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Abstract

Morphological changes are critical for host colonisation in plant pathogenic fungi. These
changes occur at specific stages of their pathogenic cycle in response to environmental sig-
nals and are mediated by transcription factors, which act as master regulators. Histone dea-
cetylases (HDACs) play crucial roles in regulating gene expression, for example by locally
modulating the accessibility of chromatin to transcriptional regulators. It has been reported
that HDACs play important roles in the virulence of plant fungi. However, the specific envi-
ronment-sensing pathways that control fungal virulence via HDACs remain poorly charac-
terised. Here we address this question using the maize pathogen Ustilago maydis. We find
that the HDAC Hos2 is required for the dimorphic switch and pathogenic development in

U. maydis. The deletion of hos2 abolishes the cAMP-dependent expression of mating type
genes. Moreover, ChIP experiments detect Hos2 binding to the gene bodies of mating-type
genes, which increases in proportion to their expression level following cAMP addition.
These observations suggest that Hos2 acts as a downstream component of the cAMP-PKA
pathway to control the expression of mating-type genes. Interestingly, we found that CIr3,
another HDAC present in U. maydis, also contributes to the cAMP-dependent regulation of
mating-type gene expression, demonstrating that Hos2 is not the only HDAC involved in
this control system. Overall, our results provide new insights into the role of HDACs in fungal
phytopathogenesis.

Author Summary

Many pathogenic fungi need to undergo morphological changes in order to infect their
hosts. Typically, pathogenic fungi switch from a non-pathogenic yeast-like form to a
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polarised pathogenic filament. This morphological switch is regulated genetically and is
triggered by specific environmental conditions. Histone deacetylases (HDACs) are impor-
tant regulators of chromatin structure and gene expression. In this study, we investigate
the role of HDAC:s as targets of the signalling pathways that activate fungal virulence pro-
grams in response to specific external signals. We identify two specific HDACs, Hos2 and
Clr3, that are required for the virulence of the corn smut fungus, Ustilago maydis. Our
results reveal that Hos2 and Clr3 function in the cAMP-PKA cascade, a nutrient-sensing
pathway conserved between all eukaryotes.

Introduction

The switch between yeast and hypha stages, or dimorphism, is a key morphological conversion
required for the virulence of several animal and plant pathogenic fungi [1-4]. This process
occurs at specific stages of fungal infection and is tightly controlled. The two best studied sig-
nalling pathways regulating gene expression during dimorphism are the mitogen activated pro-
tein (MAP) kinase cascade and the cyclic-AMP protein kinase A (cAMP-PKA) pathway. Their
activation is typically controlled by specific environmental stimuli and results in the induction
of master regulatory genes [5-8]. Ustilago maydis is a well-established model organism for the
study of the yeast-hypha dimorphic switch, a key stage of its pathogenic cycle [6, 8, 9]. The U.
maydis pathogenic cycle starts when two mating compatible haploid yeast cells recognise each
other via a pheromone-receptor system. Mating leads to the formation of a dikaryon filament,
whose apical tip differentiates into a specialised structure for plant penetration known as the
appressorium [10-12]. Once inside the plant, U. maydis proliferates, inducing the formation of
tumours and eventually develops into diploid spores [13]. Thus, the transition from the yeast
form to the infective filamentous one is crucial for U. maydis pathogenicity.

The control of this process relies on a tetrapolar system consisting of the biallelic 4 and mul-
tiallelic b loci. The a locus encodes components of the pheromone-receptor system, allowing
cells from opposite mating types to recognise each other, form conjugation tubes and fuse [14,
15]. The fate of the resulting dikaryon is then controlled by the b locus, which encodes two
transcription factors, bE and bW. When different mating type-specific alleles of bE and bW are
expressed, they form a compatible heterodimer that activates the filamentation and virulence
programs [16, 17]. MAP kinase and cAMP-PKA pathways are necessary for sensing phero-
mone and environmental signals. Both pathways lead to the transcriptional and post-transla-
tional activation of the transcription factor Prfl (Pheromone-responsive factor 1). Once
activated, Prfl binds to the promoters of mating-type gene loci and activates their expression
(S1 Fig) [18-23]. Prfl is a central regulatory factor during mating and virulence, and is tightly
controlled at the transcriptional level [19, 20, 22, 24-27]. Chromatin structure and modifica-
tions are central to gene regulation, however, little is known about their contribution to the
control of prfl and of Prfl-dependent gene expression.

Histone deacetylases (HDACs) are important regulators of gene expression and are grouped
into different classes. Class I (Saccharomyces cerevisiae RPD3-like) and class II (HDA1-like)
HDAC: are conserved from yeast to humans. Typically, nuclear histone deacetylases inhibit
transcription through the deacetylation of promoter-bound histones. However, several groups
have reported HDACs with both activating and repressing functions [28-31]. For example, the
S. cerevisiae Hos2/Set3 HDAC complex represses specific meiotic genes while activating others
(28, 29].
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HDAC:s have been implicated in many physiological processes, with their roles varying
between different biological contexts. This is exemplified by the HDACs of plant and animal
pathogenic fungi. There are important differences in the strategy employed by a fungus to colo-
nise an animal or plant, and this seems to be reflected in the virulence-related process con-
trolled by HDAC:s in each case. For example, Hos2 regulates the dimorphic switch of Candida
albicans during animal infections [32], whereas it controls plant tissue penetration and post-
penetration stages of plant pathogens [33, 34].

Finally, very little is known about the downstream HDAC gene targets required for plant
pathogen virulence, or how HDAC activity integrates with the upstream signalling pathways
that control pathogenic development. Here, we report a comprehensive characterisation of
class I and I HDAC homologues in the plant pathogenic fungus U. maydis. Our results dem-
onstrate that Hos2 is important for the yeast-to-hypha transition and fungal virulence. Analy-
sis of deletion mutants and ChIP experiments strongly suggest that Hos2 directly regulates the
expression of U. maydis mating-type genes downstream of the cAMP-PKA pathway. Lastly, we
present evidence indicating that another HDAC, Clr3, functionally interacts with Hos2 in the
regulation of mating-type genes through the cAMP-PKA pathway.

Results
Hos2 is important for U. maydis pathogenicity

A BLAST search and phylogenetic analysis revealed that Ustilago maydis genome harbours six
putative class I and Il HDACs, a putative orthologue of each HDAC found in Saccharomyces
cerevisiae, Candida albicans, and Schizosaccharomyces pombe, except for the Rpd3/Clr6
HDAC, for which we found two distinct homologues in U. maydis (Fig 1A). Two of the six U.
maydis HDACs were already named: Hdal for Um02065 [35] and Hda2 for Um11308 [36].
The other four proteins were named according to their closest relative in S. cerevisiae or S.
pombe. Thus, we named Um04234 Hos1, Um11828 Hos2 (annotated in the MIPS Ustilago
maydis database, MUMDB), Um10914 Hos3 and Umo02102 Clr3. All four proteins possess the
domains characteristic of their type as shown in S2 Fig.

To test the requirement of each HDAC for U. maydis virulence, we generated deletion
mutants for class I and II HDACs in FB1 and FB2 mating-compatible strains. We then infected
seven day-old maize seedlings with all the HDAC mutant and wild-type FB1 and FB2 strains.
Symptoms were scored 14 days post infection (dpi). As shown in Fig 1B, most HDAC mutants
showed wild-type pathogenic infection rates. However, Ahos2 mutants showed a strong reduc-
tion in pathogenesis. The absence of Hos2 results in an approximate 3-fold increase in the
number of tumour-free plants, a 6-fold decrease in plant death and a decrease in the size of the
developed tumours (Fig 1B and 1C), indicating that Hos2 is required for full U. maydis viru-
lence. During this analysis, we also noticed a modest decrease in virulence when clr3 was
deleted, especially regarding the number of dead plants (Fig 1B).

Since U. maydis Hdal is essential for teliospore development [35], we investigated whether
other HDAC mutants were required for spore formation in this fungus. To this end, we ana-
lysed spore production inside maize tumours 21 days post infection. This analysis revealed
that, besides Hdal, no other HDAC is required for spore formation (Fig 1D). To conclude,
Hos2 and Hdal control important yet distinct stages of the pathogenic cycle in U. maydis.

U. maydis Hos2 is a bona fide HDAC

To confirm our sequence alignment analysis (Fig 1A), we sought to experimentally confirm
that U. maydis Hos2 is indeed an HDAC. With this aim, we compared H4K16 acetylation, the
canonical histone target of Hos2 [29, 37], in U. maydis Ahos2 mutant relative to the wild-type
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control. As can be observed in S3A Fig, the absence of Hos2 increased H4K16 acetylation levels
confirming its HDAC activity. Additionally, we observed that a Ahos2 mutant shows a hyper-
sensitivity response to Trichostatin A (TSA), as previously described in S. pombe 38, 39], (S3B
Fig). These results confirm that we have identified the functional U. maydis Hos2 HDAC.

Single HDAC deletion mutants show normal saprophytic growth but
Hos2 is required for mating

To identify the cause of the reduced virulence shown by Ahos2 cells, we investigated the role of
Hos2 at different stages of the U. maydis life cycle, comparing its behaviour to the other HDAC
mutants. Ahdal cells have previously been shown to have no phenotype except during spore
formation, and were therefore not analysed further [35]. Light microscopy analysis of cells
grown in liquid culture revealed no major anomalies, although we noticed that in an FB1 back-
ground 14% of Ahos2 and 8.3% of Aclr3 mutant cells were multi-budded, without significantly
affecting their doubling time or cell shape during exponential growth (Figs 2A, 2B and S4A-
§4C). Similar results were observed in an FB2 background (S4A, S4D and S4E Fig).

Mating between two compatible haploid partners is the first step of the U. maydis patho-
genic cycle. To check whether Ahos2 mutants are able to mate normally, we used charcoal-con-
taining plates, which mimic the plant leaf surface and induce the mating process. Mating
between compatible partners and post-fusion filamentation can be visualised by the appear-
ance of white and fuzzy colonies on charcoal plates. As shown in Fig 2C, mating between
FB1Ahos2 and FB2Ahos2 mutants resulted in reduced white colony fuzziness relative to a cross
of wild-type cells. Comparing rich (PD) and complete (CM) charcoal plates, we observed that
the degree of the mating defect of Ahos2 mutant might be dependent on nutritional conditions.
This result will be further discussed in the manuscript (see Discussion). The other HDAC
mutants mated normally (S5 Fig and [35]).

To determine whether Hos2 contributes to cell fusion, we also analysed the filamentation of
wild-type and Ahos2 mutants in the solopathogenic strain SG200. This strain contains genes
encoding a compatible bE1/bW?2 heterodimer, as well as a gene constitutively expressing the
opposite mating type pheromone (mfa2) [40]. This allows haploid SG200 cells to form fila-
ments and infect maize plants without needing to mate with a compatible partner. We found
that the deletion of /0s2 in this background severely impaired the formation of white, fuzzy
colonies (Fig 2D), indicating that Hos2 has a post-fusion mating role. We then verified the vir-
ulence capacity of the SG200Ahos2 mutant and observed that Hos2 is also required for full
pathogenicity in this genetic background (Fig 2E and 2F). Significantly, the virulence defects
shown by SG200Ahos2 were comparable to those seen in FB1Ahos2 FB2Ahos2 mutant crosses,
indicating that the post-fusion role of Hos2 is probably responsible for the reduced pathogenic-
ity of Ahos2 mutant cells.

Induction of b genes rescues Ahos2 filamentation defects

In U. maydis, post-fusion filament formation is controlled by b mating-type genes, which are
necessary and sufficient to induce filamentation and pathogenicity [40]. Upon formation of the
bE/bW heterodimer, several transcription factors are activated, some of which are known to be
essential for filament formation and virulence [41-43]. To check for a genetic interaction
between hos2 and b genes, we took advantage of the AB31 strain, which contains a compatible
b heterodimer under the control of the arabinose inducible promoter, crgl [41]. This strain can
either divide by budding, when grown on complete media containing glucose as the sole carbon
source, or switch to filamentous growth on complete media containing arabinose. Deletion of
hos2 in the AB31 background did not affect filamentation, as compared to a wild-type control
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doi:10.1371/journal.ppat.1005134.9002

(Fig 3A and 3B). We verified that b gene expression was comparable between Ahos2 and the
wild-type strains (Fig 3C). Similar results were obtained when hos2 was deleted in a HA103
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doi:10.1371/journal.ppat.1005134.9003

genetic background (Fig 3D), which allows the constitutive expression of a compatible b het-
erodimer [18]. Thus, the constitutive expression of b genes restores the reduced filamentation
observed in the SG200Ahos2 strain. These results suggest that Hos2 controls post-fusion fila-
mentation upstream of the b locus.

We hypothesised that either Hos2 is required for b gene expression, or that it controls fila-
ment formation via an independent pathway that can be compensated for by the induction of b
genes. To check the expression level of b genes in Ahos2 mutants, we grew cells on complete
charcoal-containing medium, and analysed b gene expression levels by RT-qPCR. As shown in
Fig 3E, bEI mRNA levels were reduced in Ahos2 mutants, suggesting that Hos2 is required for
the expression of b genes.
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Hos2 is required for pheromone-induced conjugation tube formation

We have shown that Hos2 plays an important role in post-fusion filamentation upstream of b
genes. Considering that the direct regulator of b genes, Prfl, is also responsible for the expres-
sion of the pheromone and receptor genes, we wondered whether Hos2 could also be affecting
pre-fusion events during mating. To do this, we performed a pheromone stimulation assay by
exposing wild-type and Ahos2 cells to synthetic a2 pheromone, then checking conjugation tube
formation 5 hours post-pheromone addition. As shown in Fig 4A and 4B, the hos2 mutant
showed a 50% reduction in conjugation tube formation upon pheromone stimulation. This
result indicates that Hos2 has a dual function in U. maydis dimorphism by controlling pre-
and post-fusion mating events. Accordingly, the expression of the gene encoding the Mfal
pheromone, mfal, was reduced in hos2 mutants compared to wild-type cells (Fig 4C).

Interestingly, addition of the HDAC inhibitor Trichostatin A (TSA), phenocopied the
Ahos2 mutant conjugation tube formation defect. Incubation of wild-type FB1 cells with TSA
prior to pheromone addition led to a decrease in the number of cells able to develop conjuga-
tion tubes (S6A Fig), without affecting cell viability (S6B Fig). These results suggest that the
chemical inhibition of Hos2 activity recapitulates the mating phenotypes observed in Ahos2
strains. Furthermore, overexpression of hos2 under the otef promoter at the ip locus, restored
the filamentation capacity of SG200Ahos2 (S7A and S7B Fig). We verified that overexpression
of hos2 did not cause any mating, filamentation or virulence phenotype, by integrating the
same construct in the FB1 or SG200 wild-type strains (S7B-S7D Fig). Altogether, these results
suggest that the observed phenotypes are a consequence of the loss of hos2.

Hos2 is not downstream of the pheromone responsive Fuz7 MAPK
cascade

The role of Hos2 in pre- and post-fusion mating events, as well as in the expression of a and b
genes, prompted us to examine whether Hos2 controls these processes in response to the pher-
omone responsive MAP kinase cascade. To test this possibility, we used the FB1Pcrglfuz7DD
strain which contains a constitutively active Fuz7 MAPK kinase allele under the control of the
crgl promoter [22]. Expression of the constitutively active fuz7DD allele, by switching from
glucose to arabinose containing media, induced the expression of both prfl, the a and b genes,
and conjugation tube formation through an unknown pathway (Fig 5A; see also S1 Fig and [8]
for details). As shown in Fig 5B and 5C, expression of the fuz7DD allele in a Ahos2 background
promotes conjugation tube formation to a similar level to that observed in the wild-type con-
trol strain, indicating that Hos2 does not control conjugation tube formation downstream of
the Fuz7 MAPK kinase. Moreover, the arabinose-dependent induction of prfl, mfal, pral and
bEI was comparable between Ahos2 mutants and wild-type controls (Fig 5D-5G). fuz7DD-
induced conjugation tube formation and mating type gene expression both require MAPK
Kpp2 activity (Fig 5A and [22]); thus, our results strongly suggest that Hos2 does not function
downstream of the MAPK cascade in the control of pre- and post-fusion events during mating.

Hos2 controls virulence independently of Tup1

If Hos2 is not downstream of the MAPK cascade, it could act in either an upstream or a parallel
pathway. To address this question we turned to our previous work, which showed that Tup1
controls dimorphism and virulence in U. maydis [27], with many similarities to what we
describe here for Hos2. Both proteins are involved in virulence by controlling pre- and post-
fusion events during mating and, interestingly, Tupl is known to control gene expression
through interaction with histone deacetylases [44, 45]. However, unlike Hos2, Tupl is required

PLOS Pathogens | DOI:10.1371/journal.ppat.1005134  August 28, 2015 8/32



@. PLOS | PATHOGENS Hos2 Role in Ustilago Virulence

B
100 600
S 80 -
T 601
.ég 60 T *kkk
O N
(7]
28 40
£5
o) 20
()
o
0 .
FB1
C
0,45 [ -
0,4
= 0,35
Q )
L 03
~°~E° 0,25
= 02
& 0,15
0,1
0,05
0
SG200 SG200
Ahos2

Fig 4. Hos2 is required for conjugation tube formation upon pheromone stimulation. (A)
Representative image of conjugation tube formation upon a2 pheromone stimulation in FB1 and FB1Ahos2
strains. Images were taken 5 hours post-pheromone addition. The pheromone solvent, DMSO, was used
instead of pheromone as a negative control. (B) Quantification of the pheromone defective phenotype of
Ahos2 cells 5 hours post-pheromone stimulation. Mean values and SDs from three independent experiments
are shown. The total number of cells counted is indicated above each column. t-test retrieved a statistically
significant difference in conjugation tube formation between the FB1 and FB1Ahos2, with p<0.0001 (showed
as ****) (C) mfal expression levels relative to ppi. Three independent experiments, each with three
technical replicates were performed. Mean values and SDs for these experiments are shown. Values are
normalised to one of the biological replicates of the sample with the lowest expression level (SG200Ahos2)
that is assigned a value of 1. An asterisk denotes a statistically significant difference with a p < 0.05 (t-test).

doi:10.1371/journal.ppat.1005134.9004
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Fig 5. Hos2 is not downstream of the pheromone responsive Fuz7 MAPK cascade. (A) Schematic representation of the pheromone signalling pathway
via the MAP kinase cascade. The events that following pheromone-receptor recognition are numbered. (B) Induced expression of the constitutively active
Fuz7 MAPK kinase allele, fuz7DD, restores conjugation tube formation in Ahos2 mutants. fuz7DD induction was performed by shifting from glucose (non-
inducing) to arabinose (inducing) containing CM media. Images shown were taken 5 hours after induction. (C) Quantification of fuz7DD-induced conjugation
tube formation in the indicated strains 5 hours post-induction. Mean values and SDs from three independent experiments are shown. The total number of
cells counted is indicated above each column. ns denotes not statistically significant differences (t-test, p>0.05) (D-G) Expression levels of the indicated
genes, relative to ppi, in FB1Pcrg1fuz7DD and the corresponding hos2 mutant in glucose and arabinose containing CM media, 5 hours post fuz7DD
induction. Mean values and SDs from three independent experiments, each with three technical replicates, are shown. Values are normalised to one
biological replicate of the sample with the lowest expression value, that is assigned a value of 1. One asterisk denotes p<0.05 (Duncan’s new multiple range
test). ns denotes not statistically significant differences.

doi:10.1371/journal.ppat.1005134.9005

for fuz7DD-induced prfl and a and b gene expression (Fig 5, and [27]). Therefore, it is unlikely
that Tupl functionally interacts with Hos2 to control dimorphism and virulence. To confirm
this, we decided to examine how Tupl and Hos2 interact genetically. We constructed a double
mutant SG200Atup1Ahos2 strain and analysed its virulence in maize plants. If Hos2 acts exclu-
sively upstream of the MAPK pathway, we would expect an epistatic relationship with Tupl.
As expected, double AtuplAhos2 mutants were unable to form filaments on charcoal-contain-
ing plates, as is the case for either single mutant (Fig 6A). Interestingly, pathogenicity was
severely reduced in Atup1Ahos2 mutants, compared to the wild-type or either of the single
mutant strains (Fig 6B and 6C). These results indicate that both genes have independent regu-
latory roles during pathogenic development rather than acting together in the control of viru-
lence genes. This interpretation is consistent with a putative role for Hos2 in the control of the
dimorphic switch and virulence that is independent of the MAPK cascade.

Hos2 is required for cAMP-induced expression of mating-type genes

In addition to the MAPK cascade, U. maydis dimorphism and mating-type gene expression are
also controlled by the cAMP-PKA pathway (S1 Fig). Addition of exogenous cAMP to wild-
type U. maydis cell cultures induces the expression of mating-type genes and cAMP pathway
mutants affect this induction [19, 21, 23, 46-49]. Therefore, we looked at whether Hos2 might
control the expression of mating-type genes in response to activation of the cAMP pathway.
To do this, we measured the expression of prfl, mfal and pral in FB1Ahos2 cells growing in
rich liquid medium (PD broth) with or without the addition of exogenous cAMP. As shown in
Fig 7, the addition of cAMP was unable to induce the expression of mating- type genes in
Ahos2 mutants. These results strengthen the hypothesis that Hos2 functions independently of
the MAP kinase pathway to control mating-type gene induction. Additionally, even in the
absence of cCAMP, the expression of mating-type genes was reduced in Ahos2 mutants, suggest-
ing that Hos2 is important for maintaining basal mating-type gene expression levels under
these conditions.

Hos2 binds to mating type genes to control their expression

In order to determine whether the effect of Hos2 on mating-type gene expression is direct, we
performed chromatin immunoprecipitation (ChIP) assays followed by qPCR. For this purpose
we constructed the strain FB1Hos2-HA3, in which the endogenous Hos2 protein is tagged
with three copies of the HA epitope. This strain was able to form conjugation tubes upon pher-
omone stimulation in a comparable way to the wild-type control (S8 Fig), indicating that the
Hos2-HA3 allele is functional.

In S. cerevisiae and C. albicans Hos2 is recruited to gene bodies in a transcription dependent
manner [29, 50]. Thus, we decided to check whether U. maydis Hos2 binds to the gene bodies
of mating-type genes. As shown in Fig 8A, there was a significant enrichment of Hos2-HA3
within the prfl, mfal and pral open reading frames (ORFs), as compared to the HA ChIP
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Fig 6. Hos2 controls virulence independently of Tup1. (A) Filamentation phenotypes of the SG200 strain
and its derivative single and double mutants for Ahos2 and Atup1 on PD charcoal plates. (B) Quantification of
the virulence phenotype of the indicated strains 14 dpi. Mean values for three independent experiments are
shown. The total number of infected plants is indicated above each column. **** means a statistical
significant difference with p<0.0001 (Mann-Whitney test). (C) Tumours of maize plants induced by infections
with the indicated strains 14 dpi. Scale bar=1cm.

doi:10.1371/journal.ppat.1005134.9006

signal obtained in an untagged strain. As a negative control, we analysed the enrichment of
Hos2 at the appressorium specific um01779 gene, which is expressed only upon induction of
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cAMP. Mean values and SDs from three independent experiments, each containing three technical
replicates, are shown. Values are normalised to one of the biological replicates of the sample with the lowest
expression value that is assigned a value of 1. Statistically significant (*) and not significant (ns) differences
are shown (Duncan’s new multiple range test, p<0.05).

doi:10.1371/journal.ppat.1005134.9g007

appressoria formation [12]. At this gene, Hos2-HA3 binding was not significant compared to
the untagged control. A similar result was obtained for Hos2-HA3 associated with the bE1
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Fig 8. Hos2 directly binds to mating genes. (A) ChIP analysis using an anti-HA antibody on chromatin
extracts from either an untagged strain or a Hos2-HA3 strain, grown in PD. Inmunoprecipitated DNA was
analysed by qPCR, amplifying open reading frames or specific regions within the ORFs (5’ or 3') indicated
below the graph. Values correspond to the amount of DNA recovered in the HA IP divided by the amount of
DNA in the corresponding input extract. Mean values and SDs from four independent experiments, each with
three technical replicates are shown. Statistically significant binding of Hos2-HA3 (red) to each locus by
comparison to the untagged (blue) strain is indicated with * (Duncan’s new multiple range test, p<0.05). All
pairwise comparisons involving Hos2-HAS3 at bE7 locus were statistically significant (Duncan’s new multiple
range test, p<0.05), except when compared to pra or 01779. The same was true for comparisons involving
Hos2-HA3 at locus 071779. (B) ChlIP analysis was performed and analysed as in (A), except that strains were
grown in PD with or without the addition of 6 mM cAMP for 8 hours. For simplicity, values for the untagged
strains are not shown, but were identical to those shown in A and did not vary upon cAMP addition.
Statistically significant differences regarding the effect of cAMP addition in Hos2 binding to each locus are
denoted with * (Duncan’s new multiple range test, p<0.05). Numbers in green indicate the fold expression
increase in of the corresponding gene upon cAMP addition, as measured by RT-qPCR and shown in Fig 7
(note the Log4o in y axis of Fig 7).

doi:10.1371/journal.ppat.1005134.9g008
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ORE. In conclusion, our ChIP experiments reveal that Hos2 directly binds to prfl, mfal and
pral mating-type gene sequences, where it most likely acts to control their expression.

ChIP-seq experiments in S. cerevisiae and C. albicans, clearly show that Hos2 occupancy
positively correlates with gene expression levels [29, 50]. Therefore, we analysed how Hos2
binding to mating-type genes changes upon cAMP addition, which induces their expression
(Fig 7). We found that the addition of cAMP caused a significant increase in Hos2 binding to
mfal and pral ORFs (Fig 8B). Increased Hos2 binding to mfal and pral correlated well with
their increased expression upon cAMP induction (Fig 7). Hos2 prfl binding was unaffected by
cAMP addition (Fig 8B), consistent with its modest induction (Fig 7). As a control, we then
tested the cAMP-induced recruitment of Hos2 to three different loci. Hos2 binding remained
not significant at the bEI gene, whose expression does not respond to cAMP addition [21]. A
similar result was observed at um01779, whose expression is also cAMP independent [12].
Finally, as a positive control, we detected significant enrichment of Hos2 at the strongly consti-
tutively-expressed ppi gene, irrespective of cAMP addition. Thus, we conclude that Hos2
directly regulates the expression of mating-type genes in U. maydis in response to cAMP sig-
nalling. This is likely to account for the expression and mating defects observed in hos2
mutants.

U. maydis Rpd3 homologs, Hda1 and Hda2, do not act redundantly with
Hos2 to control the dimorphic switch or virulence

HDAC:s have redundant roles in several organisms [51-53]. As described in Fig 1A, U. maydis
has two putative S. cerevisiae Rpd3 orthologues. Examination of the double AhdalAhda2
mutant phenotypes in a SG200 background, revealed that neither maize plant virulence nor fil-
ament formation on charcoal plates were significantly affected (Fig 9). This indicates that the
two putative U. maydis Rpd3 orthologues do not act redundantly in these processes.

In S. cerevisiae, ScCRpd3 and ScHos2 act redundantly to control FLO11, a gene involved in
budding yeast dimorphism [53]. Therefore, we tested whether a similar genetic interaction
might control pathogenicity in U. maydis. We constructed all possible double and triple mutant
combinations in a SG200 genetic background and examined their virulence and filamentation
phenotypes. All combinations showed phenotypes comparable to those observed in single
Ahos2 mutants (Fig 9). These observations confirm that Hdal and Hda2 do not control corn
smut fungus pathogenic development. Furthermore, our data suggest that there are no signifi-
cant functional redundancies between the ScRpd3 homologs, Hdal and Hda2, and Hos2 in the
control of dimorphism and virulence in U. maydis.

Hos2 and CIr3 genetically interact in the control of virulence in U. maydis

In the human pathogen C. albicans, CaHos2 and CaHdal have been shown to play opposing
roles in the control of morphological changes [54]. Thus, we wondered whether an analogous
genetic interaction might occur during the U. maydis yeast to hypha transition. To test this, we
deleted the U. maydis clr3 gene (Cahdal) in the SG200 background, and examined its filamen-
tation capacity alone or in combination with Ahos2. As shown in Fig 10A, clr3 deletion did not
rescue the filamentation defects of Ahos2 mutants, suggesting that Clr3 does not antagonise
Hos2 control of the U. maydis dimorphic switch. As with FB1Aclr3 FB2Aclr3 mutant crosses
(Fig 1B), we detected a decrease in SG200Aclr3 mutant virulence capacity (Fig 10B and 10C).
Furthermore, we observed an even stronger virulence reduction in the SG200Ahos2Aclr3 dou-
ble mutants, versus either single mutant. Altogether, these results show that Clr3 contributes to
U. maydis pathogenicity, particularly when Hos2 is absent, and indicate that Hos2 and Clr3
play either redundant or independent functions during fungal virulence.
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Fig 9. Hda1 and Hda2, are not redundant with Hos2 in the control of dimorphism and virulence. (A) Quantification of infection symptoms caused by the
indicated strains on maize plants 14 dpi. Mean values of three independent experiments are shown. Total number of infected plants are indicated above each
column. Statistically significant differences are indicated with asterisks (Mann-Whitney test; the number of asterisks are used for the following p-values: * for
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bar =1 cm. (C) Filamentation on PD charcoal plates of the indicated strains after 48 hours incubation at 25°C.

doi:10.1371/journal.ppat.1005134.9009

To further characterise this genetic interaction, we measured the expression levels of b mat-
ing-type genes in Aclr3 single and Ahos2Aclr3 double mutants during filamentation on char-
coal-containing medium. As shown in Fig 10D, Aclr3 mutants showed a mild reduction in b
gene expression, but retaining sufficient expression to promote filamentation (Fig 10A). Inter-
estingly, Ahos2Aclr3 double mutant showed lower b gene expression than either Aclr3 or Ahos2
single mutants. We also measured the expression of a mating-type genes and prfl in response
to addition of exogenous cAMP. Similarly to what we found for bEI gene, we observed a mild
reduction of mfal expression in clr3 mutants upon cAMP addition (Fig 10E-10G). However,
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Fig 10. Hos2 and CIr3 genetically interact in the control of virulence. (A) Filamentation on PD charcoal plates of SG200 and its derivative mutants for
hos2 and clr3 growing for 24 hours at 25°C. (B) Quantification of the virulence capacity of the indicated strains on maize plants 14 dpi. Mean values of three
independent experiments are shown. Total number of infected plants are indicated above each column. All pairwise comparisons are statistically significant
(**** denotes p<0.0001, Mann-Whitney test), except when comparing Ahos2 with Aclr3 single mutants. (C) Images of tumours induced by the indicated
strains 14 dpi. (D) Expression of bET relative to ppi in the indicated strains. Mean values and SDs from three independent experiments, each containing three
technical replicates, are shown. Values are normalised to the sample with the lowest expression value (SG200Ahos2Aclr3) that is assigned a value of 1.
Data for wild-type and Ahos2 mutants are shown in Fig 3. (E-G) Expression level of the indicated genes relative to ppi. Mean values and SDs from three
independent experiments, each containing three technical replicates, are shown. Values are normalised to one biological replicate of the sample with the
lowest expression value (FB1Ahos2Acir3 without cAMP) that is assigned a value of 1. Statistically significant (*) or not significant (ns) differences for pairwise
comparisons involving c/r3 and hos2-cir3 genetic interaction are indicated (Duncan’s multiple range test, p<0.05). Data and statistical analysis for wild-type
and Ahos2 mutant are shown in Fig 7.

doi:10.1371/journal.ppat.1005134.9010

we did not observe a synergistic reduction in the expression of this gene in Ahos2Aclr3 double
mutant. Overall, these observations indicate that Hos2 and Clr3 participate in the control of
mating-type gene expression through the cAMP pathway. Our results also suggest some redun-
dancy between Hos2 and Clr3, at least in the regulation of b gene expression.

Discussion

Morphological changes are critical for pathogenic fungi to be able to infect their hosts and, con-
sequently, are tightly controlled. Here, we report a comprehensive characterisation of the roles
of HDAC:s over the life cycle of the plant pathogenic fungus U. maydis. We observed that of all
the HDACs only Hos2 and, to a lesser extent, Clr3, have significant roles in cell growth, mor-
phology, dimorphism or virulence. Moreover, we identified the signalling pathways that regu-
late Hos2 and Clr3 to control the yeast-hypha transition in this fungus. Finally, we described
putative functional redundancies between Hos2 and Clr3 in the control of U. maydis
pathogenicity.

Hos2 plays crucial roles during fungal pathogenesis [32-34]. In the plant pathogenic fungi
Magnaporthe oryzae, Cochliobolus carbonum and Fusarium graminearum, loss of Hos2 com-
promises appressorium biology during the plant penetration and post-penetration stages of
pathogenic development [33, 34, 55, 56]. Our results reveal another fungus in which Hos?2 is
required for virulence. However, our study suggests that Hos2 controls pathogenicity by a dif-
ferent mechanism to the ones described for other plant pathogenic fungi. Indeed, the reduced
virulence of U. maydis Ahos2 mutants appears to be due to their inability to shift from yeast-
like to polarised growth, which is needed to form infective filaments. Interestingly, yeast-to-
hypha transition defects have also been noticed in Ahos2 mutants of the human pathogen C.
albicans. However, in this fungus, hos2 deletion results in constitutive filamentation, which is
the opposite phenotype to the one we have observed in U. maydis [33].

Strikingly, the roles we have identified for Hos2 in this work have a number of parallels with
our previous findings, including opposing regulatory roles between U. maydis and C. albicans,
for the general transcription repressor Tupl. Our results show that Ahos2 mutants are impaired
at pre- and post-fusion events during mating, again resembling what we had previously
observed for Tupl [27]. Interestingly, one of the mechanisms through which Tupl controls
gene expression is via interaction with histone deacetylases [44, 45]. One possibility is that
Hos2 could be the HDAC recruited and controlled by Tupl in its regulation of mating-type
gene expression. However, a double Atup1Ahos2 mutant strain was almost non-virulent, show-
ing a much more severe phenotype than the single mutants (Fig 6), suggesting independent
roles for the two proteins. Consistent with this idea, Tupl controls the expression of mating-
type genes downstream of the pheromone responsive MAP kinase cascade [27], whereas we
did not observe such an effect in Ahos2 mutants. Although the contribution of HDAC:s to Tupl
function in transcription initiation is well established, there is also evidence to suggest that

PLOS Pathogens | DOI:10.1371/journal.ppat.1005134  August 28, 2015 18/32



@’PLOS | PATHOGENS

Hos2 Role in Ustilago Virulence

Tupl can regulate gene expression by HDAC-independent mechanisms. For example, Wong
and Struhl, as well as Parnell and Stillman, showed that the repressive role of Tupl in certain
promoters relies mainly on its interaction with histone acetyl-transferase (HAT) complexes
[57, 58]. Interestingly, it has recently been shown that deletion of the Gen5 histone acetyl-
transferase causes a constitutive filamentous phenotype in U. maydis [59, 60]. From this evi-
dence we could propose a model whereby Tup1 controls the dimorphic switch by regulating
the Gen5 HAT, with the Hos2 HDAC regulated by another parallel mechanism.

By which mechanism does Hos2 control the dimorphic switch? One possibility is that hos2
expression is controlled by the environmental signals that ultimately activate this transition. As
shown in S9 Fig, hos2 expression did not vary substantially in different media, upon activation
of the cAMP or MAPK signalling pathways, or during filamentous growth in charcoal-contain-
ing media. These observations suggest that external cues regulate mating-type genes via
changes to Hos2 activity rather than expression. Supporting this conclusion, we observed that
the mating-type defects of Ahos2 mutants were more pronounced on charcoal-containing CM
plates than on PD ones (Fig 2C). Thus, Hos2 might control mating in response to the nutrients
present in the medium.

Our functional analyses of the MAPK cascade and of the cAMP-PKA pathway, reveal that
Hos2 controls mating-type gene expression downstream of cAMP signalling. The simplest and
most obvious explanation for this observation is that Hos2 directly targets mating-type genes
in response to cAMP signalling. Our ChIP analysis confirms that Hos2 directly binds the prfl
OREF, as well as some of its target genes. Furthermore, Hos2 recruitment responds to cAMP
and positively correlates with the expression level of mfal and pral mating-type genes. Inter-
estingly, Hos2 binding at prfI ORF does not respond to cAMP addition, suggesting that there
might be differences in how Hos2 is recruited at mfal and pral on one hand or at prfl on the
other hand. Altogether, it is likely that Hos2-mediated deacetylation of these genes promotes
transcriptional elongation, as has been proposed for S. pombe, S. cerevisiae and C. albicans
Hos2 target genes [37, 50, 61].

Strikingly, we detected even stronger Hos2 binding to the prfI promoter than along its ORF
(S10A Fig). Interestingly, the prfl upstream regulatory region is particularly long, extending
over 2 Kb. The strongest region of Hos2 binding overlapped with a cAMP- and nutrient-
responsive upstream activating sequence (UAS) [19]. Upon cAMP addition, Hos2 binding
slightly decreased specifically at this UAS (S10B Fig). This strong binding of Hos2 upstream of
the prflI ORF was unexpected because S. cerevisiae and C. albicans Hos2 have been shown to
mainly bind gene bodies [29, 31, 50]. An exciting possibility is that U. maydis Hos2 binds to
this UAS to control the transcription of a putative long non-coding RNA, similar to what has
been observed upstream of the S. cerevisiae IMEI gene [62]. This could open up an exciting
novel line of research toward understanding prfI expression regulation, which is critical for the
dimorphic switch and U. maydis virulence.

Another non-mutually exclusive possibility is that Hos2 controls the activity of PKA, or its
regulatory subunits, or affect the amount of intracellular cAMP. However, Ahos2 mutants
showed sensitivity to TSA, accompanied by increased H4K16 acetylation (S3 Fig). Addition-
ally, our ChIP experiments show that mating-type genes are direct targets of Hos2 (Figs 8 and
S10). Altogether, our data strongly suggest that Hos2 directly regulates mating-type gene
expression to control mating and virulence in U. maydis.

Interestingly, a previous study has indeed reported that the Hos2/Set3 complex functions in
the C. albicans cAMP pathway. C. albicans mutants lacking the Hos2/Set3 complex are hyper-
sensitive to filamentation-inducing signals [32]. This is in marked contrast with the role of U.
maydis Hos2 that we have reported here. Interestingly, the effect of cAAMP-PKA signalling is
also different between C. albicans and U. maydis. Hyperactivation of this pathway in U. maydis
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causes a multiple budding phenotype, while its inhibition causes filamentation, as observed in
mutations affecting the regulatory and catalytic subunits of PKA [47, 48]. In contrast, hyperac-
tivation of the same pathway in C. albicans leads to filamentation. To conclude, the role of
Hos2 in the cAMP pathway may be conserved between C. albicans and U. maydis, even though
the pathway has opposite effects on dimorphism in the two organisms.

Although Ahos2 mutants clearly showed the most prominent virulence phenotype, we also
noticed a modest infection defect in Aclr3 mutants. It is known that HDACs can compensate
for each other in the regulation of gene expression [51-53]. Therefore, we wanted to check for
functional redundancies between HDAC:s in the control of fungal virulence. In C. albicans,
CaHos2 and CaHdal (Clr3 in U. maydis and S. pombe) play opposite roles in the control of
morphological changes [54]; however, how these two HDAC:s interact with each other to con-
trol dimorphism is still unknown. Interestingly, in U. maydis, Ahos2Aclr3 double mutants
exhibited much more severe pathogenesis defects than either of the single mutants. From these
data we can conclude that Clr3 participates in U. maydis virulence, particularly when Hos2 is
absent, revealing a genetic interaction between both genes during U. maydis infection. Like
Hos2, we found that Clr3 is required for normal expression of a and b mating-type genes. Our
analysis of filamentation, virulence and mating-type gene expression in single and double
mutants suggests that Hos2 can compensate for Clr3 in U. maydis, in contrast to their opposing
roles in C. albicans [54]. Nevertheless, a common role for Hos2 and Clr3 in the control of C.
albicans dimorphism might be taking place too. Recently, CaHdal has been shown to be
required for the maintenance of filamentation in nutrient-poor media that lacks the preferred
nitrogen source glutamine [63]. Interestingly, hyperfilamentation of C. albicans Ahos2 mutants
occurs virtually in all conditions except for nitrogen starvation conditions, where they are
unable to form filaments, while the wild-type can [54]. Thus, Hos2 and Clr3 might have a
common role in the control of C. albicans dimorphism with respect to certain nutritional
conditions.

In summary, we have shown that the class I histone deacetylase Hos2 has a crucial role in
the control of dimorphism and virulence in U. maydis. Our data demonstrate that Hos2 binds
to and is required for the expression of mating-type genes upon activation of the cAMP path-
way. We believe that our results contribute to a better understanding of how HDACs regulate
morphological changes and fungal pathogenic development. In the future, it will be interesting
to study other HDAC complex components and which histone acetyltransferase is involved in
these processes. Our results also provide interesting insights into the regulatory mechanisms
governing the expression of virulence genes via conserved signalling pathways, which may be
highly relevant to other fungal pathogens.

Methods
Strains and growth conditions

Escherichia coli DH50. was used for cloning purposes. Growth conditions for E. coli [64] and U.
maydis [ 16, 65] have been described previously. U. maydis strains relevant to this study are
listed in S1 Table.

For cell width and length analyses, exponentially growing cultures were generated by grow-
ing cells in YEPSL liquid media for 12 hours, diluting them in the same media to OD600 = 0.05
and then allowing them to reach OD600 = 0.8-1 prior to light microscopy examination. For
the estimation of growth rates, U. maydis cells were grown until exponential phase in YEPSL at
28°C, diluted in the same media to OD600 = 0.05 and the number of cells counted. After eight
hours of incubation at 28°C, cells were counted again and growth rates calculated. For cell
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viability assays, a total of 200 cells, grown in the conditions indicated in each case, were plated
on YPD plates and incubated at 28°C for 3 days prior to colony counting.

For charcoal mating and filamentation assays, cells were grown on YEPSL until exponential
phase, washed twice with sterile distilled water, spotted onto PD-charcoal plates and grown for
24-48 hours at 25°C. For RNA extractions, exponentially-growing cultured cells were spread
out on CM charcoal plates at a concentration of OD600 = 0.1 per cm2.

Cells used to analyse the expression of hos2 in different media were grown to OD600 = 0.5-
0.8 for early exponential phase cultures (E) and to OD600 = 4 for late exponential phase cul-
tures (L).

Induction of the crgl promoter in AB31 [41] or FB1Pcrglfuz7DD [22] strains, and their
derivatives, were done as previously described. Mating [16] and pheromone stimulation [22]
assays were performed as previously described. To determine the effect of Trichostatin A (TSA;
Sigma T'8552) on conjugation tube formation, cells were grown in CMD until exponential
phase (OD600~0.5-0.8); then 1 pg/ml of TSA was added to 1 ml of cell culture and incubated
for 2 hours at room temperature prior to pheromone addition. Control cultures were treated
only with DMSO or pheromone. In all cases, conjugation tube formation was quantified 5
hours after pheromone addition.

For pathogenicity assays, U. maydis strains were grown to exponential phase, concentrated
to OD600 = 3, washed twice with sterile distilled water, and injected into 7 day old maize (Zea
mays) seedlings (Early Golden Bantam). Tumour formation was quantified 14 days post
infection.

For the cAMP-PKA pathway induction assays, cells were cultured to saturation in rich PD-
broth media without cAMP, diluted in the same media and grown to exponential phase. Cells
were then washed with sterile distilled water, diluted to OD600 = 0.2 and grown for 8 hours in
PD-broth with 6 mM cAMP or the same media without cAMP. Cells were then recovered by
centrifugation for 4’ at 4500 rpm and 4°C, washed twice with sterile distilled water and frozen
in liquid nitrogen. RNA extraction was performed as described below for liquid cultured cells.
RT-qPCR was performed as described below, using the corresponding primers (see S2 Table
for sequences of primers).

DNA and RNA procedures

Molecular biology techniques were used as previously described [64]. U. maydis DNA isolation
and transformation procedures were carried out following the protocol of [1]. Deletion constructs
were generated according to [66]. To generate single deletion U. maydis mutants for hosl
(um04234), hos2 (um11828), hos3 (um10914), hdal (um02065), hda2 (um11308) and clr3
(um2102), fragments of the 5’ and 3’ flanks of their open reading frames were generated by PCR
on U. maydis FB1 genomic DNA with the following primer combinations: UmHOS1KO5-1/
UmHOS1KO5-2 and UmHOS1KO3-1/UmHOS1KO3-2; UmHOS2KO5-1/UmHOS2KO5-2
and UmHOS2K03-1/UmHOS2K03-2; UmHOS3KO05-1/UmHOS3KO5-2 and UmHOS3
KO3-1/UmHOS3K03-2; UmHDA1KO5-1/UmHDA1KO5-2 and UmHDA1KO3-1/UmHDA
1KO3-2; UmHDA2KO5-1/UmHDA2KO5-2 and UmHDA2KO3-1/UmHDA2KO3-2; UmCL
R3KO5-1/UmCLR3KO5-2 and UmCLR3KO3-1/UmCLR3KO3-2 (Sequences in S2 Table).
These fragments were digested with Sfil and ligated with the 1.9 Kb Sfil carboxin resistance cas-
sette, 2.7 Kb Sfil hygromycin resistance cassette, or 1.5 Kb Sfil neourseotricin resistance cassette as
described previously [67]. Ligation products were then cloned into pGEM-T-EASY vector (Pro-
mega). Linear PCR-generated DNA was used for U. maydis transformation of each construct.

For hos2 overexpression, the p123-hos2 plasmid was generated. p123-hos2 is a p123 [68]
derivative whose eGFP fragment has been substituted with the hos2 ORF. For this purpose, the
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hos2 open reading frame was amplified by PCR with the oligonucleotides Umhos2 ATGXmalS-
mal and Umhos2StopNotl, containing Xmal and Not] restriction sites, respectively. The Phu-
sion high fidelity DNA polymerase (Invitrogen) was used. The PCR product was digested with
Xmal and Notl, purified, and cloned into the p123 vector digested with the same restriction
enzymes. To generate SG200Potefhos2 and SG200Ahos2Potefhos2 strains, p123-hos2 was line-
arized with SspI and integrated into the SG200 or SG200Ahos2 ip locus by homologous
recombination.

For HA3 tagging of endogenous Hos2, the plasmid pUMa792Hos2 was generated.
pUMa792Hos2 is a pUMa792 derivative (P. Miiller and R. Kahmann, http://www.
mikrobiologie.hhu.de/ustilago-community.html) in which a 1 Kb PCR-generated DNA frag-
ment corresponding to the C-terminal part of the Hos2 open reading frame, has been cloned in
frame with the three HA epitope repeats present in the plasmid. Additionally, a 1kb PCR-gen-
erated DNA fragment of the 3’UTR of Hos2 has also been cloned into the same plasmid, down-
stream of the hygromycin resistance cassette. To clone these fragments, the Gibson Assembly
Cloning Kit (New England Biolabs) was used. The DHO915-DHO916 primer pair was used to
amplify the 1 Kb DNA fragment of the C-terminal part of the Hos2 open reading frame. The
DHO917-DHQO918 primer pair was used to amplify the 1 Kb DNA fragment corresponding to
the Hos2 3’UTR. Oligonucleotide design and enzymatic reactions were performed according to
the manufacturer’s instructions. We used 0.1 pmol of each of the above mentioned DNA frag-
ments together with 0.1 pmol of the DNA fragments resulting from the digestion of pUMA792
with Sfil. To generate the FB1Hos2HA3 strain, the corresponding 4694 bp DNA fragment,
containing the HA3 tagged Hos2 C-terminal fragment, the hygromycin resistance cassette and
the 1 Kb DNA fragment corresponding to the 3’UTR of Hos2, were amplified from pUMa792-
Hos2 with the oligonucleotides DHO919-DHO920 and transformed into U. maydis FB1 proto-
plasts. The high-fidelity Phusion DNA polymerase was used. Sequences of all these primers
can be found in S2 Table. Successful cloning was verified by PCR, sequencing and western blot.

For RNA extractions of AB31 and FB1Pcrglfuz7DD, cells were grown until OD600 = 0.5-
0.8 and the nar and crg promoters induced as described above. 25 ml of AB31 or FB1Pcrgl
fuz7DD induced cells (5 hours and 30 minutes induction) were pelleted in 50 ml tubes, washed
once with sterile distilled water and frozen in liquid nitrogen. Samples were stored at-80°C.
Cells were thawed on ice for 10 minutes and suspended in 2 ml TRIzol Reagent (Invitrogen).
Cells were lysed by the addition of a 0.5 ml volume of acid-washed glass beads, vortexed 10
times for 20 seconds each and incubated at room temperature for 5 minutes. Each sample was
divided into two 1.5 ml tubes, each containing 1 ml of the sample. 200 pl of chloroform was
added to each tube, which were then inverted during 15 seconds and incubated at room tem-
perature for 3 minutes. Samples were centrifuged at 11500 rpm for 15 minutes in a bench-top
centrifuge at 4°C. 500 pl of the supernatant was transferred to new RNase-free 1.5 ml tubes.
500 pl of 2-propanol was added followed by incubation at room temperature for 10 minutes.
Samples were centrifuged at 11500 rpm for 10 minutes. The 2-propanol was removed and
100 pl of 70% ethanol added. After 5 minutes of centrifugation at 11500 rpm and 4°C, the etha-
nol was removed and samples dried at 37°C for 10 minutes. Finally, samples were suspended in
50 pl of RNase-free distilled water and RNA concentration quantified using a Nanodrop spec-
trophotometer (ThermoFisher Scientific).

For RNA extractions of strains grown on charcoal plates, biomass was recovered, trans-
ferred to liquid nitrogen pre-chilled mortars and crushed to a powder. The processed material
was then transferred into 50 ml tubes containing 3 ml of TRIzol Reagent (Invitrogen) and a 1
ml volume of acid-washed glass beads. RNA extraction was performed as described above.
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RT-gPCR

10 pg of each RNA sample was treated with rDNase I according to the manufacturer’s protocol
in a final volume of 30 pl. Samples were incubated for 30 minutes at 37°C. 3 pl of ribonuclease
inactivation reagent was then added to each sample and incubated for 2 minutes at room tem-
perature with constant shaking. Samples were then centrifuged at 13000 rpm for 2 minutes.

15 pL of the supernatant were taken for further steps. 3 pl of each DNA-free RNA sample were
used for retrotranscription by first mixing them with 1 pl of 10 mM dNTPs, 0.17 ul of random
oligonucleotide and 8.83 pl of RNase-free water. Next, samples were heated to 65°C for 5 min-
utes and then cooled to 4°C for 1 minute in a thermocycler. Immediately, 4 pl of 5X first strand
cDNA buffer, 1 ul of 0.1 M DTT, 1 ul of RNase inhibitor (Rnasin) and 1 pl of Superscript III
reverse transcriptase (Invitrogen) were added to each sample. Samples were then heated to
65°C 1 h to allow retrotranscription to take place and finally held at 12°C. After retrotranscrip-
tion, 90 ul of RNase-free water was added to each sample, to reach a final volume of 110 pl. For
qPCR analysis, samples were diluted 200 times (4 pl of sample in 796 pl of milliQ water). Sam-
ples of non-retrotranscribed RNA were used as controls for genomic DNA contamination. For
standard curve serial dilutions of wild-type cDNA in the corresponding inducing conditions
were used. The constitutively expressed ppi gene was used as an internal control. The SYBR
green method was used. bEI, mfal, pral, prfl and ppi oligonucleotide sequences for RT-qPCR
have been described previously [69-71]. Samples were loaded in triplicate and three indepen-
dent experiments were performed in all cases. For normalisation, the lowest expression value
was set to 1. Logarithmic-transformed expression values were used to allow visualisation of
pairwise comparisons that include highly divergent values, which were not clearly visible in
raw data plots. For homogeneity logarithmic transformation was applied to every gene expres-
sion analysis.

Western blot analyses

To extract proteins from U. maydis, 25 ml of exponentially growing U. maydis cells were
washed once with water and frozen in liquid nitrogen. The frozen pellet was resuspended in
300 pl of Workman Extract Buffer (40mM HEPES-NaOH pH7.4, 350 mM NaCl, 0.1% NP40,
10% glycerol, ImM PMSF, 1 ug/ml Pepstatin A, 1 pg/ml Bestatin, EDTA-free protease inhibi-
tor tablets (Roche)) and transferred into 1.5 ml screw-cap tubes containing acid washed glass
beads. Cells were fragmented using a FastPrep homogeniser (MP Biomedicals) with power set
to 6.0 using 4 x 40” pulses at maximum speed with 3 minutes rest between each pulse. Dry-ice
was used to cool down the machine at the beginning of the process. To recover the liquid frac-
tion, the bottom of the 1.5 ml tube was drilled with a needle, placed into a 5 ml tube and centri-
fuged at 1000 rpm for 1 minute. Samples (supernatant and any pellet formed) were then
transferred to a new 1.5 ml tube and centrifuged for 10 minutes at 13000 rpm and 4°C. The
supernatant, containing total protein extract, was finally transferred into a new 1.5 ml tube. For
extraction of total protein with the aim of detecting histone modifications, a workman extract
buffer with a higher salt concentration (600 mM NaCl) was used. Protein concentration was
measured using the Bradford protein assay. 60 pg of total protein was used for classical western
blots. For western blots used to detect histone modifications, 20 pg of total protein was loaded.
To detect histone acetylation, an H4K16Ac (Cell Signalling; E2B8W; Rabbit; 1:1000 in TBST
5% BSA) specific antibody was used. Total histone H3 was detected using an Anti-Histone

H3 antibody (Merk-Millipore; clone AS3; 1:2500 in TBST 5% fat-free milk). o-tubulin was
detected using a Monoclonal Anti-o-Tubulin antibody (Sigma; clone B-5-1-2; Mouse; 1:10000
in TBST 5% fat-free milk). For the histone assays, proteins were transferred from 15% acrylam-
ide gels to PVDF membranes for 45 minutes at 90 V. Other western blots were carried out
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using 10% acrylamide gels, with proteins transferred to nitrocellulose membranes for 90 min-
utes at 90 V.

Chromatin immunoprecipitation (ChIP)

50 ml of exponentially growing U. maydis cells (OD600 = 0.5-0.8) were cross-linked by adding
1% formaldehyde and incubated for 30 minutes with constant shaking at room temperature.
Glycine was added to a final concentration of 250 mM and cultures incubated at room temper-
ature for 10 minutes. Samples were then centrifuged for 4 minutes at 4500 rpm and 4°C and
resuspended in 10 ml of ice-cold PBS 1X. Centrifugation and resuspension in PBS 1X was
repeated once. Samples were then centrifuged for 4 minutes at 4500 rpm and 4°C, resuspended
in 800 pl of PBS 1X and transferred to 2 ml screw-cap tubes. Samples were centrifuged at 6000
rpm for 2 minutes at room temperature, and the pellet frozen in liquid nitrogen and stored at-
80°C. Pellets were thawed on ice for 5 minutes and resuspended in 800 pl of ice-cold LB140

(50 mM HEPES-KOH pH7.4, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium
deoxycholate, supplemented with 1 mM PMSF, 1 ug/ml of pepstatin A, 1 ug/ml of bestatin,
and 1X EDTA-free protease inhibitor tablets (Roche)). Acid-washed glass beads were added up
to the meniscus of the liquid and cells were fragmented using the FastPrep homogeniser as
described above but with 6 x 40” pulses at maximum speed with 3 minutes rest between each
pulse. Dry-ice was used to cool down the machine both at the beginning and during the pro-
cess). Samples were recovered by drilling a hole into the 2 ml screw-cap tube, which was intro-
duced into a 5 ml tube, and centrifuged for 1 minute at 1000 rpm. Liquid and any pellet
formed were transferred from the 5 ml tube into a new 1.5 ml tube. Samples were then centri-
fuged at maximum speed for 5 minutes at 4°C. Pellets, containing the chromatin insoluble
fraction, were resuspended in 800 ul of LB140, and centrifuged at maximum speed for 5 min-
utes at 4°C. Supernatant was discarded, the pellet resuspended in 1.2 ml of LB140 and PMSF
re-added. Samples were then sonicated in a Brandson sonicator, using an amplitude of 20%
with 12 x 10” pulses separated by 50” rest periods. Under these conditions chromatin frag-
ments had an average size of about 500 bp. 5 pl of the sonicated chromatin extract was used for
determining protein concentration using the Bradford protein assay. 2% of the chromatin
extract was kept as input, and frozen at-20°C. A total of 1 mg of chromatin extract was used for
IP in a final volume of 500 ul. Volume was adjusted using LB140. For IP, to each 500 pl sample,
3 pg of anti-HA anti-body (abcam, ab9110) were used. Samples were incubated at 4°C for 16
hours on a rotating platform. Protein G sepharose beads (GE Healthcare) were pre-washed
twice with distilled sterile water, twice with LB140 and resuspended in LB140. 50 pl of pre-
washed beads were added to each sample, which were then incubated for 5 h at 4°C on a rotat-
ing platform. Samples were then centrifuged at 5000 rpm for 1 minute at room temperature.
Supernatant was removed by aspiration and beads washed twice with 800 pl of each of the fol-
lowing buffers: (i) WB140 (50 mM HEPES-KOH pH7.4, 140 mM NaCl, 1 mM EDTA, 1% Tri-
ton X-100, 0.1% sodium deoxycholate); (ii) WB500 (50 mM HEPES-KOH pH?7.4, 500 mM
NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate); (iii) WBLIiCl (10 mM Tris-
HCI pH 7.4, 250 mM LiCl, 1 mM EDTA, 0.5% NP40, 0.5% sodium deoxycholate). The first
wash was performed by adding 800 pl of the buffer, mixing by inverting the tube and centrifug-
ing the cells at 5000 rpm for 1 minute at room temperature using a bench-top centrifuge. For
the second wash, samples were incubated in the corresponding buffer for 5 minutes at room
temperature with constant shaking, prior to centrifugation. Finally, cells were washed with
TE10:1 (10mM Tris-HCl pH 7.4, ImM EDTA) with a 5 minute incubation at room tempera-
ture. After centrifugation for 1 minute at 5000 rpm, supernatant was removed, the centrifuga-
tion repeated and the remaining TE10:1 supernatant completely removed. All buffers were ice
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cold. For elution, 105 ul of TES (50 mM Tris-HCl pH 7.4, 10 mM EDTA, 1%SDS) was added
to each sample, incubated for 30 minutes at 65°C with occasional mixing. Samples were centri-
fuged at maximum speed for 1 minute at room temperature and 100 pl of supernatant were
transferred into a new 1.5 ml tube. Another 105 pl of TES were added to the beads, incubated
for 15 minutes at 65°C with occasional mixing. After centrifuging at maximum speed for 1
minute at room temperature, another 100 pl of the supernatant was transferred to the corre-
sponding previous 1.5 ml tube, resulting in a final volume of 200 pl for each sample. To reverse
the crosslinking, input samples were thawed at room temperature, the volume was adjusted to
50 ul with LB140, and 150 pl of TES added to each sample. Next, both input and IP chromatin
extracts were incubated at 65°C for 16 hours. 250 ul of TE10:1, 1 pl of glycogen (20 mg/ml) and
7 ul of Proteinase K (20 mg/ml) were added to each sample and incubated for 2 h at 37°C. To
extract and precipitate the DNA, 450 pl of phenol:chloroform:isoamyl alcohol (25:24:1) was
added to each sample, followed by vortexing for 20 seconds and centrifugation at full speed for
5 minutes at room temperature. Supernatant was transferred to a new 1.5 ml tube. 450 ul of
chloroform:isoamyl alcohol (24:1) was added to each sample, vortexed for 5 seconds and cen-
trifuged at full speed for 2 minutes at room temperature. Supernatant was transferred into a
new 1.5 ml tube. 12.5 pl of 5 M NaCl and 1 ml of ice-cold 100% ethanol were then added. Sam-
ples were incubated at-80°C for 2 h. A maximum of 4 samples were centrifuged at a time for 10
minutes at full speed and 4°C. Supernatant was removed and pellet washed with 1 ml of 70%
ethanol. After removing the ethanol, pellets were dried at room temperature for 15 minutes.
Finally, 100 pl of TE10:1 was added to each sample and incubated for 10 minutes at room tem-
perature. For qPCR a 3 fold dilution of each immunoprecipitated sample and a 200-fold dilu-
tion of input (2%) samples were used. The oligonucleotides used for each amplicon were: (i)
DHO1024 and DHO1025 for prf1-3.5 kb; (ii) DHO981 and DHO982 for prfl-2kb; (iii)
DHO1022 and DHO1023 for prfI-1.5 kb (UAS); (iv) DHO983 and DHO984 for prfI-0.5 kb;
(v) DHO985 and DHO986 for prfl ORF (5°); (vi) DHO991 and DHO992 for bEI; and (vii)
DHO1001 and DHO1002 for um01779. Oligonucleotide sequences can be found in S2 Table.
The oligonucleotide sequences for mfal, pral, prfl ORF (3’) and ppi amplicons have previously
been described in [69, 70].

Sequence alignment and domain structure

U. maydis Hos1, Hos2, Hos3, Hdal, Hda2 and Clr3 sequences were obtained from the MIPS
U. maydis database (http://mips.gsf.de/genre/proj/ustilago/). S. cerevisiae, S. pombe and C. albi-
cans HDAC sequences were obtained from SGD (http://www.yeastgenome.org/), PomBase
(http://www.pombase.org/) and CGD (http://www.candidagenome.org) databases, respec-
tively. Multiple sequence alignments and phylogenetic analyses were performed using MEGA5
[72]. Domain structure analysis was performed using the InterProScan Sequence Search tool
from the European Bioinformatics Institute (http://www.ebi.ac.uk/). Pfam retrieved domains
were used. Schematic representation of the retrieved domains was performed maintaining the
proportions of each domain with respect to the whole protein sequence length.

Microscopy

Images showing cell morphology, conjugation tube formation or b-dependent filamentation
were taken using bright field Zeiss Apotome microscopes from the Centro Andaluz de Biologfa
del Desarrollo (CABD) and from the Montpellier RIO Imaging (MRI) platform at the Centre
de Recherche de Biochimie Macromoléculaire (CRBM). 40X and 63X objectives were used.
Measurements of cell length and width were performed using Image]J. Image acquisition, analy-
sis and processing was carried out using Metamorph and Adobe Photoshop CS2.
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Statistical analysis

Data are expressed as means +SD of at least triplicate samples. Statistical analysis and signifi-
cance was assessed using GraphPad Prism 5 and considered significant if p-values were <0.05.
t-test was used when comparing two means for differences. Fisher’s exact test was used to com-
pare two or more groups with a categorical variable as the outcome. For multiple comparisons,
one-way or two way ANOVA followed by Duncan’s new multiple range test was used. We per-
formed Mann-Whitney tests (also known as Wilcoxon rank-sum test) to compare the distribu-
tions of disease symptoms induced by U. maydis strains.

Accession numbers

U. maydis sequence data can be found in the NCBI protein libraries under accession numbers,
XP_760381.1 for Hos1, XP_756808.1 for Hos2, XP_761874.1 for Hos3, XP_758212.1 for Hdal,
XP_757499.1 for Hda2 and XP_758249.1 for Clr3. Other sequences used in this study have the
following accession numbers: S. cerevisiae Hosl, NP_015393.1; Hos2, NP_011321.1; Hos3,
NP_015209.1; Hdal, NP_014377.1; Rpd3, NP_014069.1; S. pombe Hos2, NP_594079.1; Clr3,
NP_595104.1; Clr6, NP_595333.1; C. albicans Hos1, XP_723599.1; Hos2, XP_717660.1; Hos3,
XP_720292.1; Hdal, XP_718271.1; Rpd3, XP_715765.1.

Supporting Information

S1 Fig. Schematic representation of the genetic control of the dimorphic switch and viru-
lence in U. maydis. Pheromone-receptor recognition, as well as other environmental signals,
promote the activation of CAMP-PKA and MAPK pathways. Transcriptional and posttransla-
tional activation of the central Prfl regulator is induced by these two pathways. Prfl is an
HMG transcription factor directly responsible for the activation of a and b mating-type genes.
a genes encode the pheromone and pheromone-receptor proteins. Prfl-induced expression of
a genes constitutes a positive feedback loop for mating between compatible partners, by pro-
moting the formation of conjugation tubes via the MAP kinase cascade. b genes encode two
transcription factors, bE and bW, that form a compatible heterodimer when expressed from
different alleles, i.e., from different mating partners. The active bE/bW heterodimer promotes
infective filament formation and virulence. Dashed coloured arrows represent external input
signals that activate the cAMP-PKA and MAPK pathways. Dashed black arrows denote indi-
rect transcriptional regulation. Continuous coloured arrows indicate input factors from the
opposite mating-type cell. Continuous black arrows represent direct transcriptional control.
The pointed black arrow indicates a positive feedback loop. Specific posttranslational modifica-
tions on Prfl, consisting of phosphorylations, are denoted by circled P symbols, coloured blue
for cAMP phosphorylation and red for MAPK.

(TIF)

$2 Fig. HDAC domains. Domain structure of class I and II HDACs in Saccharomyces cerevi-
siae (Sc), Schizosaccharomyces pombe (Sp), Candida albicans (Ca) and Ustilago maydis (Um).
The HDAC domain is shown in red and the Arb2 domain specific of ScHdal-like histone dea-
cetylases is shown in green.

(TIF)

S3 Fig. Hos2 is a bona fide HDAC. (A) Western blot analysis of whole cell extracts of wild-
type FB1 and FB1Ahos2 mutants grown to exponential phase in PD liquid medium. Blots were
probed with antibodies against acetylated H4K16, total H3 as a control for total nucleosome
content and a-tubulin as a loading control. Numbers indicate molecular weight in kDa. (B)
Serial dilution assay of single HDAC mutants grown for 2 days at 28°C on control YPD plates
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or on YPD plates supplemented with 0.25 pg/ml of TSA.
(TIF)

S4 Fig. Morphology and growth of Ahos2 cells. (A) Doubling time of the indicated strains
during exponential growth in YESPL. Mean values and SDs from three independent experi-
ments are shown. Not statistically significant (ns) differences were found (t-test, p>0.05). (B)
Cell length of the indicated strains. Each point corresponds to the measurement of a single cell.
Three independent experiments, each comprising of 100 cell measurements were performed.
The red line indicates the mean value of the three independent biological experiments. Not sta-
tistically significant (ns) differences were found (Duncan’s new multiple range test, p>0.05).
(C) Cell width measurements of the indicated strains were performed as described above for
cell length. Not statistically significant (ns) differences were found (Duncan’s new multiple
range test, p>0.05). (D) Optical microscopy images of FB2 and FB2Ahos2 cells during expo-
nential growth in YEPSL liquid medium. (E) Quantification of the number of buds per cell in
wild-type and Ahos2 mutants in the FB2 background. Mean values and SDs from three inde-
pendent experiments are shown. Statistically significant differences are indicated (Fisher’s
exact test, ** is used for p<0.01; **** for p<0.0001).

(TTF)

S5 Fig. Mating phenotypes of hos1, hos3, hda2 and clr3 single mutants. Indicated strains
were grown in YEPSL medium to exponential phase and then spotted alone or in combination
with other strains on PD charcoal plates and incubated for 24 hours at 25°C.

(TIF)

S6 Fig. Effect of TSA on conjugation tube formation. (A) Quantification of the effect of TSA
on conjugation tube formation after a2 pheromone addition. FB1 cells were grown in CMD
until exponential phase and treated either with 0.5 pg/ml of TSA for 2 hours, or with DMSO.
a2 pheromone was then added to each culture for 5 hours before counting conjugation tube
formation under the microscope. Mean values and SDs from three independent experiments
are shown. Total number of cells counted is indicated above each column. *** denotes a statisti-
cally significant difference with p< 0.001 (t-test). (B) FB1 cells were grown in CMD until expo-
nential phase and treated either with TSA to a final concentration of 0.5 pg/ml or DMSO for 7
hours. These cultures were assayed for cell viability, by plating 200 cells onto YPD plates and
counting the number of colonies after 2 days incubation at 28°C. Mean values and SDs from
three independent experiments are shown. Not statistically significant (ns) differences were
found in any pairwise comparison (Duncan’s new multiple range test, p>0.05).

(TTF)

S7 Fig. Overexpression of hos2. (A) Expression of hos2 relative to ppi in the indicated strains.
Mean values and SDs from three independent experiments, each containing three technical
replicates, are shown. Values are normalised to one of the biological replicates of the sample
with the lowest expression value (SG200) that is assigned a value of 1. **** denotes a statisti-
cally significant difference with p<0.0001 (t-test) (B) Filamentation of the indicated solopatho-
genic strains grown on PD charcoal plates for 48 h at 25°C. (C) Quantification of the
conjugation tube formation capacity of the indicated strains after 5 h exposed to a2 phero-
mone. Mean values and SDs from three independent experiments are shown. The total number
of cells counted is indicated above each column. * denotes a statistically significant difference
with p<0.05 (Duncan’s new multiple range test). (D) Quantification of plant symptoms
infected with the indicated strains 14 days post-infection (dpi). Mean values of three indepen-
dent experiments are shown. The total number of infected plants is indicated above each
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column. * denotes a statistically significant difference with p<0.05 (Mann-Whitney test)
(TIF)

S8 Fig. The Hos2-HA3 allele is functional. Exponentially growing cultures of the FB1 and
FB1Hos2-HA3 strains were treated with a2 pheromone for 5 hours and conjugation tube for-
mation quantified. Mean values and SDs from three independent experiments are shown.
Total numbers of counted cells are indicated above each column. ns denotes not statistically
significant difference (p>0.05, t-test).

(TIF)

S9 Fig. Expression of Hos2 under different growth conditions. (A) hos2 expression level in
the SG200 wild-type strain grown in CM or PD liquid media to early (E) or late (L) exponential
phase. ns denotes not statistically significant difference (Duncan’s new multiple range test,
p<0.05). (B) hos2 expression levels in the SG200 strain grown in CM liquid medium with 1%
glucose as carbon source, or on CM charcoal plates. (C) hos2 expression upon activation of the
MAPK pathway. Induction of the MAPKK Fuz7 was performed as described in the Methods
section. (D) hos2 expression level upon induction of a compatible bE1/bW2 heterodimer in the
AB31 background (see Methods). (E) Effect of cAMP addition on hos2 expression. 6 mM of
cAMP was added to exponentially growing cultures of FB1 wild-type strain in PD broth. RNA
extraction was performed 8 hours after CAMP addition. In A-E hos2 expression was quantified
by RT-qPCR. Mean values and SDs from three independent experiments, each consisting of
three technical replicates, are shown. In B-E ns denotes not statistically significant differences
(t-test, p>0.05) (F) Hos2-HA3 protein levels from chromatin extracts used for ChIP, with or
without the addition of cAMP. Tubulin was used as a loading control.

(TTF)

$10 Fig. ChIP analysis of the prfI locus. (A) Overview of the promoter and open reading
frame of the prfl gene. The probes used for qPCR analysis of the Hos2-HA3 ChIP experiment
are indicated. Arrows represent the primers used for each specific amplicon. Numbers above
the arrows indicate the specific coordinates relative to the first prfl ORF ATG, with the adenine
considered position +1. The name of each amplicon is indicated underneath and is used in sub-
sequent panels of this figure. (B) ChIP analysis using an anti-HA antibody on chromatin
extracts from either an untagged (blue) or a Hos2-HA3 (red) strain, grown in PD broth
medium. Inmunoprecipitated DNA was analysed by qPCR, amplifying the regions indicated
on the x axis and in panel A. Values correspond to the amount of DNA recovered by the HA
IP divided by the amount of DNA in the corresponding input extract. Mean values and SDs
from four independent experiments, each with three technical replicates, are shown. * denotes
statistically significant differences (Duncan’s new multiple range test, p<0.05). (C) ChIP analy-
sis was performed and analysed as in (A), except strains were grown in PD with or without the
addition of 6 mM cAMP for 8 hours. For simplicity, values for the untagged strains are not
shown, but were identical to those shown in (A) and did not vary upon cAMP addition. Statis-
tically significant (*) and not significant (ns) differences are shown (Duncan’s new multiple
range test, p<0.05).

(TTF)

S1 Table. U. maydis strains used in this study.
(DOC)

S2 Table. Primers used in this study.
(DOC)
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