CE density profiles in systems with L = 35 (a), L = 36 (b),
L = 37 (c), and L = 38 (d) (indicated on the p(L) plot as blue triangles).
Panels ((e) and (f)): comparison of the density profiles in CE (solid line) and
GCE (dashed line) for L = 42 (e) and L = 43 (f).

and pressure increases. In Fig. 5, we can see six clusters
for L < 37 and seven clusters for 37 ≤ L ≤ 42. Note that the
nonmonotonic dependence of p on L corresponds to the jump
of the number of clusters. The unusual increase of pressure
in the expanding system results from the transition to a larger
number of smaller clusters. The clusters repel each other for
L < 39. Upon increase of the system size from L = 38 to
L = 39, the separation between the clusters becomes large
enough to put the clusters at the separations larger than the
range of repulsion, and the pressure drops.

It is interesting that although both the average densities
and density profiles for L = 42 in the two ensembles are the
same, the pressure is different. The reason is that the pressure
depends not on the values of the thermodynamic potentials at
a given state, but on their change and as can be seen on panel
(f) of Fig. 5, for L = 43, the profiles differ significantly.

We conclude that the mechanical properties of a confined
self-assembling system depend significantly on whether the
system expands for given number of particles, or the separation
between the system boundaries is fixed, and the number of
particles decreases due to a change of the chemical potential.
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FIG. 6. Average system size as a function of the number of particles for
different spring constants k∗. The walls are attractive, h∗L = h

∗
1=−1, J∗= 3,

T ∗= 0.5, and L0= 21. Thick solid black lines, L = L0 and L = 2N −3, cor-
respond to rigid walls and to walls fully adapting to the optimal structure,
respectively. In the panels ((a)–(f)), the density profiles for the number of
particles and the system size marked by the red squares along the black solid
curve (k∗= 0.1) are shown. (a) L = 23 and N = 12, (b) L = 25 and N = 13, (c)
L = 28 and N = 16, (d) L = 29 and N = 17, (e) L = 32 and N = 19, (f) L = 34
and N = 23.

In both cases, we can have the same change of density,
but different changes of pressure. The unusual increase of
pressure upon system expansion is found only in the case of
fixed (average) number of particles and is connected with a
significant structural reorganization.

V. THE CASE OF ELASTIC BOUNDARIES

In this section, we assume that the number of particles N
is fixed, while the separation between the system boundaries
is not fixed and can fluctuate around L = L0. The change
of the wall separation is associated with the energy cost
∆U∗ = k∗(L − L0)2. Here, k∗ denotes the elastic constant in
units J1/σ

2. In Fig. 6, the average system size ⟨L(N)⟩ as
a function of the number of particles N is presented. The
confining surfaces are kept at the separation L by the spring
that is at rest for L0 = 21. We assume attractive walls and
T∗ = 0.5. In a system with rigid boundary conditions, attractive
walls and L = 21, the periodic structure made of 12 particles is
energetically favorable. Thus, for N ≤ 12 only for small values
of the spring constant (e.g., k∗ = 0.1), significant deviations of
the average system size from the reference value are present.
For N > 12 the internal stress of the fluid competes with the
elastic forces and ⟨L⟩ > L0 even for k∗ = 1.

FIG. 7. Average system size as a function of the number of particles for dif-
ferent temperatures. Attracting walls assumed (h∗1= h

∗
L =−1), J∗= 3, spring

constant k∗= 0.2 and L0= 21. The inset presents the average density ⟨ρ⟩
≡ N/⟨L⟩ as a function of the number of particles.

We can distinguish two limiting cases: (i) stiff spring,
where the system size saturates and the particles become
densely packed when N increases, and (ii) soft spring, where
the average system size increases with increasing N , and the
clusters are separated by empty sites. If k∗ is small enough,
then the slope of ⟨L(N)⟩ increases when a new cluster made
of 3 particles is introduced to the system (see panels (a)-(f)
of Fig. 6). On the other hand, for larger values of k∗, the
elastic forces are stronger, and the system tends to modify the
structure of the fluid rather than the system size. Between the
two limiting cases, there is an interesting region where the
elastic and the solvation forces are comparable and compete.

In Fig. 7, we show ⟨L(N)⟩ for L0 = 21 and k∗ = 0.2
for several temperatures. At low temperatures, three regimes
with significantly different slopes of the lines ⟨L(N)⟩ can
be distinguished. For N . 12, the slope of the line ⟨L(N)⟩
is small, because in this case the separation between the
clusters ensures no repulsion between them. For 12 . N . 15,
the system expands significantly upon addition of particles,
because for N = 14 an additional cluster appears. In this
region, the average size of the clusters and the distance
between them is 3. For N & 15, the slope is small again.
Here, elastic stress dominates and the clusters average size
increases until the system becomes densely packed. Note that
in this region and at low T , before the system gets filled with
particles, we obtain an oscillatory dependence of ⟨L(N)⟩ on
N , with the minima occurring when the number of particles is
a multiple of 3. Note also that for a given N , ⟨L⟩ increases with
temperature except from 13 < N < 21, where for L = L0 the
density is between the density of the periodic and the closely
packed structures. We verified that the anomalous contraction
of the heated system is no longer observed at high T. Finally,
note that there is some similarity of the shapes of the ⟨L(N)⟩
and p(ρ) lines (Figs. 7 and 4).

The average wall separation and the average density pro-
file give insufficient information about the system behavior. In
Fig. 8, we present histograms for the wall separation. Two cases
can be distinguished—a single maximum in the probability
of the appearance of the wall separation L and a bistability
with two maxima in this probability, separated by ∆L = 3.
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FIG. 8. First row: the histograms for the wall separation in the case of elastic
boundaries with the spring constant k∗= 0.2, N = 16, L0= 21, J∗= 3 and
attractive walls (h∗1= h

∗
L =−1) for T ∗= 0.2 (left panel), and T ∗= 0.5 (right

panel). Second row: the histogram for the wall separation in the case of elastic
boundaries with the spring constant k∗= 0.066 07, J∗= 3, T ∗= 0.5, N = 17,
L0= 19, attractive walls (h∗1= h

∗
L =−1).

In order to understand the energetics associated with the
bistability, let us consider the GS for L0 = 10 and N = 7. The
microstates shown in Fig. 9 correspond to the same energy
of the confined system (6), when J∗ = 3 and k∗ = 2/9. Two
different system sizes in the GS can occur when N is not
a multiple of 3, and for L = L0 an intra-cluster repulsion
is present. The expansion is associated with a simultaneous
increase of elastic energy of the walls and decrease of the
internal energy of the particles, when the separations between

FIG. 9. Upper panel: microstates in the GS of a system consisting of 7
particles with the repulsion to attraction ratio J∗= 3, confined by attractive
walls (h∗1= h

∗
L =−1) on a spring with the spring constant k∗= 2/9 that is at

rest for L0= 10. In panel (a), L = L0, while in panel (b), L = L0+3. Blue
color denotes the occupied sites, while white the empty sites. Note that the
microstates symmetric to those also have the same energy; hence for L = 10,
there are 2 different microstates with the same energy and for L = 13, there
are 6. These microstates correspond to the maxima of the probability shown
in the lower panel, in which we present the histogram for the wall separation
in the above system in the case of T ∗= 0.2 and elastic boundaries with the
spring constant k∗= 2/9+0.024 413 5.

them are such that the repulsion is absent. Each microstate in
Fig. 9 occurs with the same probability, but because of the
difference in the degeneracy for L = L0 and L = L0 + 3, the
probability ratio for the two lengths is p(L0 + 3)/p(L0) = 3.
To estimate the spring constant leading in the above example
to equal probability of L0 and L0 + 3 for low T∗, we take
into account only the microstates shown in Fig. 9 and require
that exp(−β∗(−5 + J∗)) = 3 exp(−β∗(−4 + 9k∗)) (see (6) for L
= L0,L0 + 3). For T∗ = 0.2, we obtain k∗ ≈ 2/9 + 0.024 413 6
in very good agreement with the results of simulations shown
in Fig. 9.

VI. SUMMARY AND CONCLUDING REMARKS

We have studied the effect of various constraints on
colloidal self-assembly in thermodynamic states that corre-
spond to self-assembly into small clusters separated by voids.
In our model system, small clusters with no intra-cluster
repulsion yield a negative contribution to the internal energy
and do not interact with one another if the separation between
them is larger than the range of repulsion. The positions, the
size, and the number of clusters can fluctuate and different
deformations of the bulk structure are possible in confinement.
In order to determine the role of constraints imposed on the
number of particles and/or the size of the system, we have
compared density profiles, equations of state, and effects of
elastic boundary conditions.

A. Structure

If the number of particles in the CE is too small for
formation of the bulk structure, then one more cluster can
be present in the GCE despite the same average number of
particles (Fig. 1). Interestingly, the different number of clusters
in the two ensembles is observed for thermodynamic states that
do not correspond to the maximum of the fluctuation of the
number of particles. This is because the fluctuations of the
number of particles are coupled with the fluctuations of the
size of the clusters. Even a small increase of the number of
particles in the GCE together with the splitting of the clusters
can lead to formation of a larger number of smaller clusters.
The qualitative difference between the two ensembles occurs
for quite large number of particles. This behavior is different
than in simple fluids, where the difference between the two
ensembles was observed for very small number of particles
confined in very small pores.24,25

B. Equation of state

In the bulk, the isotherms p(ρ) do not depend on the way
in which the variation of density is attained. In the confined
inhomogeneous systems, it is no longer the case: Different
curves p(ρ) are obtained when the size of the system changes
with fixed number of particles or when the number of particles
changes at fixed system size.

The shape of the p(ρ) curve obtained in the GCE with
fixed L depends significantly on L, or more precisely on the
commensurability of L and the period of the ordered structure
(Fig. 4). In the CE with fixed N , we have obtained anomalous
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decrease of pressure for increasing density for small density
intervals below and above the density of the equilibrium bulk
structure (Fig. 4). Inspection of density profiles shows that
the anomalous increase of pressure for increasing system size
with fixed number of particles is accompanied by increased
number of clusters (the larger cluster splits) (Fig. 5). Recall that
at short separations, the clusters repel each other, and this leads
to the increase of pressure. The pressure rapidly drops when
L further increases and the clusters do not repel one another
any more. In order to check if the anomalous dependence
of pressure on density follows from the fixed number of
particles or from the process by which the density varies,
we computed the p(L) curve in the GCE with fixed average
number of particles. We have obtained similar curves in the
two ensembles except for large slits. In both ensembles, the
anomalous increase of pressure for increasing L is associated
with the increasing number of clusters. For some large L, the
number of clusters increases with the system size in the GCE
but not in the CE (Figs. 5(e) and 5(f)). In this case, a maximum
in the p(L) curve is present only in the GCE.

C. Bistability in elastic confinement

If the width of the slit can vary, then the system tends
to equilibrate the competing solvation and elastic forces. We
have found that the equilibrium size of the system is not
always unique. In Ref. 19, we observed a bistability in a
system confined by elastic walls with permeable walls (fixed
µ). Two different system sizes can be equally probable: one
with expanded and the other one with compressed boundaries.
The size fluctuations are accompanied by an absorption or an
evaporation of a whole cluster. In the case of impervious walls
(fixed N), a bistability exists too. In both cases, the origin
of the bistability is the change of the number of clusters, but
the mechanisms which lead to the change are different. The
number of clusters can fluctuate for fixed number of particles
when the state with a smaller number of bigger clusters and
the state with a larger number of smaller clusters are equally
probable. When the intra-cluster repulsion in large clusters
competes with the elastic energy of stretched boundaries, the
clusters can split and separate. The difference between the two
equilibrium widths of the system is equal to the period of the
bulk structure in the case of permeable walls and to half the
period of the bulk structure when the number of particles is
constrained. Since in our 1d system the energy barrier is∼kBT ,
spontaneous changes of the system size may be induced by
thermal fluctuations.

Our results show that different anomalies in the confined
inhomogeneous systems occur when the release of some
constraint or a change of the thermodynamic state leads to a
change of the number of clusters. In particular thermodynamic
states, the structure and anomalies depend qualitatively on
the ability of the system to interchange particles with its
surroundings.

Let us stress the difference between the confined simple
fluids and the SALR systems. Packing effects of molecules
or clusters play important role in both cases, especially
for the solvation force that exhibits oscillatory decay on
the corresponding length scale in each case. However, the
clusters can split or merge, unlike the molecules. This leads
to qualitative differences between the ensembles, anomalies
in the p(ρ) and the ⟨L(N)⟩ curves, and the bistability of the
system size that in simple fluids are absent.

The patterns emerging in the colloidal and amphiphilic
self-assembly are very similar.26–28 The clusters or layers
composed of particles are distributed in space in a similar way
as micelles or bilayers composed of amphiphilic molecules.
Based on the similarity between the two types of self-
assembly, we can expect that our results may also concern
amphiphilic systems such as surfactants or lipids in water and
block copolymers, at least on a qualitative level. Similarly,
magnetic systems with competing interactions29–32 may have
very similar properties in confinement.
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APPENDIX A: THE EXPRESSIONS FOR H ∗j AND ′Ŝ(M )
The H∗j contains the pair interactions between the particles

at the sites of the M-th box, as well as the interactions between
the particles at the sites labeled 3M+1 and 3M+2 (if they exist
for given L),

H∗j [Ŝ(M)]=




−
(1

i=0
ρ̂
(
3M−i

)
ρ̂
(
3M−i −1

))
− µ∗

(2

i=0
ρ̂
(
3M − i

))
, if j=0

−
(2

i=0
ρ̂
(
3M+1 − i

)
ρ̂
(
3M−i

))
+ J∗ ρ̂

(
3M−2

)
ρ̂
(
3M+1

)
if j=1

−µ∗
(3

i=0
ρ̂
(
3M + 1 − i

))
,

−
(3

i=0
ρ̂
(
3M+2 − i

)
ρ̂
(
3M+ 1 − i

))
+ if j=2

J∗
(1

i=0
ρ̂
(
3M−2 + i

)
ρ̂
(
3M+1 + i

))
− µ∗

(4

i=0
ρ̂
(
3M + 1 − i

))
.
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Whereas
′

Ŝ(M ) denotes

′
Ŝ(M )
=





Ŝ(M ) if j=0
Ŝ(M )


ρ̂(3M+1) if j=1
Ŝ(M )


ρ̂(3M+1)


ρ̂(3M+2) if j=2 .

APPENDIX B: MICROSTATES OBTAINED
BY THE VIRTUAL EXPANSION OF THE SYSTEM

We consider N indistinguishable particles and L lattice
sites. Each site can be empty or occupied by one particle, thus
there are

(
L
N

)
distinguishable microstates. We will show that

the virtual expansion procedure of building configurations of
the system with L + 1 sites by inserting an empty site at a
random position in a system with L sites is not biased by
the insertion procedure. Let us consider two sets of particle
configurations. The elements of the first set are the microstates
of a system of size L with N occupied sites with a distinguished
position in which a new site can be inserted. Since the new
site can be inserted in L + 1 places, the first set contains
(L + 1) ( L

N

)
different elements. In the second set, each of the

elements corresponds to one of the microstates of a system of
L + 1 sites with N occupied sites and with one of its L + 1 − N
empty sites marked as removable. The number of elements
of the second set is (L + 1 − N) ( L+1

N

)
. Because (L + 1) ( L

N

)
= (L + 1 − N) ( L+1

N

)
, the two sets are equinumerous. We

define a one-to-one correspondence between the elements of
the two sets by identifying the location of the insertion point
in an element of the first set with the location of the removable
site in the element of the second set and by requiring that
the same sites are occupied. Note that each microstate of
the system with L + 1 sites can be obtained in L + 1 − N
ways from the elements of the second set by removing the
mark “removable.” Because of the one-to-one correspondence
between the elements of the two sets, each microstate of the
system with L + 1 sites is obtained L + 1 − N times by the
above procedure.

It follows that the proposed procedures of building
configurations of the system with L + 1 sites by inserting an
empty site at a random position on the configurations of a
system with L sites are not biased by the insertion procedure.
The same lack of bias applies in the reverse procedure.

For an illustration, let us consider L = 2 and N = 1.
There are 2 microstates, [1,0] and [0,1]. After insertion of
an empty site in 3 possible places, we obtain from the
first microstate [0,1,0], [1,0,0], [1,0,0] and from the second
microstate [0,0,1],[0,0,1], [0,1,0]. One can easily see that after
this procedure, we obtained each microstate in the system of
size L + 1 = 3 containing N = 1 particle L + 1 − N = 2 times.
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