Synthetic Fatty Acids Prevent Plasmid-Mediated Horizontal Gene Transfer

María Getino,¹ David J. Sanabria-Ríos,¹ Raúl Fernández-López,¹ Javier Campos-Gómez,²* José M. Sánchez-López,³ Antonio Fernández,⁴ Néstor M. Carballa,⁴ and Fernando de la Cruz²

Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria—Consejo Superior de Investigaciones Científicas, Santander, Cantabria, Spain; Faculty of Science and Technology, InterAmerican University of Puerto Rico, Metropolitan Campus, San Juan, Puerto Rico; Biomar Microbial Technologies, Parque Tecnológico de León, Arumina, León, Spain; Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico

* Present address: Javier Campos-Gómez, Department of Molecular Biology and Biochemistry, Drug Discovery Division, Southern Research Institute, Birmingham, Alabama, USA.

ABSTRACT Bacterial conjugation constitutes a major horizontal gene transfer mechanism for the dissemination of antibiotic resistance genes among human pathogens. Antibiotic resistance spread could be halted or diminished by molecules that interfere with the conjugation process. In this work, synthetic 2-alkynoic fatty acids were identified as a novel class of conjugation inhibitors. Their chemical properties were investigated by using the prototype 2-hexadecynoic acid and its derivatives. Essential features of effective inhibitors were the carboxylic group, an optimal long aliphatic chain of 16 carbon atoms, and one unsaturation. Chemical modification of these groups led to inactive or less-active derivatives. Conjugation inhibitors were found to act on the donor cell, affecting a wide number of pathogenic bacterial hosts, including Escherichia, Salmonella, Pseudomonas, and Acinetobacter spp. Conjugation inhibitors were active in inhibiting transfer of IncF, IncW, and IncH plasmids, moderately active against IncI, IncL/M, and IncX plasmids, and inactive against IncP and IncN plasmids. Importantly, the use of 2-hexadecynoic acid avoided the spread of a derepressed IncF plasmid into a recipient population, demonstrating the feasibility of abolishing the dissemination of antimicrobial resistances by blocking bacterial conjugation.

IMPORTANT Diseases caused by multidrug-resistant bacteria are taking an important toll with respect to human morbidity and mortality. The most relevant antibiotic resistance genes come to human pathogens carried by plasmids, mainly using conjugation as a transmission mechanism. Here, we identified and characterized a series of compounds that were active against several plasmid groups of clinical relevance, in a wide variety of bacterial hosts. These inhibitors might be used for fighting antibiotic-resistance dissemination by inhibiting conjugation. Potential inhibitors could be used in specific settings (e.g., farm, fish factory, or even clinical settings) to investigate their effect in the eradication of undesired resistances.

Infections due to enterobacteria carrying antibiotic resistance (AbR) determinants are a major cause of global morbidity and mortality (1). Despite their ongoing success, antibiotics are becoming a progressively more limited weapon to fight bacterial infections. Over the past years, few novel antibiotic treatments have been developed and larger numbers of pathogens resistant to current treatments have arisen (2). Since AbR mechanisms are naturally present in antibiotic-producing organisms, they can easily spread to bacterial pathogens by horizontal gene transfer (HGT). In enterobacteria, plasmid conjugation is one of the main sources of HGT, and the emergence of multiresistant pathogens is frequently linked to the spread of conjugative plasmids. For example, worldwide dissemination of extended-spectrum beta-lactamases, particularly the CTX-M enzymes, is due to mobile genetic elements, especially conjugative plasmids from the IncF group (3). Because AbR genes disseminate mostly by conjugation, strategies to control conjugation could provide effective means to curb AbR dissemination (4, 5). Among the proposed alternatives to conventional antibiotics, this work focuses on the development of chemical inhibitors of bacterial conjugation.

Previous efforts to control conjugation in enterobacteria focused on two complementary lines of action. The first line of action consisted of chemical and biological agents acting against key molecular components of the conjugation process. One of those key components is the relaxase, the protein responsible for nicking DNA at the origin of transfer and initiating plasmid transfer. Relaxase activity was inhibited by the use of bisphosphonates (6), a strategy whose results were later revealed to be misleading, since these compounds were found to act as unspecific chelating agents (7). Another strategy involved the expression of intrabodies directed against plasmid R388 relaxase. Intrabodies were expressed in recipient cells, successfully preventing the acquisition of the conjugative plasmid (8). However, the applicability of intrabodies in clinical or environmental settings is limited, since it requires a transgenic recipient population expressing the intrabody. Another specific target for the control of conjugation was the conju-
negative pilus. Certain bacteriophages attach to conjugative pili with high specificity. By exploiting the natural affinity of bacteriophage M13 for the F pilus, this bacteriophage and its protein, pIII, were employed to inhibit F plasmid conjugation (9). This strategy would be most useful if it could be extended to other types of pili.

A second line of action for developing conjugation inhibitors (COINs) involved whole-cell assays, i.e., screening for compounds that produce reduced numbers of transconjugant cells in conventional conjugation assays. This approach suffers from a major backlash: the possibility of false positives arising from compounds that do not target the conjugative machinery but inhibit cell growth instead. Indeed, many early compounds described as COINs were later found to be growth inhibitors (10–12). Using a luminescence-based high-throughput conjugation (HTC) assay, in combination with a secondary assay that ruled out effects on growth rates, unsaturated fatty acids (uFAs) were discovered as the first effective COINs. uFAs were found to inhibit conjugation of IncW and IncF plasmids, while cell growth was not affected (13). Screening a library of 12,000 natural compounds (NatChem library) yielded dehydrocrepenynic acid (DHCA) as the fatty acid with the highest COIN activity (13). However, DHCA has to be extracted from tropical plant seeds (14), complicating the characterization of its COIN activity. As a result, it was unclear whether DHCA and other uFAs were potent enough to efficiently block the spread of conjugative plasmids and the range of bacterial hosts susceptible to inhibition.

In this work, starting from the chemical structure of DHCA, we developed simple synthetic COINs in sufficient amounts to study their efficiency and range of activity. We found that synthetic 2-hexadecynoic acid (2-HDA) acts as a true COIN on a wide range of bacterial species and conjugative plasmids. Importantly, 2-HDA was able to prevent the spread of the highly infective IncF plasmid R1drd19, thus demonstrating the feasibility of using COINs to block the spread of AbR.

RESULTS

2-HDA, an effective synthetic COIN. DHCA was identified in previous work (13) as the most potent COIN found. DHCA is one of the 2-alkynoic fatty acids (2-AFAs), a class of molecules known for their bioactive properties (15, 16). To test whether other 2-AFAs shared COIN activity with DHCA, we tested a number of them that were simpler and amenable to chemical synthesis (15–17). 2-HDA is a 2-AFA with a chain length of 16 carbon atoms and one triple bond at C-2 (Fig. 1A). In addition to its previously reported activities, 2-HDA inhibited R388 conjugation to 2% at 0.3 mM (98% inhibitory concentration [IC98], 0.3 mM) (Fig. 1B). When five monounsaturated 2-AFAs of different chain lengths were compared to test for the influence of hydrocarbon chain length on COIN activity, 2-HDA showed an optimal chain length (Fig. 1C). As shown in Fig. 1C, COIN potency follows the trend 2-HDA (16 C) / 2-octadecynoic acid (2-ODA; 18 C) / 2-tetradecynoic acid (2-TDA; 14 C) / 2-icosynoic acid (2-ICA; 20 C) / 2-dodecynoic acid (2-DDA; 12 C).

The carboxylic group is essential to COIN activity. A set of chemical analogs of 2-HDA were synthesized to ascertain which chemical groups were crucial for the observed activity. The carboxylic group was substituted for other functional groups in the studied analogs, including 2-alkynols, methyl 2-alkynoates, and tetrahydropyranyl-ethers (Fig. 2A). Interestingly, only 2-HDA derivatives with an unaltered carboxylic group remained active their efficiency and range of activity. We found that synthetic 2-hexadecynoic acid (2-HDA) acts as a true COIN on a wide range of bacterial species and conjugative plasmids. Importantly, 2-HDA was able to prevent the spread of the highly infective IncF plasmid R1drd19, thus demonstrating the feasibility of using COINs to block the spread of AbR.

FIG 1 2-Hexadecynoic (2-HDA) COIN activity. (A) Chemical structure of 2-HDA. (B) Conjugation frequencies (CF) in the presence of increasing concentrations of 2-HDA relative to CF in the absence of 2-HDA (100%). Values represent means ± standard deviations (SD) of the results of at least five independent experiments measured by HTC assay. (C) CF in the presence of five 2-AFAs with different chain lengths (12 to 20 carbon atoms) at different concentrations relative to CF in the absence of added compounds (100%). The values represent means ± SD of the results of at least three independent experiments measured by HTC assay.

FIG 2 COIN activity of 2-HDA analogs. (A) Schematic structures of functional groups of analyzed compounds. 2-HDOH, 2-hexadecyn-1-ol; 2-HDOTHP, 2-(2-hexadecynyl)oxy-tetrahydro-2H-pyran. (B) Conjugation frequencies (CF) in the presence of 2-HDA and related compounds relative to a control without added compounds (100%). Values represent means ± SD of the results of at least three independent experiments measured by HTC assay.
(2-HDA). The same behavior was observed with 2-O DA and its derivatives (see Fig. S1 in the supplemental material). Moreover, two 2-HDA derivatives containing two separate triple bonds, 2,6-hexadehydroxyacetic acid (2,6-HDA) and 2,9-hexadecenoic acid (2,9-HDA), were also assayed. Results are shown in Fig. 2. While 1 mM 2,6-HDA inhibited conjugation at the same level as 2-HDA, when the second triple bond was placed more distantly from the carboxylic group (2,9-HDA), no inhibition was observed (Fig. 2B). Unlike 2-HDA, 2,6-HDA was less active at lower concentrations. For instance, 2,6-HDA inhibits conjugation to only 30% of the control without added COINs (100%). In summary, the combination of a long, unsaturated hydrocarbon chain plus a carboxylic group seems to be the outstanding chemical group required for COIN activity.

InC, IncF, and InCh conjugative plasmids, the best targets.

Thus far, plasmid R388 was employed to test for COIN activity, which prompts investigation of the issue of how broad the range is of plasmids affected by the identified COINs. With the purpose of expanding this scope, a collection of prototype conjugative plasmids from Enterobacteriaceae (see Table S1 in the supplemental material) were tested with the most active 2-AFAs (2-HDA and 2-ODA). Results are shown in Table 1. As occurred with previously tested uFAs (13), conjugation of IncW and IncF plasmids used, IncI, IncL/M, and IncX plasmids were also inhibited to various extents. Other plasmids (IncN and IncP) were not significantly affected even at the higher tested 2-HDA concentrations (Table 1). Hence, significant differences in the sensitivities of different plasmid conjugation systems to the tested COINs were observed, which could provide valuable insights regarding to their mode of action.

Effect of COINs on plasmid mobilization. In addition to conjugative plasmids, mobilizable plasmids are also transmissible by conjugation, when helped by a conjugative plasmid coexisting in the donor cell (18). Thus, it seemed interesting to test for the transfer of different mobilizable plasmids in the presence of diverse conjugative systems. This experiment would also help to elucidate the 2-AFA target in the conjugation machinery. Thus, several mobilizable plasmids were tested in the presence of either 2-HDA or 2-O DA, using different helper plasmids. As shown in Table 2, it was only when the helper plasmid was itself affected by COINs that conjugation of the mobilizable plasmid was inhibited. In contrast, when the CoIE1 mobilizable plasmid was transferred using a COIN-resistant plasmid (IncP plasmid pRL443), its mobilization was not affected (Table 2). These results suggest a shared target of 2-AFAs in mobilization and conjugation, probably a part of the mating pair formation (MPF) system. An additional experiment to test this hypothesis was performed by mobilizing the orf7-MOB region of R388 (pHP161) (19) using the MPF system of plasmid pKM101 (20). When 0.4 mM 2-HDA was added to conjugation media, no inhibition effect was observed, as occurred for the transfer of plasmid pKM101 alone (see Fig. S2 in the supplemental material).

COINs act in a broad range of donor bacteria. Conjugation occurs when donor cells encounter recipient cells. However, which cells are the primary targets of the inhibition reaction? To answer this question, a modified conjugation inhibition assay was carried out. Donor or recipient cells were grown in the presence of 2-HDA, and conventional conjugation assays were performed in the absence of the COIN. Under these conditions, conjugation was inhibited only when donor cells were preincubated with
activity extends to other bacterial hosts besides fore, with the purpose of finding out whether the observed COIN tested COINs act on donor rather than on recipient cells. There-
not show any effect. This simple experiment suggested that the compound.

2-HDA, as shown in Fig. 3A. Preincubation of recipient cells did
material). These results imply that COINs are generally active in interspecies conjugation.

2-HDA suppresses R1drd19 spread. A key procedure regarding the feasibility of using COINs as an effective means to hinder AbR dissemination is to test their effect on the spread of a conju-gative plasmid in a bacterial population that contains suitable re-
ceptor cells. Plasmid spread is conditioned by the burden plasmids impose on host cells. Because this burden results in lower growth rates, plasmid-free cells tend to outcompete plasmid-bearing cells. Plasmid-bearing cells, in turn, increase their numbers by conju-
gation. These two processes result in a dynamic situation where the fate of a plasmid depends on the equilibrium between plasmid infectivity and burden. This condition is classically known as the Steward-Levin equilibrium (21). We investigated whether 2-HDA was able to prevent the spread of the highly infective IncF plasmid R1drd19. Plasmid R1drd19 was chosen because of its ability to conjugate in liquid at high frequencies. This allowed us to monitor plasmid prevalence in a bacterial population that started with a 1:1 donor-to-recipient ratio (maximal transfer rate) and was allowed to grow for 15 generations. The proportion of plasmid-containing cells versus plasmid-free cells was determined at different time points by replica plating in populations that were subjected to different concentrations of 2-HDA (Materials and Methods). The results shown in Fig. 4A demonstrated that, in the absence of 2-HDA, plasmid R1drd19 quickly took over the population, with nearly 100% of the cells being positive for R1drd19 (R1drd19+) in 4 generations. In the presence of 400 μM 2-HDA, however, the plasmid was unable to invade the population, and its prevalence slowly decayed from 50% to 27% during the course of the exper-

To interpret these results, we built a simple ordinary differen-
tial equation model (equation 1) for determination of plasmid prevalence (see Text S2 in the supplemental material [supplemental calculations]) that includes frequency-dependent gains via conjugation and the effect of competition between plasmid-free and plasmid-containing cells in the absence of selective pressure for plasmid maintenance. Assuming a simple conjugation rate (γ) and a constant plasmid burden (b), the model predicts that plas-
mid spread depends on the magnitudes of γ and b as follows:

\[
\bar{Y} = \frac{e^{(γ−b)X}}{e^{(γ−b)X} + \frac{Y_0}{X_0}}
\]

where \(\bar{Y}\) stands for the proportion of plasmid-containing cells and \(Y_0\) and \(X_0\) indicate, respectively, the proportions of plasmid-
containing and plasmid-free cells at time (t) 0. Exponential de-
dependency results from the fact that transconjugants are also effective plasmid donors; thus, the proportion of plasmid-containing cells progresses geometrically. Results for different γ and b regi-
mens are represented in Fig. 4B, showing situations where the plasmid progresses to invasion (γ > b), is driven to extinction by competition with plasmid-free cells (γ < b), or remains in equi-
librium (γ = b).

To characterize the effect of 2-HDA on plasmid R1drd19 con-
jugation frequency (γ), we measured the burden (b) imposed by the plasmid (see Fig. S5 in the supplemental material). We then monitored plasmid progression at different 2-HDA concentra-
tions, and, by fitting values to equation 1, we were able to extract
the apparent for each 2-HDA concentration used (Fig. 5A). A plot of the apparent values revealed a 50% inhibitory concentration (IC50) of approximately 50 \(\mu\)M 2-HDA (Fig. 5B), equivalent to the IC50 observed in the dose-response assays for plasmid R388 conjugation (Fig. 1B). Overall results indicated that 2-HDA prevented the spread of highly infectious plasmid R1drd19 under conditions that maximize its transfer rate (exponential growth, 1:1 donor-to-recipient ratio). Moreover, given the burden imposed by the plasmid, in the absence of conjugation, the proportion of plasmid-containing cells decayed. This indicates that 2-HDA could be used not only to block plasmid transfer into susceptible cells but also to diminish plasmid prevalence in plasmid-containing populations.

DISCUSSION

The fast spread of AbRs demands effective means to stop, or at least slow down, their dissemination. Whole-cell analysis demonstrated that uFAs are efficient inhibitors of bacterial conjugation (13). However, uFAs obtained from natural sources presented a number of limitations that prevented the characterization of their COIN activity. Stable uFAs with potent COIN activity, such as DHCA, were difficult to obtain from natural sources. Other available uFAs, such as oleic acid and linoleic acid, presented lower COIN activity or were highly unstable due to auto-oxidation (22). Progress in COIN development required inhibitors that were stable and easily obtainable by chemical synthesis.

We have shown in this work that 2-AFAs, simple uFAs that can be synthesized chemically (15–17), possess COIN activity.
them, 2-HDA was the most potent COIN, with an IC₉₈ of 0.3 mM (Fig. 1B), similar to that of natural uFAs (13). As in the case of natural uFAs, 2-HDA inhibited conjugation without disrupting cell growth (Fig. 3B), and 2-HDA was effective against the same range of plasmids (Table 1) (13). Taken together, the data indicate that synthetic 2-AFAs are suitable substitutes for natural uFAs. Because of their synthetic nature, we were able to test the relative levels of importance of different parts of the molecule in its COIN activity. The presence of a carboxylic group and one unsaturation proved to be essential features for COIN activity (Fig. 2; see also Fig. S1 in the supplemental material) (13). The length of the carbon chain was also important, with 16 carbons found to be the optimal length for the aliphatic chain (Fig. 1C). The presence of other triple bonds did not increase COIN activity (2,6-HDA) or even abolished it (2,9-HDA) (Fig. 2B). 2-AFAs are bioactive compounds, with antifungal and even antibacterial activity against certain species (although not against E. coli or the other species tested in this study except, perhaps, V. cholerae). Importantly, most of their bioactive properties display a similar dependency on the chemical features that correlate with potent COIN activity. Antifungal (23), antiprotzoal (15), and antibacterial (16) activities are higher for 2-HDA and 2-ODA, the 2-AFAs that displayed the higher COIN activity (Fig. 1C).

In addition to potency and structural similarities, the shared spectra of action among the discovered COINs (13) (Tables 1 and 2) suggest a common mechanism of inhibition. A general metabolic disturbance of the bacterial cells could be invoked as the cause of inhibition. In favor of this alternative is the fact that high inhibitor concentrations are needed. At these concentrations, COINs might affect overall properties (e.g., fluidity, permeability, structural changes, etc.) of bacterial membranes and, as a consequence, affect the function of a number of membrane proteins (including conjugation proteins). However, two sets of results argue against this alternative. First, certain plasmids but not others were affected by these compounds (Table 1). Second, conjugation is inhibited irrespectively of the bacterial host, among a variety of donors used in different experiments (Fig. 3B; see also Fig. S3 in the supplemental material). Therefore, COINs seem to target the conjugation machinery directly. Indeed, inhibition of R388 conjugation after donor preincubulation with 2-HDA (Fig. 3A) suggests a specific target in the donor cell. Identification of the particular range of plasmids affected could provide valuable insights regarding their mode of action, attending to differences between them. In this respect, it is significant that uFAs affect the function of proteins associated with the bacterial membrane (24–27), many of them being ATPases. Since R388 conjugation requires the active participation of at least five ATPases (TrwB, TrwC, TrwD, Trwk, and StbB) (28), it is possible that uFAs specifically interact with one or several of these proteins. In fact, preliminary biochemical data from our laboratory indicate that the traffic ATPase TrwD, a component of R388 MPF system, is inhibited by linoleic acid (29). Plasmids containing close homologs of TrwD (IncW group and related plasmids in Fig. S4) were also affected by these COINs. On the other hand, plasmid pKM101, which carries a TrwD homolog (TraG) incapable of replacing TrwD for R388 transfer (30), was not affected, as shown in Table 1. These data are consistent with the fact that plasmids mobilized by the affected conjugative plasmids, the main targets of these COINs, are also inhibited (Table 2), since they used the MPF system of their helper plasmid for mobilization. The absence of inhibition in a system where the

MATERIALS AND METHODS

Construction of pJC01. Conjugative plasmid pJC01 was constructed by inserting a gfpmut2 gene into an R388 plasmid (34) as described in Text S1 in the supplemental material (supplemental Materials and Methods).

Synthesis of 2-AFAs and analogs. The synthesis of 2-DDA, 2-TDA, 2-HDA, 2-ODA, and 2-ICA followed an already-published procedure (15–17). 2,6-HDA and 2,9-HDA were prepared as previously described (35). 2-Alkynols, methyl-ester, and tetrahydropyranyl-ether derivatives of 2-HDA and 2-ODA were synthesized as shown in the literature (16, 36).

HTC assay. A whole-cell automated assay for conjugation, based on fluorescence emission in transconjugants cells, was carried out in a Biomek 3000 liquid-handling robot (Beckman Coulter). Donor and recipient strains were grown to the stationary phase in LB broth with appropriate antibiotics. For surface conjugation experiments, donor and recipient cells were concentrated 4-fold and mixed at a 1:1 ratio. After that, 10 µl of each resulting conjugation mixture was spotted onto 96-well microtiter plates (Bioster), previously prepared by adding 150 µl LB 1% agar with 1 mM IPTG (isopropyl-β-D-thiogalactopyranoside) and differ-

Getino et al.

mbio.asm.org September/October 2015 Volume 6 Issue 5 e01032-15

mbio.asm.org on January 4, 2016 - Published by mbio.asm.org

Downloaded from mbio.asm.org on January 4, 2016 - Published by mbio.asm.org
ent COINs. NaBr plates were incubated at 37°C for 6 h to allow conjugation, that is, the transfer of pC10 into the BL21(DE3) recipient strain, where expression of T7 RNA polymerase induced by IPTG triggers green fluorescent protein (GFP) production (see Fig. S6 in the supplemental material). After this time, cells were resuspended in 200 μl M9 broth, and 150 μl of the suspension was transferred to a new plate. The optical density at 60 nm (OD600) and GFP emission of the suspensions were measured in a Victor3 multilabel counter (PerkinElmer). Conjugation frequencies (CF) were estimated as the ratio of absolute fluorescence emitted by transconjugant cells to the OD600 as a measurement of the total number of cells. Relative CF in the presence of a compound was thus determined as a fraction of the CF in the absence of it, adding the same volume of solvent.

Plate conjugation assay. For the plate-mating procedure, a 200-μl mixture of equal volumes of previously washed donor and recipient cultures, with both in stationary phase, was centrifuged and resuspended in 15 μl LB broth. Then, 5 μl of this mixture was placed on top of 96-well microtiter plate wells containing 150 μl LB agar (with or without COINs) and conjugation was allowed to proceed, in general, for 1 h at 37°C. In the case of pSLT, mating was performed for 4 h at 37°C. drR27 was allowed to conjugate at 60 nm (OD600) and GFP emission of the suspensions were measured in a Victor3 multilabel counter (PerkinElmer). Conjugation frequencies (CF) were estimated as the ratio of absolute fluorescence emitted by transconjugant cells to the OD600 as a measurement of the total number of cells. Relative CF in the presence of a compound was thus determined as a fraction of the CF in the absence of it, adding the same volume of solvent.

Statistical analysis. Mean comparison between two different conditions was carried out by using the t test tool from Prism (v 5.0) biostatistics software (GraphPad, San Diego, CA).

Phylogeny tree construction. A phylogeny tree of MOB_{31} family relaxases was constructed by using the neighbor-joining tool of MEGA5 (37).

SUPPLEMENTAL MATERIAL

ACKNOWLEDGMENTS
The work performed by the F.D.L.C. group was supported by grants BFI/2011-26608 from the Spanish Ministry of Economy and Competitiveness and 612146/FP7-ICT-2013-10 and 282004/FP7-HEALTH-2011-2.3.1.2 from the European Seventh Framework Programme. The work performed by M.G. was supported by a Ph.D. fellowship from the University of Cantabria. The work performed by D.J.S.-R. was supported by the National Center for Research Resources and the National Institute of General Medical Sciences of the National Institutes of Health through grant no. 5P20GM103475-13 and the Interamerican University of Puerto Rico. The work performed by J.C.-G. was supported by an EMBO post-doctoral fellowship, ASTF 402-2010. The work performed by Biomar Microtechnologies was supported by grant 282004/FP7-HEALTH-2011-2.3.1.2 from the European Seventh Framework Programme.

REFERENCES

