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Abstract

The evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA
genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage
over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a
proper viral model system. Here we present a study with a stable segmented bipartite RNA virus and its ancestor non-
segmented counterpart, in an identical genomic nucleotide sequence context. Results of RNA replication, protein
expression, competition experiments, and inactivation of infectious particles point to a non-replicative trait, the particle
stability, as the main driver of fitness gain of segmented genomes. Accordingly, measurements of the volume occupation of
the genome inside viral capsids indicate that packaging shorter genomes involves a relaxation of the packaging density that
is energetically favourable. The empirical observations are used to design a computational model that predicts the existence
of a critical multiplicity of infection for domination of segmented over standard types. Our experiments suggest that viral
segmented genomes may have arisen as a molecular solution for the trade-off between genome length and particle
stability. Genome segmentation allows maximizing the genetic content without the detrimental effect in stability derived
from incresing genome length.
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Introduction

A biological clone of foot-and-mouth disease virus (FMDV),

termed C-S8c1, evolved in BHK-21 cell culture infections at high

multiplicity of infection (MOI), towards a population dominated

by defective genomic forms that were infectious by complemen-

tation in the absence of standard size (ST) genomes [1] (Figure 1

and Figure S1). By passage 260, the population (C-S8p260) was

composed mainly of two classes of genomes that included internal

in-frame deletions, D417 plus D999 and the minority genome

D1017 (with deletions of 417, 999 and 1017 nucleotides,

respectively, at the capsid-coding region). ST genomes were not

detected in C-S8p260, and it was estimated that their frequency in

C-S8p260 was lower than 1024-fold the frequency of genomes

with deletions. The segmented genome version was stable at least

up to passage 460 at high MOI. However, when population C-

S8p260 was subjected to low-MOI infections, that impeded

coinfection of cells by the complementing genome classes, a ST

genome termed C-S8p260p3d was selected as a result of

recombination between D417 and D999 RNAs (Figure S1) [2].

The dominance of a population of complementing defective

genomes that did not require ST genomes for replication was

regarded as the first step of an evolutionary transition towards viral

genome segmentation, an event likely to have occurred at some

point of the evolutionary history of RNA viruses [1,3–6]. A critical

question in the displacement of a ST genome by defective,

complementing genomes, is the molecular basis that underlies the

superiority of the segmented forms over the ST genome. As C-

S8p260 and C-S8p260p3d share a common genetic background

(similar set of point mutations relative to the parental C-S8c1), this

dual viral system constitutes a suitable model to address this

fundamental question [2].

Here we provide evidence that the segmented C-S8p260 is

endowed with a non replicative advantage over its unsegmented

counterpart C-S8p260p3d that does not reside in the rate of either

RNA genome replication or of virus-specific protein synthesis.

Unexpectedly, an increased virion stability conferred a higher

specific infectivity and longer lifespan on the segmented virus.

Results

Fitness advantage of the segmented FMDV genome
The relative fitness advantage that led to dominance of the

segmented population C-S8p260 over its ST ancestor was
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determined using virus-competition assays between C-S8p260 and

C-S8p260p3d, or each in competition with C9
22L150, another C-

S8c1-derived clone of lower fitness (see Materials and Methods).

Additionally, C-S8p260 was competed against the ST population

derived from passage 460 (C-S8p460p5d) [2]. The results (Table 1

and Figure 2) indicate that population C-S8p260 displayed a two-

fold higher fitness (or relative selection coefficient, see Materials

and Methods) than C-S8p260p3d and C-S8p460p5d. Both, C-

S8p260 and C-S8p260p3d won their respective competitions

against C9
22L150, but C-S8p260 displayed a 1.7-fold higher fitness

than C-S8p260p3d. The outcome of these competitions strongly

suggests that the segmented genetic system confers approximately

a two-fold additional fitness advantage (relative to the correspond-

ing unsegmented genome version), in agreement with its reaching

dominance in the C-S8c1 lineage.

Kinetics of RNA synthesis
To identify the step of the virus life cycle that was associated with

the fitness advantage of C-S8p260 over C-S8p260p3d, the

intracellular and extracellular concentrations of viral RNA, in the

course of infections with both viruses, were determined. BHK-21

cells were infected at a MOI of 20 PFU/cell, in order to maintain

the coinfection of cells by the two components of C-S8p260, and to

restrict the measurements to a single round of cell infections. In

independent infections carried out in parallel (Figure 3A), C-S8p260

and C-S8p260p3d did not differ significantly in their exponential

increase of intracellular viral RNA. Their respective growth rate

constants (see Materials and Methods) were rC-S8p260 = 0.06560.007

RNA molecules/cell?min and rC-S8p260p3d = 0.05460.006 mole-

cules/cell?min (ANOVA, F1,12 = 1.29, p = 0.278). To test whether

the selective advantage of C-S8p260 was manifested only upon

coinfection with the unsegmented form, the specific RNA

concentrations of C-S8p260 and C-S8p260p3d were measured in

cells coinfected at high-MOI at the stages of cell entry (Figure 3B),

intracellular replication (Figure 3C), and virus release to the

extracellular medium (Figure 3D). Both types of RNA were rapidly

Figure 1. Schematic representation of the segmented and ST virus. The illustration shows the requirement of double infection for
complementation and progeny production by the segmented FMDV population C-S8p260, but not by its ST derivative C-S8p260p3d [1,2]. A scheme
of the FMDV genome with indication of the four main coding regions (L, P1, P2, P3) and the position of the internal deletions (D, black boxes) is
drawn for each genotype.
doi:10.1371/journal.pgen.1001344.g001

Author Summary

Genome segmentation, the splitting of a linear genome
into two or more segments, is a major evolutionary
transition from independent towards complementing
transmission of genetic information. Many viruses with
RNA as genetic material have segmented genomes, but
the molecular forces behind genome segmentation are
unknown. We have used foot-and-mouth disease virus to
address this question, because this non-segmented RNA
virus became segmented into two RNAs when it was
extensively propagated in cell culture. This made possible
a comparison of the segmented form (with two shorter
RNAs enclosed into separate viral particles) with its exactly
matching non-segmented counterpart. The results show
that the advantage of the segmented form lies in the
higher stability of the particles that enclose the shorter
RNA, and not in any difference in the rate of RNA synthesis
or expression of the genetic material. Genome segmenta-
tion may have arisen as a molecular mechanism to
overcome the trade-off between genomic content and
particle stability. It allows optimizing the amount of
genetic information while relaxing packaging density.

Evolution of Viral Genome Segmentation
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uptaken by the BHK-21 cells, following application of the viruses to

the cells (Figure 3B), and then the intracellular viral RNA levels

increased rapidly and reached a maximum at 15 minutes post-

infection (pi). The viral RNA levels remained approximately

constant up to minute 60 pi, and then they increased exponentially.

The uptake process was parallel for the two viruses. A similar result

was observed upon measurement of the intracellular level of the two

types of RNA during the exponential growth phase (Figure 3C). The

slope of the exponential increase of intracellular RNA was parallel:

the genomic intracellular RNA of C-S8p260 and C-S8p260p3d

increased at a rate rC-S8p260 = 0.05060.004 RNA molecules/cell?min

and rC-S8p260p3d = 0.06460.008 molecules/cell?min , respectively

(F1.26 = 2.38, p = 0.13, Figure 3C). The same culture samples were

used to measure the release of viral RNA into the extracellular

culture medium (Figure 3D). The results show that beginning at

minute 135 pi, the concentration of extracellular viral RNA

increased very rapidly at a similar rate of rC-S8p260 = 0.07660.008

RNA molecules/cell?min and rC-S8p260p3d = 0.09660.010 molecules/

cell?min (F1.26 = 2.59, p = 0.12). RNA samples were treated with

RNase A (under the assumption that encapsidated RNA is RNase-

resistant and non-encapsidated RNA is RNase-sensitive [7]), prior to

the specific quantification of the two types of RNA. The treatment

did not alter the measurements significantly (see Materials and

Methods). Thus, the segmented and unsegmented forms of FMDV

followed parallel kinetics of RNA synthesis, not only at the early steps

of infection, but also during genome replication and release of RNA

from the cell.

Kinetics of viral protein synthesis
The synthesis of viral proteins was analyzed at different times

post-electroporation of BHK-21 cells with either RNA transcribed

from plasmid pMT260p3d (that gives rise to C-S8p260p3d) or

with an equimolar mixture of RNA obtained from plasmids

pMT260D417ns and pMT260D999ns (that give rise to C-

S8p260), constructed as described in Text S1 (Figure 3E, 3F and

Figure S2). Electroporated and mock-electroporated cells were

metabolically labeled with [35S]Met-Cys, protein expression was

monitored every 30 minutes, between 1.5 and 4.5 hours post-

electroporation, and the proteins were resolved by SDS-PAGE

and fluorography (Figure 3E). The analysis revealed a parallel

expression kinetics of viral proteins, with few minor differences. In

both cases, the maximum level of viral proteins was detected

between 2 and 2.5 hours post-electroporation (Figure 3E, 3F). The

expression of structural proteins VP1 and VP3 was lower in cells

electroporated with RNA transcripts pMT260D417ns and

pMT260D999ns than in cells electroporated with pMT260p3d.

This may be a consequence of the deletion in pMT260D999ns

that affects both the VP1 and VP3-coding regions. The kinetics of

expression of non-structural proteins followed parallel curves

during the time of the measurements, as determined by the label

present in 3D and 3CD (Figure 3F). The results exclude that the

selective advantage of population C-S8p260 can be due to faster

kinetics in viral protein expression.

Specific infectivity and its relationship to fitness
To determine whether C-S8p260 and C-S8p260p3d displayed

different specific infectivity (see Materials and Methods), viral

genomic RNA molecules and infectivity (PFU/ml) were measured

in both populations. Viral RNA production was 2.862.1 higher in

C-S8p260p3d population relative to C-S8p260 population (re-

peated measures ANOVA: F1,8 = 17.53, p,0.01, Table 2). In

agreement with this result, the production of viral particles was

two-fold higher for C-S8p260p3d than for C-S8p260, as

previously measured by quantitative electron microscopy [1].

Since both viruses, however, showed no differences in viral titer

production (ANOVA: F1,12 = 0.0018, p = 0.97, Table 2), the

specific infectivity of C-S8p260 is 2.6-fold higher than that of C-

S8p260p3d. Of note, this difference coincides with the fitness

differences between C-S8p260 and C-S8p260p3d (compare

Table 1).

The ratio between the specific infectivities of C-S8p260 and C-

S8p260p3d was additionally determined by using an alternative

approach based on estimating the proportion of genomes that

enter the cell for a given initial inoculum [8]. The ratio of C-

S8p260 to C-S8p260p3d genomic RNA was measured in a

mixture prepared with equal PFUs of C-S8p260 and C-

S8p260p3d. Then, BHK-21 cells were infected with the mixture,

and the ratio of segmented to ST RNA was determined

60 minutes after infection (before the onset of exponential

replication). When complete cytopathic effect was reached, the

ratio of the two types of RNA was measured again. The resulting

cell lysate was used to infect new BHK-21 cells, and the process

repeated to attain a total of three sequential cell entry events

(Figure 4). The ratio of C-S8p260 to C-S8p260p3d RNA varied in

a step-wise fashion, with 2-fold increases occurring only between

each infection and the corresponding virus entry inside the cell.

The magnitude of the step-wise increases confirmed the difference

in specific infectivity between the two viruses (compare Figure 4

and Table 2). The ratio of the amount of the two types of RNA

remained constant from each cell entry event up to the

corresponding cell lysis, in agreement with the results of viral

RNA kinetics (compare Figure 4 and Figure 3). The results

strongly suggest that the viral population with the segmented

genome is more infectious than the population with the ST

genome. Upon elimination of the ‘‘Entry’’ points from the data in

Figure 4, a graph coincident with that of a standard fitness

determination is obtained (inset in Figure 4), which again indicates

a two-fold higher fitness of C-S8p260 relative to C-S8p260p3d.

Comparison of virion stability
To investigate whether the increase of specific infectivity in the

segmented-genome FMDV population could be attributed to an

increase in the stability of the viral particles, the loss of infectivity of

C-S8p260 and C-S8p260p3d at 37uC was quantitated. The results

(Figure 5) show that the inactivation rate constant (see Materials and

Methods) of C-S8p260 was k = 0.015660.0005 min21 (correspond-

Table 1. Relative fitness values obtained from virus
competition experiments.

C-S8p260p3d C-S8p460p5d C9
22L150 C-S8p460

C-S8p260 2.560.005*

2.560.15a**
2.260.12** 3.560.1* [C-S8p460b]p.d.

C-S8p260p3d – n.d. 2.060.15** n.d.

Viruses in the first column were competed against the viruses indicated in the
first row. The values correspond to the viruses listed in the first column and
represent an estimation of the selection coefficient for one strain relative to the
other (see Materials and Methods).
aThis competition was carried out using the ratio 1:1 of C-S8p260 over C-
S8p260p3d.
bp.d., previous determination. The selective advantage of C-S8p460 over C-
S8p260 was previously documented by nucleotide sequence of the population
that resulted after a competition between the two viruses [2].
n.d., not determined.
Null hypothesis rejection,
*T-Student, p,0.01,
**T-Student, p,0.05.
doi:10.1371/journal.pgen.1001344.t001

Evolution of Viral Genome Segmentation
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ing to a half-life of 44 min), while the inactivation rate constant of C-

S8p260p3d was k = 0.019060.0007 min21 (corresponding to a

half-life of 33 min), a statistically significant difference (ANOVA,

F1.25 = 14.47, p,0.001). It must be noticed that both rates represent

an extremely fast kinetics of infectivity decay, a well known feature

of FMDV [9].

To establish a link between the stability of viral particles and the

observed relationship of the fitness and infectivity differences

between C-S8p260 and C-S8p260p3d, the infectivity of both

populations was monitored again using the step-wise RNA level

technique (described in Figure 4). Between the first and the second

round of infection (that is, after the lysis event), the viral population

was incubated for one additional hour at 37uC. The results

indicate that the incubation at 37uC accentuated the increased

infectivity of C-S8p260 relative to C-S8p260p3d (Figure 5C).

Thus, measurements of specific infectivity, virion stability, and

the analysis of different steps involved in the virus life cycle suggest

that increased stability of the particles harboring RNA with

internal deletions is the phenotypic trait that conferred a selective

advantage of the segmented virus over its ST counterpart.

Figure 2. Growth-competition between FMDV mutants. At each time point (passage number), the ratio of RNA genomic molecules between
the two competing viruses is represented. The data has been fitted to normalized exponential equations: (X), left panel, C-S8p260/C-S8p260p3d
ratio 1:1, y = 1.1?e0.926, R2 = 0,92; right panel C-S8p260/C-S8p260p3d ratio 1:1000, y = 0,73?e0.906, R2 = 0,98; (m), C-S8p260/C9

22L150: y = 16.5?e1.2516,
R2 = 0,97; (&), C-S8p260p3d/C9

22L150: y = 1,74?e0.7016, R2 = 0,84; (#), C-S8p260/C-S8p460p5d: y = 2.16?e0.786, R2 = 0,87. The results of fitness
determinations are given in Table 1.
doi:10.1371/journal.pgen.1001344.g002

Evolution of Viral Genome Segmentation
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Figure 3. Replication kinetics of C-S8p260 (segmented) and C-S8p260p3d (ST) FMDV in BHK-21 cells. Cells were infected at a MOI of
20 PFU/cell. A to D) At different times after infection, the intracellular or extracellular concentration of genomic viral RNA (normalized to the number
of cells) was determined. A) Intracellular concentration of viral RNA in two independent infections carried out in parallel; each value represents the
average of two determinations. The data have been fitted to an exponential curve: C-S8p260: 4.8?102?e0.0656, R2 = 0.94; C-S8p260p3d :8.9?102?6e0.0546;
R2 = 0.92. In B to D, BHK-21 cells were coinfected with the two viruses (C-S8p260 and C-S8p260p3d), at a MOI of 20 PFU/cell, and viral RNA was
quantified as follows (symbols are as in A): B) Intracellular concentration of viral RNA in the course of virus entry into the cell. C) Intracellular viral RNA
concentration during the exponential replication phase. D) Extracellular concentration of RNA measured in the cell culture supernatant obtained in
the infection represented in C). In B–D the determinations were carried out from triplicate experiments (average values and standard deviation are
shown). E) Electrophoretic analysis of 35S-labeled proteins extracted from BHK-21 cells electroporated with FMDV RNAs. BHK-21 cells were either
mock-electroporated (BHK lanes) or electroporated with transcripts from either pMT260p3d or a mixture of viral transcripts from pMT260D417ns and
pMT260D999ns (which give rise to C-S8p260p3d and C-S8p260, respectively; see Figure S2). Parallel cultures were pulse-labeled with [35S]Met/Cys for
30 min., at different times after 1 h post-electroporation, as indicated above each lane, and analyzed by PAGE, as described in Materials and Methods.
The amount of cellular proteins was monitored by the relative amount of actin, visualized by Western-blot using a specific monoclonal antibody

Evolution of Viral Genome Segmentation
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Computational model
The empirical observations described can be synthesized in a

simple computational model summarized in Figure 6. The standard

type is termed population S, and the two complementing defective

viruses are generically termed populations A (C-S8p260D417) and

B (C-S8p260D999). Experiments on the kinetics of RNA and

protein synthesis indicate that, in the replicative period inside the

cell, particles of either type (S, A, or B) replicate at the same rate,

conditional on at least one of their complementing counterparts

being present for classes A and B. This condition is implemented as

follows. Suppose that, initially, a cell holds nS, nA and nB particles of

types S, A, and B, respectively. After replication, the viral

population is formed by r6MA particles of type A, r6MB particles

of type B, and r6nS particles of type S, where MA is the smallest

quantity of nS+nB and nA, and MB is the smallest quantity of nS+nA

and nB. On the other hand, experiments on specific infectivity and

virion stability show that the segmented population is more

infectious (due to its higher stability) than the standard counterpart.

This is implemented as a decay factor dS,1 that reduces the total

number of S infective particles between replicative periods. In the

particular case of the current experiments, a value of 0.47 can be

estimated for the decay factor dS (see Text S1). Those two steps

(replication at the same rate and differential infection) quantify the

process described in Figure 4. Finally, the average number of

particles that infect cells is a constant m that stands for the MOI in

the experimental system. In the experiments where the defective

complementary form displaces S, m = 20 has been used. The two

key parameters are m and dS, which represent antagonistic selection

pressures. At low m, S populations are at an advantage because

complementation is rare, while high m benefits segmented forms.

However, the latter would be unable to displace the S population if

both types were equally infectious. The increase in viral infectivity is

truly beneficial for a value of m high enough that replication is not

strongly limited by complementation. This is the behavior

summarized in Figure 6, where the two different outcomes of the

competition as a function of m and dS are shown. Above a critical

line of m values, there is co-dominance of standard and defective

populations, while below that line the S population disappears.

The model correctly predicts that the standard form will be

displaced by the complementary, defective population in the

experimental situation (see Figure 6B), where the pair

(dS, m) = (0.47, 20). It is important to emphasize that this result is

independent of the fractions of S, A, and B present at the outset of

the experiment or in the computational initial condition.

Moreover, the inverse of the decay corresponds to the stepwise

increase in the frequency of each virus, as displayed in Figure 4:

ds
{1~1=0:47~2:1. This value is in good agreement with

empirical findings (see model prediction in Figure 4).

Discussion

Genome segmentation is a major evolutionary transition from

independent towards complementing transmission of genetic

information. Two main proposals for the evolutionary advantage

of genome segmentation have been made on the basis of

theoretical studies. One is that genome segmentation is a form

of sex that counteracts the effect of deleterious mutations [5,10].

Another, not mutually exclusive but mechanistic proposal, is that

genome segmentation may ensue from the selection of shorter

RNA molecules whose replication is completed in a shorter time

than replication of the corresponding full length genome [3,6].

Evidence supporting selection for deleted RNA was obtained in

experiments involving in vitro replication of Qb RNA, without the

requirement to express viral proteins or to produce infectious

particles [11,12]. In the case of FMDV there is no evidence of an

advantage of the segmented over ST genome at the stage of RNA

genome replication, protein expression or production of infectious

virus, in agreement with previous descriptions for positive strand

defective viruses [13,14]. The lack of replicative advantage of C-

S8p260 is also reflected in the fact that the segmented virus had a

constant two-fold additional fitness advantage, over the ST virus,

independently of the genetic background of the competitor virus.

Thus, all evidences point towards a non-replicative trait, virion

stability, behind the selective advantage of the genome version

with internal deletions. The slower inactivation rate of the

segmented virus correlates with the difference of specific infectivity

between C-S8p260 and C-S8p260p3d, and such a difference is, in

Table 2. Specific infectivity of FMDV populations C-S8p260 and C-S8p260p3d.

Viral genomic RNA (molecules/ml
supernatant)

Viral particles/ml
supernatantb Viral titer (PFU/ml)c Specific infectivityd

C-S8p260p3d (9.560.8)61011a (1.560.6)6109 (2.261.0)6108 2.461024

C-S8p260 (3.661.7)61011a (5.560.8)6108 (2.261.4)6108 6.361024

Ratio C-S8p260/C-S8p260p3de 2.660.47 (2.862.1)f 2.7360.42 160.4 0.38 (2.6)g

aTotal viral RNA was measured in the supernatant of infected BHK-21 cells, when complete cytopathic effect was reached. Each value represents the mean and standard
deviation of three independent determinations.
bThese values were determined by quantitative electronic microscopy of purified viral stocks. Each value represents the mean and standard deviation of ten
independent determinations.
a,bThese values were reported in [1].
cMean and standard deviation of 5 independent determinations.
dRatio between viral genomic RNA molecules and viral titer.
eRatio between values in the two first rows.
fIn brackets, the average of seven additional determinations of the ratio between C-S8p260 RNA and C-S8p260p3d RNA is given.
gThe inverse of 0.38 is given in brackets.
doi:10.1371/journal.pgen.1001344.t002

(actin panels). F) The amount of viral proteins VP3, VP1, 3D and 3CD (in arbitrary units) at each time point was determined by densitometric scanning
of the corresponding protein bands, and normalized to the concentration of actin (top panels). Values were added sequentially at each time point to
obtain the accumulated level of viral protein (bottom panels).
doi:10.1371/journal.pgen.1001344.g003
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turn, at the origin of the fitness difference. Due to the exponential

nature of the infectivity decay [15], even a modest increase in

virion stability can account for the enrichment of the population in

the more stable forms [13]. The implementation of the model with

the actual values of the MOI and decay rates (see Text S1),

estimated for the segmented and ST viruses, predicted a decay

value (ds) in the parameter space where the ST virus is driven to

extinction. The inverse of this decay value (d{1
s ~2:1) represents

the relative increase per infection of the ST virus. This value

confirms that the increased stability of the segmented virus can

account for the differences in fitness, specific infectivity, and the

step-wise dynamics observed (2.5, 2.6, and 1.9, respectively). The

model also explores the limits imposed by the MOI on the

complementing system, and predicts the minimal MOI required

for the segmented forms to displace the ST virus.

The molecular basis for the higher thermal stability and fitness

of the Infectious C-S8p260 population relative to the ST virus is

unclear. However, some evidence indicates that thermal inactiva-

tion of FMDV may be due to a conformational change in the

virion [9]. We suggest that the amount of RNA inside the virion

may Influence the kinetic barrier of the inactivation process

because of packaging considerations. The volume occupied per

unit mass (Vm) [16] of full-length RNA inside the FMDV virion is

about Vm = 1.95 Å3/Da (see calculation of the RNA packaging

density in the Text S1). This corresponds to a very high packing

density, slightly higher than that of RNA in a molecular crystal

(about 2.1 Å3/Da), and substantially higher than the density of

other icosahedral RNA viruses [17]. This measurement implies

that genomes inside the capsid may be partially dehydrated.

Packaging 5%–12% shorter RNAs (in the C-S8p260 virions)

Figure 4. Dissection of the competition between C-S8p260 and C-S8p260p3d throughout sequential infectious cycles. BHK-21 cells
were infected at a final MOI 20 PFU/cell with equal PFU of C-S8p260 and C-S8p260p3d. Each point of the black line represents the average and
standard deviation of the ratio of genomic C-S8p260 and C-S8p260p3d RNA molecules, in five independent infections (except for the initial inoculum
which was measured in three infections). In the abscissa, ‘‘Inoculum’’ is the ratio of the two RNAs in the viral stock used in the experiment. ‘‘Entry 1’’ is
the RNA ratio at 60 minutes post-inoculation. ‘‘Lysis1’’ is the RNA ratio after complete cytopathic effect. The virus obtained from ‘‘Lysis 1’’ was used as
the inoculum to perform the next infection which produced ‘‘Entry 2’’ and ‘‘Lysis 2’’. The infection to produce ‘‘Entry 3’’ was carried out with the virus
obtained from ‘‘Lysis 2’’. The numbers adjacent to the lines indicate the increase in frequency of the genotype C-S8p260 at the corresponding step.
The grey line was constructed by estimating the differential decay (ds

21) of the two viruses (see Text S1) during the time frame of one infection; the
line assumes the same initial (inoculum) value and the same replication rate between ‘‘Entry’’ and ‘‘Lysis’’ points determined experimentally. The inset
graph represents the exponential fit of the ratios obtained for ‘‘Inoculum’’ (In.), ‘‘Lysis 1’’ (Lys.1), and ‘‘Lysis 2’’ (Lys.2) from the black line. The relative
fitness value calculated from this plot is 1.9. Procedures are detailed in Materials and Methods.
doi:10.1371/journal.pgen.1001344.g004
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would lead to Vm values of about 2.05 Å3/Da–2.20 Å3/Da, and

thus may involve no dehydration. Based on these estimates, and

ignoring other energetic effects on RNA packaging which are

more difficult to predict, one could surmise that C-S8p260 virions

would be at an energetically lower state than the ST virions

harboring longer RNAs. The extra energy needed to trigger the

putative conformational rearrangement that may lead to FMDV

inactivation could be higher for the C-S8p260 virions than for the

ST virions, rendering C-S8p260 virions more resistant to thermal

inactivation, as experimentally observed. Accordingly, an increase

in the length of an internal oligoadenylate tract in the viral RNA

was shown to have a negative effect on FMDV fitness [18], and

thermal stability [19]. Thus, variations of the RNA length could

destabilize or stabilize the infectious virion conformation by

reducing or increasing thermostability and fitness because of

excessive RNA packing density, or by relaxing the RNA packaging

Figure 5. Decay of infectivity of FMDV particles. A) Equal volumes of C-S8p260p3d and C-S8p260 were incubated for two hours at 37uC or 0uC.
The mean infectivity and standard error of triplicate experiments are plotted. B) Equal volumes of C-S8p260 and C-S8p260p3d were incubated at
37uC. Virus infectivity was determined, and plotted as a function of time. The decay of viral titer over time was fitted to a single exponential curve and
the inactivation rate constant obtained. The equations that define the decay curves are: C-S8p260: y = 4?107?e20.91?t, R2 = 0.995; C-S8p260p3d:
y = 4?107?e21.19?t, R2 = 0.982. C) BHK-21 cells were infected with equal number of PFUs of C-S8p260 and C-S8p260p3d, and the ratio of the two types
of genomic RNA molecules was determined. ‘‘Inoculum 1’’ gives the RNA ratio in the viral stock used in the experiment. ‘‘Entry 1’’ indicates the RNA
ratio at 60 minutes post-infection. When the cells reached complete cytopathic effect (‘‘Lysis 1’’), the supernatant was kept one additional hour at
37uC (350 minutes from the inoculation time). This supernatant corresponds to ‘‘Inoculum 2’’ and it was used to perform the next infection. ‘‘Entry 2’’
was measured after 60 minutes of infection with ‘‘Inoculum 2’’. Results are the average of 3 determinations, and standard deviations are given.
Procedures are described in Materials and Methods.
doi:10.1371/journal.pgen.1001344.g005

Figure 6. Computational model for the competition between ST and segmented forms. A cell is infected by m viral particles. All particles
replicate inside the cell at the same rate r, conditional on having complementary partners in case they are defective. In the example shown, the
replication of population A is limited by the presence of only three particles (one of type B and two standard) able to complement them. This
replication process is repeated in N cells, and the total viral populations are summed up (not specified in this scheme). Before the process starts anew,
the total standard population is reduced by a factor ds, thus mimicking differential decay. For each cell at the next passage, a subset of m particles is
randomly chosen among those remaining, and the process is repeated. B) The process described in A) has been iterated for 1000 passages. After that
time, the composition of the population was analyzed. Triangles represent numerical results and indicate those parameter values where the
composition changes from co-dominance (types A, B, and S present, above the triangles) to extinction of S (below); the line is a fit to the numerical
data that yields the approximate relationship ds = 12m(21/2). C) Two representative examples of the kinetics of the ratio between the abundance of
the population A and population S in the situations of extinction of the standard type (open circles in the upper curve correspond to the lower region
in (A); ds = 0.5) and of co-dominance (solid circles in the lower curve are representantive of the upper domain in (A); ds = 0.85). Each curve yields the
dynamics of the two points highlighted in (A) for m = 8, and the values of ds are as indicated. In the co-dominance region, the fraction of A and S
abundances reaches a constant value; in the region where the S form becomes extinct, the abundance of A relative to S grows exponentially fast in
successive passages until S is eventually displaced.
doi:10.1371/journal.pgen.1001344.g006
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constraints, respectively. Packaging constraints of genome length

in icosahedral viruses have been previously described, including

adenovirus vectors [20] or the strongly pressurized capsids of some

double-stranded DNA viruses [21]. A study including multiple

DNA and RNA bacteriophages concluded that genome packaging

density was negatively correlated with virus stability [22]. Gene

overlapping in viruses is thought to have evolved as a consequence

of physical constraints of genome length in the capsid [23].

Accordingly, our results contribute a new model for the fitness

advantage of RNA genome segmentation, a key evolutionary

transition in RNA genetics. We propose that segmentation is a

molecular solution that counteracts the trade-off between capsid

stability and genome length in geometrically constrained viral

particles. The relaxation of the genome packaging of segmented

genomes maximizes the genetic content in the virion without the

associated loss of particle stability.

Materials and Methods

Cells, viruses, and infections
The origin of baby hamster kidney 21 (BHK-21) cells and

procedures for cell growth, infection of cell monolayers with

FMDV in liquid medium, and for plaque assays in semisolid agar

medium have been previously described [18,24]. FMDV C-S8c1 is

a plaque-purified virus of natural isolate C1 Santa-Pau Spain 70

[24]. FMDV C-S8p260 and C-S8p460 are the viral populations

obtained after 260 and 460 serial cytolytic passages, respectively,

of C-S8c1 at high MOI in BHK-21 cells (26106 BHK-21 cells

infected with the virus contained in 200 ml of the supernatant from

the previous infection, that include about 2?106 to 4?107 PFU)

(Figure S1) [1,2]. FMDV C-S8p260p3d and C-S8p460p5d are the

viral populations obtained after three serial cytolytic passages of C-

S8p260 and five serial cytolytic passages of C-S8p460, respective-

ly, at low MOI in BHK-21 cells (26106 BHK-21 cells infected

with 200 ml of a 1023 dilution of the supernatant from the previous

infection; MOI of about 1023 PFU/cell) [1,2]. FMDV C9
22L150

was obtained after 150 population passages of clone C9
22 (a

subclone of C-S8c1 p2) in BHK-21 cells (MOI of 0.1–10 PFU/

cell) [25]. The production of lytic plaques (used to determine the

viral titer) in a population of complementing viruses follows a two-

hit kinetics as described in [26] and in the Text S1.

RNA quantification, cDNA synthesis, PCR amplification,
and nucleotide sequencing

Viral RNA was extracted from the viral samples using Trizol

(Invitrogen). Intracellular RNA was extracted by direct addition of

Trizol to the cell monolayer, after removing the cell culture

medium. RNA was quantified by real-time RT-PCR with the

Light Cycler instrument (Roche) using the Light Cycler RNA

Master kit (Roche), as previously described [27]. Purified RNA

from FMDV C-S8p260p3d or pMT260D999ns was used as

standard. Reverse transcription was performed with AMV reverse

transcriptase (Promega), and PCR amplification was carried out

using Ampli-Taq polymerase (Perkin-Elmer), as specified by the

manufacturers. The pairs of sense and antisense oligonucleotides,

respectively, that amplify specific viruses are the following: C-

S8p260p3d, 59-CTACCCATGGACGCCAGACCCG-39 (sense)/

59-GTGTTGGTTGTGTGTGCAG-39 (antisense); C-S8p260,

59-CACGAATTCACGGGCAAAGGCTACTGG-39 (sense)/59-

GAGAAGAAGAAGGGCCCAGGGTTG-39 (antisense).

RNase A treatment
When necessary, the supernatants of infected cells were treated

for 1 hour with 1 mg/ml of pancreatic RNase A as previously

described [7], to eliminate non-encapsidated RNAs. Six indepen-

dent samples of the supernatant of BHK-21 cells coinfected by C-

S8p260 and C-S8p260p3d were either untreated or treated with

RNase, prior to the specific quantification of the two types of RNA

by real-time RT-PCR, as described in [7]. The ratio of segmented

to unsegmented genomic RNA was 1,2361,11 in RNase A-treated

and 1,6460,49 in untreated samples. Thus, no significant

differences (ANOVA, F1.10 = 0.68, p.0.43) could be detected

between the amounts of encapsidated and non-encapsidated

genomic RNA released into the culture medium by the segmented

and ST viruses.

Specific infectivity is defined as the ratio between the number of

infectious viruses, measured in PFUs, and the total amount of viral

RNA, determined by quantitative RT-PCR.

Kinetics of viral RNA synthesis
BHK-21 monolayers of 5?105 cells were infected in parallel with

1?107 PFU of C-S8p260, C-S8p260p3d or the mixture of both (a

total of 2?107 PFU). At each specific time point, at least three

plates were withdrawn for the determination of intracellular and

extracellular FMDV RNA. The RNA values obtained were

normalized to the number of cells. The increase of the amount of

viral RNA over time was fitted to the equation: x(t) = x0?e(r?t), where

r is the growth rate constant measured in RNA molecules/passage.

During coinfections, the concentration of C-S8p260 was measured

by RT-PCR amplification using primers that specifically amplify

the genome harboring deletion D999. Since this genome has been

estimated in a proportion of 40% in the C-S8p260 population [1],

viral RNA of C-S8p260 population has been calculated as 2.5

times the concentration of D999 RNA.

Protein analysis and fluorography
Viral protein synthesis was analysed by metabolic pulse-

labelling with [35S] Met-Cys, followed by SDS-PAGE electropho-

resis and fluorography. Proteins were labelled by the addition of

60 mCi of [35S] Met-Cys (Amersham) per ml in methionine-free

DMEM. Fluorography, autoradiography and western blot proce-

dures of the gels were carried out as previously described [28]. The

amount of actin in the sample was determined using anti-b-actin

MAb AC-15 (Sigma), and corresponded to a concentration of

protein in the linear region of the relationship between the western

blot signal and the protein concentration. FMDV-specific proteins

were identified using MAbs [29], as previously described [30].

Virus growth-competition assays
Growth-competitions between two viruses in BHK-21 cells were

carried out as previously described [25], with minor modifications.

A cell monolayer is infected with a mixture of a problem and

reference virus in a proportion of 1:1000 (unless otherwise stated)

and at a MOI = 10–20. When the complete cytopathic effect is

reached the supernatant (containing the virus) is collected and used

for a new infection. The fitness of several clones used in the present

study is considerably high. Moreover, fitness determination of a

multipartite virus does not have a standardized protocol. Using the

ratio 1:1000 allows performing 6 to 8 serial infections (the typical

number being 3 to 4) before the exponential variation of the

genotypes frequency reaches a saturation point. The exponential

increase of the proportion of the problem genomes is fitted to an

exponential curve. The slope of the curve gives the selection

coefficient for one strain relative to the other [31]. This value is

often used in virology as a measure of the relative fitness [32]. The

proportion of the two genomes at different passages was

determined by specific real-time RT-PCR. The equations for
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each competition and fitness values are given in the legend of

Figure 2 and in Table 1, respectively.

Measurements of infectivity decay
Equal volumes of viral samples of C-S8p260 and C-S8p260p3d

were incubated at 37uC and aliquots were collected at different

time points and rapidly chilled to 0uC. Viral titer decay as a

function of time was determined and fitted to an exponential curve

following the equation: viral titer (at time t) = viral titer (at time t = 0) ?

e2k?t, where k(h21) is the inactivation rate constant of the infectious

FMDV virion [33]. The equations that define the inactivation rate

and the average life of the segmented and ST viruses are given in

the legend of Figure 5.

Statistical analysis
One Way ANOVA were calculated using the Statistica 6.0

software package (StatSoft 2001).

Supporting Information

Figure S1 FMDV genome and position of internal deletions

identified upon passage of biological clone C-S8c1 in BHK-21

cells. A) Scheme of the FMDV genome (C-S8c1 or its infectious

transcript pMT28), with non-coding regions depicted as lines and

the encoded proteins as boxes. VPg (or 3B) is the protein

covalently linked to the 59-end of the RNA, poly C is the internal

polycytidylate tract, and (A)n is the 39-terminal poly A. The four

main coding regions (L, P1, P2, P3) are indicated. B) Serial

passages of FMDV clone C-S8c1 (filled square), and the types of

genomes identified in different passages. The number following D
indicates the size of the deletion in base pairs. The position of a

deletion is shown as a black segment within the genome (compare

with A). FMDV populations are depicted as open circles; large

grey arrows indicate high MOI passages (2–20 PFU/ml); the

number following p indicates passage number. Populations C-

S8p260p3d and C-S8p460p5d were derived from C-S8p260 and

C-S8p460 by three and five low MOI (0.02 PFU/cell) passages,

respectively (thin arrow-heads). C-S8p260p3d and C-S8p460p5d

included ST RNA as the only detectable genome.

Found at: doi:10.1371/journal.pgen.1001344.s001 (0.86 MB EPS)

Figure S2 Construction of plasmids pMT260 D 417ns, pMT D
999ns and pMT260p3dns. The plasmids pMT260 D 417ns and

pMT D 999ns (see Text S1) were prepared from the corresponding

plasmids pMT D 417 and pMT D 999, whose construction was

previously described [1]. The infectious transcript pMT28, which

encodes the sequence of C-S8c1, is depicted in grey, as

represented in Figure S1. Genomic regions from C-S8p260p3d

are depicted in color. Critical restriction sites are indicated by

arrows. pMT260 D 417ns and pMT D 999ns were constructed to

include the ns region (genomic residues 4201 to 7427) of C-

S8p260p3d (last scheme). pMT260p3d was constructed by

replacing the genomic region spanning residues 638 to 2046 from

pMT260 D 417ns by the same region from pMT260 D 999ns.

Found at: doi:10.1371/journal.pgen.1001344.s002 (3.60 MB EPS)

Text S1 Supplementary Materials and Methods.

Found at: doi:10.1371/journal.pgen.1001344.s003 (0.10 MB

DOC)
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