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Abstract  

Parasitic diseases have a great impact in human and animal health. The gold 

standard for the diagnosis of the majority of parasitic infections is still conventional 

microscopy, which presents important limitations in terms of sensitivity and specificity 

and commonly requires highly trained technicians. More accurate molecular-based 

diagnostic tools are needed for the implementation of early detection, effective 

treatments and massive screenings with high-throughput capacities. In this respect, 

sensitive and affordable devices could greatly impact on sustainable control 

programmes which exist against parasitic diseases, especially in low income settings. 

Proteomics and nanotechnology approaches are valuable tools for sensing 

pathogens and host alteration signatures within microfluidic detection platforms. These 

new devices might provide novel solutions to fight parasitic diseases. Newly described 

specific parasite derived products with immune-modulatory properties have been 

postulated as the best candidates for the early and accurate detection of parasitic 

infections as well as for the blockage of parasite development. 

This review provides the most recent methodological and technological 

advances with great potential for bio-sensing parasites in their hosts, showing the 

newest opportunities offered by modern “-omics” and platforms for parasite detection 

and control. 

Keywords: detection platforms; diagnosis; proteomics; parasitic diseases; sensors; 
microfluidics.
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1. Introduction 

Parasitic diseases represent particular challenges for human and animal health 

mainly in developing countries. They are strongly associated with poverty causing a 

considerable health and economic impact, especially when considering co-introduced 

and co-invading parasites [1, 2]. Moreover, parasitic infections can be found worldwide 

and can be potentially introduced from endemic to non-endemic areas mainly due to 

human and animal population movements and climate change, resulting in their 

emergence and re-emergence [3, 4]. Neglected parasitic infections are very prevalent 

especially among children and immunocompromised hosts -even in developed 

countries-, causing high morbidity and mortality rates [5, 6]. The lack of appropriate 

diagnostic tools for many of these neglected diseases, combined with their lack of 

appropriate sensitivity and/or specificity, makes the investigation on new type of 

detection devices a must. 

Zoonotic parasites are also the cause of substantive economic losses in livestock 

populations [2]. In this sense, the interest in understanding disease transmission among 

wild and domestic animals, and between them and human population has grown, 

resulting in the emergence of the “one health approach”, which aims to model the 

transmission of parasitic diseases [7, 8]. Detection and transmission control constitute 

significant components to the overall management of many pathogen infections 

(including parasites). Moreover, the rapid diagnosis of many complex parasitic diseases 

with on time treatments and tailored control measurements is essential to avoid 

sequelae, comorbidity and economic losses.

Drug treatment remains as the principal approach for the control of parasites in 

animals; however, parasites have shown molecular resistance mechanisms hampering 

this strategy. Successful and sustainable control strategies depend on the development 

of new tools for targeting both parasites/hosts and vectors [9]. To this end, applying 

new knowledge and techniques in combination with updated mass drug administration 

programmes is essential.  

The Diagnosis of the most health impacting parasites is often cumbersome, 

where current diagnostic tests for important zoonotic parasitic diseases can provide 

incorrect results and so lead to unforeseen consequences [10]. Therefore, there is a 

much-need for rapid, simple, sensitive, and affordable diagnostic tests to improve 

disease control and patient management, mainly in poor-resource settings where 
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diseases like malaria or human sleeping sickness are endemic. In these scenarios, many 

people do not have access to laboratory facilities and many barriers technologies, costs 

and expertise lead to the necessity of incorporate point of care (POC) tests which offer 

flexibility, reliability and robustness for both case detection and large population 

screenings [11].

Outside medical or veterinarian laboratories, rapid on-site diagnosis is very 

important in order to prevent and manage outbreaks and to apply appropriate 

prophylaxis, treatment and control programmes [12]. In this sense, biosensor-based 

tools developed for the diagnosis of pathogens is an emerging issue (131 PubMed 

papers from 2010 when searching “biosensor diagnosis pathogens” on December 2015) 

and ultimately a growing area of concern when referring to the diagnosis of parasitic 

infections (38 PubMed papers from 2010 when searching “biosensor diagnosis 

parasites” on December 2015). 

The main goal of this emerging area of knowledge is to develop devices with 

multiplex capabilities as suitable screening methods for the detection of several 

parasites and their corresponding vectors. Despite the recent advances in bio-sensor 

technology for infectious and parasitic diseases, they still remain as one of the major 

causes of mortality and morbidity throughout the world. This review presents current 

examples and perspectives for integrating modern sensing technologies for the detection 

of parasitic diseases.  

2. Predictive candidates to detect parasitic diseases 

Candidate biomarkers for the diagnosis of parasitic diseases must be identified in 

differentially expressed molecules between healthy subjects and infected patients. The 

first step towards an effective treatment of parasitic infections is an early detection and 

later differentiation of the disease progression and/or recurrences over time. Having into 

account the variations of the individual immune responses to the infection, the 

identification of candidate biomarkers is a more appropriate approach for reliable and 

specific parasite identifications than defining a single candidate. Thus, a combination of 

key hosts and parasite molecules is ideal to be included in target panels with the aim of 

achieving low overlapping between different diseases, and therefore, facilitate an 

integrated diagnosis.  

Protein-protein interactions at the host-parasite interplay are highly relevant in 

the context of modifying protein expression levels and inducing protein expression. 
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Identifying these alterations in host protein profiles during infection could facilitate the 

understanding of disease pathogenesis, host immune response, and identification of 

potential protein markers for the detection and prognosis of the disease. In this sense, 

parasitic infections may lead to highly relevant alterations on the level and expression of 

multiple serum proteins involved in essential physiological pathways (i.e. lipid-binding 

proteins) as well as in the change of very specific host molecules (i.e.- the host 

erythrocyte membrane proteins during malaria infection) [13, 14].  

Investigating the metabolic consequences of parasitic infections in the host is 

now feasible based on modern technological advances. Experimental infections with 

single or multiple parasite species may allow the discovery of specific or common 

biomarkers although they should be further validated in free-living populations [15]. To 

this end, for example, it has been shown by serum proteomics of Eimeria sp infected 

chickens that proteins usually not detected in the blood like those associated with 

mitochondrial metabolism are good candidates for time-course studies in coccidiosis. 

However, the host genetic background leading to different levels of susceptibility is a 

key factor in the alteration profile of proteins [16]. 

Regarding parasite-derived molecules, the strategy to detect circulating antigens 

has the potential to discriminate active from past infections. Assessment of antigens 

during a given infection and specifically the excreted-secreted or surface-exposed 

parasite proteins should be the best for an accurate immunodiagnostic procedure. The 

study of the surfome in parasites is revealing novel molecular targets for specific 

diagnosis. Many of these molecules are represented by glycoproteins located at the 

extracellular region attached to the plasma membrane, although antigenic variability at 

this level makes the selection of molecules cumbersome [17, 18]. This highlights the 

importance of comparative surfome analysis to increase the chance to find specific 

targets in parasites, leading to differential surface markers useful to avoid potential 

misdiagnosis like for example of Chagas' disease [17]. In addition, the potential 

detection of fine post-translational modifications creating neo-epitopes during specific 

parasitic disease pathogenesis could lead to monitor disease activity, like in many 

human diseases [19].  

Epitope mapping studies aimed to identify unique diagnostic molecules from 

polymorphic immune-dominant antigens in parasites using computational methods is 

also a promising area [20]. For instance, the identification of many novel epitopes with 

diagnostic potential has been proved for the protozoan Trypanosoma cruzi [21]. 

5 



Moreover, the detection of new diagnostic epitopes from circulating antigens is also a 

practical diagnostic strategy.

Some of the putative new protein biomarkers to detect parasites are likely to be 

present in biological fluids at extremely low concentrations and protected inside 

secreted microvesicles. Microvesicle-based secretion seems to be a general mechanism 

for protein secretion by protozoan parasites. It is well reported that the biomolecular 

cargo (i.e. proteins, lipids, nucleic acids) inside these microvesicles is involved in 

signalling for parasite infection and its survival therefore it could be also exploited in 

disease treatments [22, 23]. Since extracellular vesicles are highly immunogenic, they 

can be considered as suitable candidates to detect parasitic diseases [23]. 

3. Proteomic platforms for the identification of parasite biomarkers.

Parasites have complex life-cycles and redundancy molecules can be found in 

many infectious processes, posing additional difficulties for their specific identification 

by classical biochemical approaches. Additionally, parasitic infections may alter the 

metabolic activities in their host being these alterations the basis of metabolic 

fingerprint approaches for understanding the metabolic consequences of the infections. 

Therefore, these could be considered as a source for novel diagnostic or prognostic 

biomarkers [15]. Nowadays, modern –omic technologies are offering high-throughput 

strategies for such a difficult system biology exploration, with the essential support of 

novel bioinformatic tools [24, 25].  

The identification of biomarkers of parasitic infections by differential protein 

profiling of specific hosts or parasitic molecules is a promising area; mainly based on 

induced changes by parasites at post-translational modifications, peptide degradations 

or protein variants [26]. Tissues (human and animal) and proximal bio-fluids could 

contain molecular information on the physiological and pathological state of the 

organism since these tissues and bio-fluids are the route and destination of parasites 

and/or their secretions. The proteomic characterisation of proximal bio-fluids may 

provide useful and comprehensive information for diagnostic, prognostic and predictive 

biomarkers. The challenge is the detection of very low abundant protein circulating 

biomarkers -this kind of molecules provides a greater amount of downstream 

information content than nucleic acids- that may be essential for early diagnosis [27]. 

3.1 The Potential of Mass Spectrometry  
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Briefly, Mass Spectrometry (MS) is a robust, versatile and sensitive analytical 

technology allowing high-throughput detection with mass accuracy, precise quantitation 

and verification of protein variants, splice isoforms, metabolites and disease-specific 

post-translational modifications from tissues, body fluids or cell cultures [28, 29]. 

Highly sensitive technologies and high-throughput systems -like MS- are promising 

tools for novel biomarkers since MS allows characterisation of the fine tune changes in 

proteins, -including differences at population level- [30].  

Commonly, MS-based proteomics approaches are a suitable resource to identify 

biomarkers for the detection of parasites as the main technique or coupled with other 

proteomic and conventional biochemical techniques. For instance, this is the basis for 

the identification of potential malaria markers in patient´s sera and recently applied to 

identify specie-specific proteins in infected patients [31, 32]. 

De Bock and colleagues highlighted the potential of MS-based technologies (i.e.

surface-enhanced laser desorption/ionisation time of flight-MS, SELDI-TOF-MS) as 

research tools to interrogate protein-based biomarkers in parasitic diseases. In general, 

SELDI-TOF determines differential specific protein profiles (in particular, low 

molecular weight molecules) in proximal bio-fluids. The above-mentioned technology 

has also been applied in parasitic diseases by sensing unusually truncated host proteins 

in response to Trypanosoma cruzi infection with high sensitivity and specificity [33]. 

Moreover, matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) is a 

valuable diagnostic technique already applied for detecting and differentiating 

Entamoeba Spp or Babesia canis canis infections, and becoming a miniaturised 

bioanalytical tool for detecting and discerning proteins from bio-complex samples [34-

36]. MALDI-MS has applications in biomarker discovery, pathogen identification and 

has great potential for lipid-based biomarker sensing [37, 38]. For the identification of 

vectors like mosquitoes, MALDI-TOF allows accurate identifications which are 

important to elucidate their role as vectors. Importantly, the technique has also the 

potential for rapid in one-shot dual identifications (vectors and pathogens) [39, 40]. The 

utility of MS in routine analyses to point out markers of parasitic infections in bio-fluids 

and tissues was proved to be effective in many recent publications (Table 1), but still 

needs to be broadly used for research and clinical diagnosis. Many pre-analytical 

protocols during parasite sample preparation must focus on maximising the number of 

protein identifications on perform highly-reproducible assays.  
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Other MS-based techniques, not predominately applied in diagnostic 

parasitology, but that hold great potential for the development of this area are:  

(i) MS imaging is an analytical tool providing information on the spatial distribution 

and relative abundance of biomolecules in tissues [37]. Its power depends on an 

unbiased preliminary knowledge of molecular identities required, its ability to 

distinguish between diseases with similar histological characteristics, the different type 

of molecules detected, the quality of tissue preservation/conservation and the unique 

applications for clinical diagnostics [60]. It would probably be advantageous to correlate 

molecules and pathogenesis of impacting diseases like severe malaria, severe 

hepatosplenic schistosomiasis and cutaneous forms of leishmaniasis.  

 (ii) An emerging technology for pathogen detection is PCR–electrospray ionisation 

MS, a versatile technique to characterise multiple strains and organisms having high 

potential to identify tick-borne pathogens [61, 62].

(iii) Multiple reaction monitoring mass spectrometric assays can be used in order to 

quantify multiple protein isoforms, specific proteins or modified peptides [63]. This 

technique requires enriched samples to accurately analyse modified biomolecules like 

lipopolysaccharides, glyco-sphingolipids and glycoproteins, which are highly relevant 

antigens of parasites [64]. 

(iv) Direct identification of compounds originated from pathogens 

physiology/metabolism within hosts can be done by metabolomics approaches [65]. 

Metabolomics profiles based on MS strategies detecting variations in differential 

metabolic signatures in cells, tissues or body fluids, may open a way for sensing 

parasites. When trying to detect and understand host or parasite derived metabolites at 

low concentration, capillary electrophoresis MS with electrospray ionisation and gas-

chromatography MS offer valuable discriminatory power [66-68]. It could be also 

applied to time-course and accumulation of drug metabolites after treatment of parasitic 

diseases. 

3.2 Nanoproteomics

 Nanoproteomics is a new “-omic” emerging discipline coming from the 

advances and integration of nanotechnologies and proteomics, useful for rapid 

diagnostic screening at nanometer scale in the clinical practice. Nanotechnology has the 

potential to minimise most of the problems related to the proteomic technologies (i.e

complexity, protein modifications) providing advantages at the detection level and 
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allowing new methodological approaches such as multiplexing thus opening new 

biologically relevant insights [69].  

 Multiplexing is an important feature that may facilitate the simultaneous study of 

different parameters within a unique platform. Protein and glycan microarrays, bead 

arrays or 3D printings are some of the methodologies included in this field within on-

demand diagnostics platforms. The use of dynamic sensing arrays based on micron 

and/or nano-sized beads allows increasing the level of multiplexing with the potential to 

be adaptable in microfluidic devices for immunoassays [70]. Protein microarrays are 

miniaturised immunoassays in an array format which allows the study of thousands of 

proteins simultaneously, offering the opportunity to perform high-throughput screening 

for new biomarkers of infectious and parasitic diseases at the global level [71, 72]. 

Peptide chips could be a good strategy for the identification of potential 

immunodominant antigens and for epitopes description [73]. Biochips immuno-like 

polymer membranes for POC sensing of proteins in serum samples is also an interesting 

field [74]. In fact, novel single-domain antibodies (i.e. scFvs, nanobodies), may offer 

interesting advantages over monoclonal antibodies if applied to these methodologies 

[75, 76]. 

 Glycan microarrays are also powerful tools for biomarker discovery. These 

microarrays have the potential to identify carbohydrate antigens and improve the 

serodiagnosis of different parasitic infections, although advanced methods for the 

synthesis, isolation, and characterisation of glycans are still required [77-79]. The 

diagnostic potential of glycans found in Leishmania, Schistosoma and Trichinella 

parasites points outs their relevance. 

3.3 Subcellular proteomics 

The analysis of the composition of particular purified cellular compartments is 

gaining importance in diagnostic research. Extracellular vesicles represent a promising 

source of circulating biomarker cargo encapsulated in a lipid coat. Among them, 

exosomes, 40-100 nm in size vesicles, which are important in inter-cellular 

communications, play critical roles in many biological functions. Exosome surface 

protein contents can be a rich source of biomarkers in blood samples and proximal 

fluids. These vesicles could have a high potential as optimal diagnostic targets based on 

the differential display of specific exosomal protein markers. Exosome-MS protein 
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libraries prepared by either the shave -for surface protein exosomal markers- or 

complete exosome material, produce ideal peptide libraries for MS/MS analysis.  

There are accumulating evidences of the release of inter-communicating 

extracellular vesicles in parasitic diseases, being an integral part of the parasite’s 

infectious life cycle [80, 81]. The potential that proteomics, especially MS, shows for 

sensing and deciphering the cargo of these parasite or host secreted biomarker enriched 

microvesicles is very high in the field of parasitic diseases diagnosis [82]. The detection 

of parasitic derived microvesicles would be highly valuable for example to diagnose and 

guide management of chronic and complex asymptomatic diseases, such as cystic 

echinococcosis or in vector transmitted infections like Leishmaniasis, in which 

exosomes are newly identified virulence factors [81].  

Molecules in the exosome cargo like the microRNAs have also great potential 

for the diagnosis of parasitic diseases [83]. Another type of analytes that could be 

studied in the exosome space, e.g. lipids, might represent good biomarkers to 

investigate in the near future. All these provide an important base to continue 

researching in parasite derived exosomes as diagnostic targets and demonstrating their 

utility as clinical biomarkers.  

4. Parasite testing: biosensor based platforms 

There is an important demand in parasitic disease diagnostics for portable and 

highly sensitive systems. Novel detection platforms have the potential to develop 

robust, multiplexed ultrasensitive protein detection devices with high efficiency, high 

data quality, and cost-effectiveness for the identification of pathogens and disease 

biomarkers in both well-equipped and/or limited clinical facilities [84].  

Biosensors are also new molecular technologies that attempt to overcome many 

of the detection limits due to the low abundance of key biomarkers [85]. Some of these 

technologies have impressively improved sensitivity compared to conventional 

immunoassay approaches [86]. However, few biosensors have been developed and 

commercialised for the detection of infectious or no infectious diseases, but none of 

them for parasitic diseases.  

Biosensors can be used as POC devices to detect host and parasite virulence and 

specific biomarkers, being good alternatives to current standard methods [87]. These 

biomarkers can be transferred to a biosensor format for multiplexed ultrasensitive 

sensing directly from proximal body fluids, enabling simultaneous detection of specific, 
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to several evolutive forms, antibodies. This biomarker serves as revolutionary POC 

diagnostic technology to improve the prevention, control, and treatment of parasitic 

diseases. The inclusion of species-specific markers for differential diagnosis and 

polymorphism detections would directly impact sensing and help to understand 

parasites. The integration of high-throughput -omic data, which is relevant to essential 

host-parasite interaction networks, within these biomarkers appears as the most accurate 

scenario to understand and guarantee infection status. 

These devices have the potential to identify single molecules without the use of 

microscopes and moreover the same device could potentially be used for several 

different tests for biomarkers and bio-particles, providing an interesting alternative to 

standard tests like PCR [87]. This could be very advantageous in low-resource settings 

where people may not be well trained even in standard test and few technologies are 

well-established at a POC level, or where the conditions are not appropriated for 

analysis.  These devices will be particularly useful to detect invasive infections or to 

prevent further disease spread in populations that still rely in conventional 

parasitological techniques. 

Advanced developments for onsite diagnosis could come from single cell 

proteomic studies with a microfluidic antibody capture chip platform, able to detect 

target markers in real clinical practice [88]. However, the impact of microfluidics on 

interesting markers like for example exosomes is still small. Therefore, interfacing 

biosensors with MS is leading to the high-resolution identification of macromolecules 

and thus, search for parasitic targets [89]. The interrogation of protein biomarkers in 

specific cell types and during defined periods in hosts constitutes a potential emerging 

area of research to provide key advances in the field of parasitology. This could be 

especially relevant for understanding (i) anti-parasite immune responses in different 

clinical forms of parasitic diseases (i.e. Chagas disease) and their role driving the 

development of this disease and (ii) the systemic impact of parasitic infections. 

The development of specific methodologies is still required to accomplish and 

integrate all the above technologies in a high quality and robust sensing device. The 

ultimate advances in bio-fabrication techniques allow creating biosensors with living 

cells in 3D to more closely model the in vivo cell environment, having these devices the 

potential to combine bio-sensing and therapeutic treatments [90]. The implementation 

of these tests on clinical applications might positively influence animal and human 

clinical management as well as significantly reduce costs. 
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4.1 The potential of biosensors to detect and diagnose parasites 

The diagnosis of many parasitic diseases relies on showing parasites in tissue 

samples and on standard tests, nevertheless there are still gaps in the diagnosis of well 

know parasites or even in distinguishing between species and subspecies [91] (Table 2). 

The lack of diagnostic tests influences decisively health care decisions. In general, 

parasitological techniques oriented to detection by microscopic examination have many 

disadvantages such as: they are mainly invasive, leads to misdiagnosis, require expert 

microscopists, they are time consuming and lacking of accuracy [112]. Moreover, many 

rapid diagnostic tests lack accuracy, validation, or both. At the hospital level, but even 

more in the field, there is an increasing demand for better diagnostic tests to detect 

parasitic diseases at an early stage.  

The pathogenicity and life cycles of parasites are highly complex and governed 

by the parasite–host interactions. The trend is, instead of testing for a single biomarker, 

to identify the panel of biomarkers that together may be better predictors of clinically 

relevant parasites towards efficient decision-making in individual POC settings. As 

commented previously, MS and proteomic techniques can assist as standard tools for 

the identification of infection induced up and down regulations that may serve as 

specific protein biomarkers. Moreover, host-derived metabolic and specific 

pathogenicity sensors would also play a role modulating parasitic disease progression to 

ensure survival and long-term persistence [113, 114].  

In this sense, the infection and persistence by protozoan parasites is associated 

with changes in host tissue protein composition, highlighting that both parasite and 

host-derived molecules modulate disease progression [113, 115]. For instance, these 

kind of bidirectional protein signatures have been identified by proteomics in 

Plasmodium falciparum [116]. Also, in the management of the complex 

Echinococcosis, was recently suggested that a combination of markers would be highly 

desirable for the follow-up of threated patients to avoid recurrence [110]. Moreover, an 

integrative approach that looks for an effective diagnosis was also suggested for 

Schistosomiasis [117]. 

4.2 The critical role of biosensors in important parasitic diseases. 

The broad technologies underlying biosensors have experienced many 

developments, with the goal to enable small, sensitive and easy-to-use devices. As 
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mentioned in previous points, micro- and nanotechnologies can offer new technological 

tools and potential applications for developing bio-sensing devices for infection´s 

biomarkers. Many of these biosensors have proven to be useful for the detection of 

pathogen signatures and circulating proteins in patients [118]. The access to timely and 

accurate diagnostic tests has a significant impact in the management of many parasitic 

diseases like malaria.   

At present, many microfluidic platforms are under development in order to 

address the main disadvantages presented above. Microfluidics provides an ideal 

interface for the manipulation of cells (i.e. red blood cells) or even the microorganisms 

in a completely integrated system that can be fabricated in mass production at low costs 

(Table 3). These devices have the potential of contributing to the diagnosis, control and 

treatment of malaria. In the near future, by using a drop of blood obtained from a finger 

pick, these assays could be automated to reduce human interventions in sample analysis 

for easy and massive large population screenings. 

Sissel Juul and colleagues developed an impressive device, based on droplet 

microfluidics, in 2012 [137]. The microfluidic device is able to specifically and 

sensitively detect malaria-causing Plasmodium parasites employing isothermal 

conversion of single DNA cleavage-ligation events catalysed specifically by the 

Plasmodium enzyme topoisomerase I and detectable at the single-molecule level. This 

device allows for sensitive, specific, and quantitative detection of all human-malaria-

caused by Plasmodium species in single drops from whole blood with a detection limit 

of less than one parasite/μL.

Very recently Warkiani and colleagues [138] developed a highly integrated 

system that allows enrichment and purification of malaria parasites from whole blood 

using a label-free, shear-modulated inertial microfluidic device. From 2 to 10 parasites 

were separated per millilitre and quantified using qPCR. This technique is 

approximately 100-fold more sensitive than conventional microscopy analysis of thick 

blood smears and ideal for further integration into an automatic system with 

downstream detection for POC diagnostic devices. 

Red blood cells (RBCs) infected with malaria can be easily detected using 

microfluidic devices by looking at the morphological changes on the surface of the 

RBCs. Using controlled surface roughness and shear forces in a microfluidic channel 

malaria infected RBCs can be slowed and eventually immobilised on the roughened 

surface from whole blood. Although not well optimised for being used as POC device, 
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it is ambitioned to be an alternative biomarker for malaria diagnosis [124]. Following 

the same concept of looking at RBCs, Quan Guo and coworkers [128] developed a 

microfluidic technique for measuring the deformability of single RBCs based on their 

ability to deform through micrometre-scale constrictions. Although slow and tedious to 

extract information from the device is able to distinguish among uninfected RBCs and 

RBCs with various stages of P. falciparum infection. 

Other ways of parasite detection are the fabrication of special flow-through 

separator structures inside the microfluidic channel for trapping parasites [139] or the 

apertures designed by Chunxiao Hu and collaborators [140] that form a trap were the 

parasite are trapped around a mid-point of its body. These types of traps have been used 

for differentiating plant parasitic nematodes by their stylet activity trough integrated 

electrodes that record electrical signals.  

An interesting review reported some relevant biosensors developed in POC 

system for an important vector-borne infection as dengue, highlighting their enormous 

potential in this field [141]. In general, technologies based on biosensors have been 

applied in diagnostic investigations of a wide range of parasites as can be seen in Table 

4. In this way, advanced research through the integration of different techniques for 

multiplexing and high-throughput analysis on a chip might lead to the development of 

multi-parasite detection devices highly advantageous for tropical parasitic diseases [161, 

162]. Moreover, microfluidic devices open new avenues to investigate full parasite 

behaviour [163, 164] and parasite drug response [165] in order to design new strategies 

to fight them. These technologies are also applicable in toxicology and drug discovery 

programmes for human metabolic studies and degenerative diseases.  

In particular, rapid developments are occurring in the field of paper based 

analytical devices (µPADs). µPADs are a new type of analytical platforms for 

ASSURED diagnostic tests (Affordable, Sensitive, Specific, User friendly, Rapid and 

robust, Equipment free, Deliverable to end users, World Health Organisation). These 

devices should be simple to use, portable, inexpensive able to detect multiple analytes, 

and usable in using small volumes of sample. Therefore, the perfect tools for parasite 

detection in developing countries are coming. For instance, Horning and co-workers 

[166] developed a paper microfluidic cartridge for the automated staining of malaria 

parasites with acridine orange prior to microscopy. The cartridge enables simultaneous, 

sub-minute generation of both thin and thick smears of acridine orange-stained 

parasites, and has the potential to be used in limited-resources settings (Figure 1).  
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In the tropics and in the resource-limited settings, water-borne parasites are 

among the most important parasitic diseases and many obstacles prevent their detection 

[167]. There is a need for rapid and simple screening of water sources to protect human 

health from water-related diseases. Currently, information about compact imaging 

systems incorporating a chip-scale microscope brings light to the diagnosis of major 

enteric parasites to save many lives [168]. Also, devices can track infectivity as early as 

12 h post-infection, faster than other state of the art techniques [169]. Therefore, efforts 

are needed to facilitate market entry of these new technologies and facilitate 

mechanisms for their implementation. It is believed that PADs represent a realistic 

alternative for low cost, mass production and marketable devices. Moreover, the 

transition of paper-based microfluidic devices from the laboratory into the market need 

to be accomplished by providing the effective fluid flow control on paper and 

developing paper compatible easy and cheap sensing mechanisms.  

Other important parasites are those food-transmitted, which are generally under-

detected. These food-borne parasites have complex life cycles, which made difficult 

their control. In addition, few food-borne parasitic pathogens are effectively monitored 

in food [170]. Actually, there is a tremendous need to track back food-borne infections 

using new technologies such as biosensors due to their high specificity and potential to 

decrease the detection times [171].  

5. Conclusions and Perspectives 

An efficient diagnosis is very important for the prevention and treatment of 

infectious and parasitic diseases. Bio-sensing devices based on a high-throughput 

format could have a favourable impact on disease screening and control 

implementation. New proteomics developments and their adaptation to POC may allow 

in a near future to produce low cost devices, increasing the sensitivity and shortening 

the time of detection compared to conventional tools. 

In this sense, there is an important need to start developing and commercialising 

devices focusing on POC diagnostics applications in human and veterinary parasitology. 

These devices would favour the overall health of people in developing countries by 

taking broad and on time prevention and control measures and by assessing the 

treatment efficacy and facilitating the understanding the distribution patterns of hosts 

and vectors of important zoonotic parasitic diseases. Moreover, key biosensors might 
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allow the on-site molecular characterization of multi-parasite species bringing important 

information on the complex host-parasite interplay. 

The convergence of proteomics and nanotechnology more likely will provide 

specific immune-sensors and immune-assays for detecting biomarkers related to 

infections. In this regards, the development of portable POC diagnostic tools for 

detecting circulating exosomes as biomarkers, therapeutic targets and signalling 

molecules of parasitic origin is a feasible and important goal in parasitology research. 

The integration of data from detected parasitic molecules and changes detected in host 

immune and metabolic responses to the infection might provide detailed sensory 

information for precise molecular-level diagnostics and monitoring tools.  
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Figure legends: 

Figure 1: New type of analytical paper microfluidics for sensing parasites. A) A 3D 
representation of the cartridge. B) A top-down view of the cartridge. C) A cross-section 
of the cartridge, emphasizing the slanted nature of the coverslip during use, which 
permits imaging in both thick (many cells) and thin (single cell) regions. Reproduced 
with permission from [Matthew P. Horning et al 2014] © 2014, The Royal Society of 
Chemistry.
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Table 1. New potential biomarkers identified in host-parasite models found by mass spectrometry techniques. 

Disease/Parasite Biomarkers Source Method Features/Details References
Trypanosoma cruzi

T. rangeli 

T. brucei gambiense 

C3a anaphylatoxin,
apolipoprotein A 
fibronectin 

T. rangeli GP63-related protein and an 
FCaBP protein 

Osteopontin and β-2-microglobulin 

Serum

Serum 

Cerebrospinal fluid  

Mass Spectrometric Profiling
by SELDI-TOF 

MS/MS analysis 

MALDI TOF-TOF MS 

Useful for subjects with latent Chagas 
Disease 

Proteins from trypomastigote surfome 

Good candidates for the development of a 
test for staging patients

[41]

[42] 

[43] 

Schistosoma 
mansoni 

Fuco-oligosaccharides that are 
produced by schistosome eggs 

Phenyl acetyl glycine (PAG) 

Urine MALDI-TOF

UPLC-MS 

Oligosaccharides detected in infection
urine are shown to be excreted by live 
eggs and not by worms 

PAG is a statistically discriminant 
metabolite which can provide important 
information regarding the disease

[44]

[45]

Plasmodium 
falciparum 

P. berghei 

Metabolites between supernatants from 
Plasmodium: 3- methylindole, 
succinylacetone, S-methyl-L-
thiocitrulline, O- arachidonoyl glycidol 

Urinary metabolites: UK1, UK2 

Proteins: cE5, B3VDI9_ANOGA, and 
AGAP008216-PA 

In vitro cultured 
samples  

Urine 

Salivary gland samples 
from Anopheles 
gambiae

High resolution metabolomics 
(HRM): C18 liquid 
chromatography coupled with 
Fourier-Transform Mass 
Spectrometry (FTMS) 

Nuclear magnetic resonance 
(NMR) profiling followed by 
LC-MS 

SELDI-TOF-MS 

Low molecular-weight metabolites for 
future development of non- invasive 
malaria diagnostic tools 

Two unique structurally related urinary 
candidate biomarkers have not been 
described so far in the eukaryotic 
organism. 

Markers involved in blood feeding 

[46]

[47] 

[48] 

Echinococcus spp Antigen B-related molecules (EgAgB; 
EgAgB1-5)

Sera MALDI-TOF-MS Immunodominant epitopes changed as the 
disease progresses

[49]

Giardia lamblia Encystation-specific vesicles (ESVs) 
and  endocytic organelles termed 
peripheral vesicles (PVs)

Microsome fractions 
derived from 
trophozoites

Combining flow cytometry-
based organelle sorting with 
In silico filtration of mass 

Proteins from Secretory and Endocytic 
Organelles: 

[50]



spectrometry data
Entamoeba 
histolytica

Cyst-wall specific glycoproteins Jacob, 
Jessie and chitinase

Fecal specimens LC-MS/MS mass 
spectrometer

Promise as diagnostic targets [51]

Eimeria /Coccidiosis Proteins from the neck region (rhoptry 
neck proteins, RON): RON2L1, 
RON2L2

Serum Gel LC– MS/MS From enriched rhoptry fractions isolated 
from the sporozoite stage 

[52]

Toxoplasma gondii Excretory secretory antigen (ESA): 
microneme protein 10 and dense 
granule protein 7, phosphoglycerate 
mutase 1

Serum MALDI-TOF-TOF From tachyzoites [53]

Trichinella spiralis Excretory-secretory (ES) proteins of 
muscle larvae (ML) 

Serum MALDI-TOF Come mainly from the excretory granules 
of the stichosome and the cuticles 
membrane

[54]

Porcine cysticercosis 
(Taenia solium) 

Clusterin, lecithin-cholesterol 
acyltransfer- ase, vitronectin, 
haptoglobin and apolipoprotein A-I

Serum SELDI-TOF technology Detection of viable cysts (active disease) [55]

Leishmania 
infantum 

Profile of the volatile organic (VOCs) 
emitted 

Proteins Li-isd1, Li-txn1, Li-ntf2 

Hair sample

Urine 

Solid-phase microextraction 
(SPME) combined with gas 
chromatography-mass 
spectrometry (GC-MS) 

RP-HPLC-MS 

Significant variations between healthy 
dogs (G1) and infected dogs (G2+G3). 

To distinguish active visceral 
leishmaniasis from asymptomatic 
infection

[56]

[57]

Trichomonas 
vaginalis 

Papain-like (TvCP2, TvCP4, TvCP4-
like, TvCPT), and one legumain-like 
(TvLEGU-1) cysteine proteinases(CPs) 

Serum MALDI-MS and ESI-LC-
MS/MS 

Antigen cocktail of recombinant 
proteinases that could increase the 
sensitivity and specificity for the 
immunodiagnosis

[58]

Teladorsagia 
circumcincta
(parasitic nematode)

Gelsolin, α-1 b glycoprotein and 
haemopexin 

Lymph formed from the 
interstitial fluid (sheeps) 

MALDI-TOF and MS/MS 
analyses 

The proteomic study of lymph has the
potential to give new insights into local 
responses to infection

[59]



Table 2. Some key problems to diagnose parasitic diseases and encountered in existing diagnostics for a range of important parasitic species. 

PARASITIC DISEASE PROBLEMS RELATED TO THEIR 
DIAGNOSIS

SPECIES DIAGNOSTIC 
METHOD

DEFICIENCIES/INADEQUACIES REFERENCES

MALARIA 

-Conventional microscopy is the gold 
standard for malaria diagnosis. 50-100 
parasites/µl of blood can be detected in a 
good lab. Sensitivity is only 500 
parasites/µl in non-specialized labs. 
Requires expertise. 
-Great difficulty of establishing quality-
assured microscopy in rural and resource-
poor settings.  
-Field implementation of many techniques 
remains a problem.  
- Rapid diagnostic tests have good 
sensitivity for densities of P. falciparum
greater than 500 parasites/μL. However, the 
World Health Organization recommends a 
lower sensitivity limit of detection for rapid 
diagnostic test for P. falciparum of 95% at a 
parasitaemia of 100P/μL.
- Current tests are essentially qualitative 
and do not quantitate the risk of developing 
severe complication. 
- Most RDTs that detect multiple species do 
not differentiate non-P. falciparum species 
from each other, nor do they differentiate 
mixed infections of P. falciparum and non-
P. falciparum from P. falciparum
monoinfection. 
-Placental malaria poses a great diagnostic 
challenge, lack of accurate and sensitive 
diagnostic tool for malaria infections in 
pregnancy.

Plasmodium falciparum Hematological parameters 
(Analytical Biochemistry)

Unreliable laboratory indicators in 
acute uncomplicated malaria

[92]

Nested PCR Time-consuming, open to 
considerable risk of contamination, 
low cost-efficiency and low 
sensitivity and specificity in certain 
cases.

[93]

Light microscopy Their efficacy is affected by several 
key factors such as the level of 
parasitemia, among others.

[94]

Histopathology Frequently not available in most 
settings, relatively costly and labor 
intensive.

[95]

Rapid diagnostic tests The specificities, sensitivities, 
numbers of false positives, numbers 
of false negatives and temperature 
tolerances of these tests vary 
considerably 

Performance varies between lots and 
widely between similar products. 
Also varies the concentration in the 
blood of the protein to be detected. 

[96]

[97] 

LEISHMANIASIS 

-Heterogeneity of Leishmania parasites 
complicates the diagnosis.  
-Proteins stage-specifically expressed and 
associated with virulence have a high 
antigenicity during the active disease phase.

Leishmania 
infantum/donovani 

Quantitative PCR Invasive samples for accurate 
detection

[98]

Serology The specifications for VL diagnostic 
tests vary among the different 
endemic regions. 

[99]



-Antigens used in serology show a large
number of cross reactions with other 
trypanosomatids. 
-Invasive parasitological methods currently 
used to identify infected 
Individuals.

Leishmania braziliensis No gold-standard test for tegumentary 
leishmaniasis, a combination of 
different diagnostic techniques is 
often necessary.

[110]

Serology (ELISA) Potential as an alternative method for 
confirmation.

[101]

TRYPANOSOMIASIS 

-No symptoms in acute or chronic phase
and once the immune response is 
established, parasite detection is very 
difficult. 
-Misdiagnosis between species. 
-There is currently no single reference 
standard test. 
-Methodological limitations, especially in 
sensitivity and specificity. The direct or 
parasitological tests have unacceptably low 
sensitivity in the chronic phase. 
-There is a need for tools that can identify 
patients cured shortly after specific 
treatment. Other needs include a marker for 
prognosis and early diagnosis of congenital 
transmission. 
-Failure to detect parasites in infected 
newborns at one month of age due to low 
sensitivity of the assays.

Trypanosoma cruzi INP micromethod Parasite burden in some patients is 
below the detection limit

[102]

Serological methods Frequently display cross-reactivity 
against other pathogens and long term 
required for host seroreversion after 
the etiologic treatment of T. cruzi
infection. 
Sensitivity and specificity have low 
accuracy.

[103,104]

PCR Controversial for chronic phase
disease diagnosis. 

[105]

TOXOPLASMOSIS 

-Detection of oocysts is of little 
significance owing to short patency. 
The serological diagnosis of prenatal 
infection is difficult. 
-Low and focal distribution of parasites in 
the tissues or to the presence of non viable 
parasites. 
-Diagnosis of acute infection in human 
pregnancy is difficult since antibodies can 
be detected for a very long time after the 
acute phase.

Toxoplasma gondii Serological methods Equivocal results with conventional 
serological techniques are not 
uncommon when IgG titers are close 
to the cut-off value of the test 

[106]

SCHISTOSOMIASIS 

-Microscopic examination of excreta is the 
gold standard test albeit with some 
limitations like decrease of sensitivity in 
low-endemicity areas.

Schistosoma spp. Serology Antibody cross-reactivity with 
antigens from other helminths.

[107]

PCR Discrepancies among study findings 
regarding test sensitivity as a result of 

[108]



-Indirect methods using clinical, 
subclinical, or biochemical morbidity 
markers are not specific.

technical problems.

ECHINOCOCCOSIS 

-Considerable phenotypic variability 
between isolates of Echinococcus 
granulosus sensu lato
-Diagnosis is mostly based on imaging 
techniques but sometimes they are 
inconclusive.  
-The diagnostic sensitivity of the methods 
can strongly depend on the stage of 
infection. 
-Low specificity and sensitivity of the 
currently available commercial tools. 
-Prognosis-associated follow-up parameters 
are still lacking. Invasive procedures 
following therapeutic interventions in AE 
patients. 
-There is a need to develop reliable tools 
for improved viability assessment. 
-There is an urgent need for well-validated 
non-invasive markers. 

Echinococcus granulosus ELISA Sensitivity depends on the 
localization, size, number and stage 
of cysts. Several other factors could 
also affect the results of the tests. 
Cross-reactions with other parasites 
are common.  
Antibody persistence.

[109]

Imaging follow-up None of the available imaging 
procedures are currently able to 
accurately assess E. granulosus
viability and/or predict cyst 
progression/abortion

[110]

Echinococcus 
multilocularis 

Serology No single accurate assays for the 
follow-up: need for combining 
cytokine and chemokine levels with 
other circulating markers. 
Poor correlation between the presence 
of antibodies in animal serum and 
worms in the intestine

[110, 111]



Table 3. Microfluidic devices for the diagnosis of malaria infected cells. 

Usage Device/Platform Highlights References 
Characterization of 
disease states of single 
cells

Electric impedance microflow 
cytometry 

Allows differentiation of infected from uninfected 
RBCs as well as among different P. falciparum
intraerythrocytic asexual stages

[119] 

A polydimethylsiloxane 
microfluidic channel 

Potential tool for studying the invasion mechanism 
as well as performing antimalarial drug assays [120] 

Malaria diagnosis A cell microarray chip 
Offers higher sensitivity in the detection of malaria 
infected erythrocytes than conventional light 
microscopy 

[121] 

A lab-on-chip 
Capable of detecting all Plasmodium sp. with a DL 
for Plasmodium falciparum of 2 parasites/μL of 
blood 

[122] 

Polydimethylsiloxane microfluidic 
channels 

Indicate that surface morphologies can serve as an 
alternative biomarker for malaria diagnosis [123, 124] 

Separation of infected 
and non-infected cells 

Dielectrophoresis based continuous 
separation  

Higher inter-particle distance between red blood 
cells and plasmodium falciparum infected red blood 
cells 

[125] 

Detection of 
Plasmodium berghei in 
blood 

Acoustic fields to lyse cells DL of 30 parasites in a microliter-sized blood 
sample [126] 

Estimation of physical 
splenic filtration of 
infected cells 

A MCD filtration model Identify rheological diversity in RBC populations [127] 

Separation of infected 
cells based on their 
deformability 

A microfluidic device precisely 
controlling pressure 

Potential to study the pathophysiology and the 
effect of drugs [128] 

A hyperbolic converging 
microchannel for continuously 
monitoring cell deformation in the 
extensional flow region 

Overcomes the limitation of conventional methods 
by reducing experiment time [129] 

An automated microfabricated 
deformability cytometer 

Measure mechanical deformability and 
biomechanical properties of cells. Especially 
applicable to heterogeneous cell populations 

[130] 

A simple long straight channel 
microfluidic device 

An ideal technique for on-site iRBCs enrichment in 
resource-limited settings [131] 

A 2-microm microfluidic channel 
In contrast to P. falciparum-infected RBCs, mature 
P. vivax-infected RBCs readily became deformed 
through 2-microm constrictions

[132] 

Measurement of the 
density of single living 
cells

A microfluidic mass sensor Identifying Plasmodium falciparum malaria-
infected erythrocytes [133] 

Imaging malaria 
parasites A lensfree on-chip microscope Imaging in thin blood smears [134] 

Monitoring heme 
dynamics and/or 
detecting hemozoin in 
malaria infected cells

A RALS approach Utility of the technique as a diagnostic and 
monitoring tool for minute sample volumes [135] 

A magneto-optical method Detect parasites at very low densities at the ring 
stage and in the case of the later stages [136] 



Table 4. List of some successfully applied sensors of parasites reported in the literature. 

Parasite  Bio-Sensing Approach Highlights Targets and/or 
Detection Limit References 

Leishmania sp. Immunosensor-based assay (monoclonal antibody coupled to 
a bioelectronic device) for detecting antigens quickly

Quantify amastigotes in organs for studies on 
pathogenesis and immunity Amastigotes [142] 

Plasmodium sp. Aptasensor device based on cationic polymers and gold 
nanoparticles 

Allows detection of the two main species of 
malaria (P. vivax and P. falciparum) Lactate dehydrogenase [143] 

Rolling-Circle-Enhance-Enzyme-Activity-Detection system 
(REAAD) 

Detection of malaria parasites in crude blood 
samples with a colorimetric detection system Topoisomerase I Activity [144] 

A label-free DNA biosensor based on quartz crystal 
microbalance (QCM) Specific for P. falciparum detection  Merozoite surface protein 2 [145] 

A miniaturized imaging system: sub-pixel resolving 
optofluidic microscope 

Combination of microfluidics and inexpensive 
image sensors an on-chip device RBCs infected with P. falciparum [146] 

A disposable plastic chip and a low-cost, portable, real-time 
PCR machine 

Containing a Peltier element for thermal cycling 
and a laser/camera setup for amplicon detection. DL of 2 parasites /μL-1 of blood [122] 

A microfluidic device to measure red blood cell 
deformability (infected cells)

Combination of microfluidic and controlled 
pressures 

Deformability values of uninfected and 
parasitized cells [128] 

A droplet microfluidics platform DL of less than one parasite /μL-1 in single drops 
of unprocessed blood or salive

Micrometer-sized products derived from 
the action of topoisomerase [137] 

Cryptosporidium 
parvum

A microbead immunoagglutination assay combined with Mie 
scatter detection in a microfluidic device

DL of ≤1 oocyst per large volume of water with 
the potential to be used in field situations

Cryptosporidium oocyst wall proteins 
(COWP) [147] 

A polydiacetylene(PDA) liposome chip based on 
fluorescence

Non-labeling detection of  the waterborne 
pathogen DL of 1 x 103 oocysts /mL-1 [148] 

A microfluidic device equipped with a micromesh and FITC-
labeled antibody.

Combination of micromesh for entrapment of 
oocysts with fluorescence immunoassay High-throughput counting of  oocysts [149] 

Schistosoma japonicum A piezoelectric immunosensor Mixed self-assembled monolayer membrane 
(mixed SAM) technology

S. japonicum antibody (SjAb) directly 
detected in the serum  [150] 

Glutaraldehyde or chitosan cross-linked electrochemical 
immunosensor High sensitivity and broad linear range response S. japonicum antigen (50 μg /L-1 Optimal 

concentration) [151] 

A liquid-phase piezoelectric immunosensor (LP-PEIS) Detect antigens in patients’ sera as well as 
ELISA but in a simple and quick operation S. japonicum circulating antigen (SjCAg) [152] 



Schistosoma 
haematobium 

On-chip imaging: mini-microscopes constructed from 
webcams and mobile phone cameras 

Low-cost diagnostics of urogenital 
schistosomiasis. Fields images of S. haematobium eggs [153] 

Giardia lamblia A PEMC biosensor immobilized with a monoclonal antibody The cysts bind to the antibody on the sensor 
changing the resonant frequency 

DL of 1-10 cysts/mL without a 
preconcentration step [154] 

Optofluidic microscopy imaging 
Successful microscopy imaging by 
flowing/scanning the target objects across a 
slanted hole array

Imaging of both Giardia trophozoites and 
cysts [155] 

Trypanosoma sp.  Gold electrode modified with a thiol sensitized with parasite 
proteins 100% specificity for the samples studied Human anti-T. cruzi IgG [156] 

Strongyloides stercoralis 
An immunological assay for diagnosing strongyloidiasis 
based on a novel diffraction-based optical bionsensor 
technology 

Serological assay based on real-time optical 
diffraction (NIE dot) 

Antigen called NIE derived from 
Strongyloides stercoralis L3-stage larvae [157] 

Entamoeba histolytica Portable screen-printed electrodes for the label-free 
electrochemical detection  Nano-yeast–scFv probes E. histolytica cyst antigens [158] 

Babesia bovis A device based on impedance spectroscopy combined with 
microfluidic Sorting based on microfabricated cell cytometer Allows single cell analysis of normal and 

B. bovis infected red blood cells [159] 

Lucilia cuprina
(Cutaneous myiasis) Electronic nose technology Array of sensors that react to volatile chemical 

compounds
Discriminate infection measuring parasite 
odour on the day of larval implantation [160] 

PEMC, piezoelectric-excited millimeter-sized cantilever; DL, Detection Limit 


