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ABSTRACT 
 
The Monegros playa-lakes are isolated saline wetlands, locally named “saladas”, 
situated in a vulnerable semi-arid territory where agricultural expansion threatens the 
natural hydrologic cycle with regular artificial flooding, risking the survival of a 
valuable natural resource. This study aims to examine the water regime of these 
playalakesfrom climate data and available hydrologic records. These records are 
historicaland limited to a series of weekly measurements of depth and of water extent 
extractedfrom Landsat imagery. We have characterized the hydrological behavior of the 
playalakesby treating ground and satellite data separately. For this purpose, the playa-
lakesare first grouped according to the water occurrence episodes. Then their hydrologic 
status is related to the previous rainfall and also to ET0, since there is a lack of local 
records of wind as well as brine or fresh water evaporation. The northern playa-lakes 
respond to rain faster than the southern ones. All playa-lakes have a significant 
relationship between water occurrence and rainfall accumulated within 180 days prior to 
an observation. A significant relationship between ET0 and water occurrence was found 
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for a shorter 15-day accumulation period. Quantifying the current water regime now is 

critical for monitoring the effects of expanding irrigation in adjacent lands. Remote 

sensing is well-suited to an environmental assessment for regions of difficult access 

with the added benefit of lowered field measurement cost. The hydrological data from 

the Monegros playa-lakes could be integrated with other playa environments worldwide 

to compare regionally specific climate conditions. 

Keywords: playa-lake, remote sensing, irrigation, flooding regime, Monegros, Spain. 

 

1. INTRODUCTION 

Playa-lakes represent a small proportion of both modern drylands, about 5%; 

(Bryant, 1996) and of sediments within the geological record. Due to the limited 

knowledge of the processes that occur in these environments, a quantification of 

contemporary playa hydrology is necessary. 

Remote sensing techniques offer rapid acquisition of data with a generally short 

turn-around time, at a cost lower than that of ground surveys (Hunt et al., 2003), and are 

a useful tool for delineating the fluctuating margins of shallow-water systems like the 

playa-lakes. Remote data can also provide an increased historical reach, revealing 

wetlands hydrology patterns in those cases where the historical data such as water levels 

is limited (Al-Kudhairy et al., 2002) and allowing us to bring to bear new approaches to 

field monitoring on old data. 

Remotely detecting the varying extent of water bodies in playa-lakes and other 

wetlands is common for studies of the desertification processes that result from climate 

and land use changes (Collado et al., 2002). As an example, Schneider et al. (1985) have 

surveyed the impact of recent climatic changes on the water extent patterns of the Lake 
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Chad. Later, Birkett (2000) studied the variations in water depth and the inundation 

extent of the same lake and its relationships with local and regional precipitation as a 

means of measuring regional aridity. Harris (1994) correlated the variation of water 

levels in a lake with precipitation and evaporation as an aid in his climate research. The 

interaction between hydrological changes observed in Lake Aral and certain regional 

environmental parameters has been studied by Nakayama et al. (1997). Vázquez et al. 

(2003) have studied the pattern of observed water surface area in relation with 

antecedent precipitation as a means for drawing zone maps that indicate flood 

frequencies. 

The playa inundation regime reveals both hydrological and climatic conditions. 

The influence of climate on the hydrology of Tunisian playas was confirmed by Drake 

and Bryant (1994) and Bryant and Rainey (2002); the last authors compared current and 

past information on ephemeral flooding events in these Tunisian playas, and also 

studied their response to seasonal changes in precipitation and evaporation. 

The hydrological changes in playas, due to their high-evaporation/low-rainfall 

regime, are much more complex than measurements of only the volume/area response 

can reveal so changes in the timing, frequency and persistence of ephemeral water 

(Bryant, 1999) need to be studied. Apart from the observations of the wetting-drying 

cycles, previous hydrological studies have also focused on the annual radiation and 

windiness (Malek et al., 2002), the evaporation rate (Pike, 1970; Prata, 1990), and the 

relation between the water surface area and the energy balance (Laymon, 1998) which 

was then employed in order to assess certain hydrological models. 

Although environmental protection policies of European Union blocked irrigation 

projects in Monegros for several years and contributed to enforce the exclusion of some 
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areas from irrigation, the playa-lakes are now being affected by new irrigation 

infrastructures as well as dumping. A newly operating irrigation project is sure to 

increase the duration of flood events, their extent, and their frequency, and decrease the 

salinity of water bodies, all this resulting in the disappearance of valuable habitats. 

Evidence of the strong impact of irrigation return flows in a salada located in a region 

close to Monegros is provided by Valero-Garcés et al. (2000). 

The analysis of retrospective Landsat TM and ETM+ images and available ground 

observations is the only way to reconstruct the original water regime of Monegros 

playa-lakes, i.e., the regime before the irrigation. From this base, it is then possible to 

establish simple and useful relationships with climate and weather, along with an 

environmental tool useful to detect any detrimental hydrological alterations the region 

may suffer as a result of human intervention. 

The objective of this study is to identify the water presence-absence cycles in the 

major Monegros playa-lakes and to establish their hydrological patterns using both 

ground and satellite data. 

 

2. STUDY AREA 

The study area lies in the Monegros Desert, in the central area of the Ebro basin 

(Figure 1), one of the most arid regions of Europe (Herrero and Snyder, 1997). Rainfall 

is very irregular, with a minimum annual average of 175 mm, a maximum of 535 mm, 

and an average of 346 mm for the Petris Weather Station for the period covered by this 

study, 1985 to 2000. The mean annual ET0 is 1255 mm based on the estimate of Faci 

and Martínez-Cob (1991) for the nearby Bujaraloz Weather Station. 

Figure 1 

Figure 2 
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The Monegros playa-lakes fit the genetic and functional description given by 

Shaw and Thomas (1997) and Brière (2002) for this term. They have been described by 

several authors, as reviewed by Castañeda (2002), and support endemisms and other 

organisms of high biogeographical interest, making the Monegros playa-lakes a matter 

of environmental concern. 

These playa-lakes are part of the Bujaraloz-Sástago endorheic complex, with more 

than a hundred depressions formed in a Miocenic structural platform which is elevated 

more than 100 m above the Ebro river water line. Three gypsum-limestone units (lower, 

intermediate and upper) can be distinguished using the geological map of Salvany et al. 

(1996) with the gypsum content increasing east to west. Almost all the studied playa-

lakes are part of the intermediate gypsum-limestone unit which contains the most 

soluble materials. 

The platform functions as a single closed basin where the geological features, 

such as solubility and permeability of materials and its heterogeneous disposition, make 

the hydrological connections complex. The upper and intermediate units are separated 

by a thin but laterally continuous lutitic layer segregating the two main aquifers (Figure 

2). The upper aquifer contains lutitic limestones with interleaved gypsum layers, and the 

lower aquifer contains gypsum and limestone with intercalations of lutite. Both aquifers 

have long water residence periods and furnish salty water to the playa floor (García-

Vera, 1996). 

Monegros playa-lakes are discharge playas (Yechieli and Wood, 2002) though it 

is possible for the brine, because of its density, to percolate into the groundwater system 

(Allison and Barnes, 1985). The water table is shallow near the topographic lows of the 

playa-lakes and the other saline depressions on the platform, allowing water to 
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evaporate from the capillary fringe (Samper-Calvete and García-Vera, 1998). Berga 

(1993) also described the water table as being very close to the surface of the bottom of 

these depressions, sometimes at less than one meter. Groundwater level rises in winter 

and falls in spring, in direct response to the rain and the increased evaporation. In the 

playa-lakes, the water continuously evaporates whether or not there is a free water 

sheet. The aquifer recharge delay with regard to the rain periods is estimated to be from 

one to three months. 

Monegros playa-lakes play an important role in the regional hydrology, having a 

close connection with the two main aquifers. Of the playa-lakes included in this study 

(Figure 2), only Salineta is linked to both aquifers; the remaining playa-lakes (La Playa, 

Guallar, Piñol, Muerte, Camarón, Rebollón and Rollico) are fed by the lower aquifer 

and are also interconnected by a groundwater flow moving from NE to SW (Álvarez, 

1996). With respect to irrigation, this author detected an insignificantly small rise in 

groundwater level for this region during 1996. Previous hypothetical estimations carried 

out by Berga (1993) had estimated that the water extent in some of the playa-lakes 

would increase due to irrigation by as much as 100%, for dry periods. 

 

3. DATA 

Almost 100 topographic depressions, locally named saladas, have been 

inventoried in the platform (Balsa et al, 1991), playa-lakes and other closed saline 

depressions. Using Landsat imagery, 39 saladas were detected (Castañeda, 2002), some 

of them are playa-lakes and other are closed saline depressions. Only the eight largest 

playa-lakes, shown in Figure 2, are included in this study. 
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There are three sets of available data on water presence in the Monegros playa-

lakes. The first set contains the monthly ground observations by Berga (1993), taken the 

first week of each month from January 1987 through September 1990. She identifies 

water presence or absence for the following 15 playa-lakes: Amarga I, Amarga II, 

Camarón, Guallar, La Playa, Muerte, Pez, Piñol, Pito, Pueyo, Rebollón, Rollico, 

Salineta, Saladar and Salobral. These two last playa-lakes have now disappeared due to 

the irrigation and drainage works, Saladar destroyed by earth filling and drainage ditch 

excavation, Salobral partially filled with urban debris and the remnant flooded with 

return flows from the conterminous irrigated land. 

The second set, dating from March of 1993 to June of 1997, was compiled by 

Castañeda (2002). These ground data are weekly observations of water depth measured 

using a ruler driven into the bed of the following eight playa-lakes: Camarón, Guallar, 

La Playa, Muerte, Piñol, Rebollón, Rollico and Salineta (Figure 2). The accuracy of the 

rulers is limited because: (i) the rulers were sunk down into the mud, and some of them 

had to be reinstalled after disappearing or fallen; (ii) each ruler was put at the deepest 

point in the playa-lake, as it was inferred in the field, but the wind displaces the sheet of 

water, as the observers annotated; and (iii) small topographic changes happen in the 

muddy bottom. 

The third data set is a series of water extents detected for each of eight playa-lakes 

studied by Castañeda (2002) using 26 satellite images taken at different seasons 

between 1985 and 2000. Two facies related to water presence in the Monegros saladas 

have been defined by Castañeda et al. (2004): Water (measurable with a ruler), and 

Watery Ground (not measurable with a ruler but noticeable on the satellite images). The 

sum of the extent of these two facies, regarded as relevant from the environmental and 
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hydrological points of view, is taken to be the total water extent for computations used 

in this work. 

 

4. METHODS 

This study includes an examination of water extent itself, and its relationships 

with weather and other factors. 

First we compared monthly data from Berga (1993) with the first observation of 

each month from Castañeda (2002; 2004) in order to determine the seasonality of the 

inundations for each playa-lake. Further, we studied separately the water depth 

measurements and the satellite water extents to obtain (i) the yearly pattern of maximum 

and minimum water extent, and (ii) the similarity and dissimilarity of the playa-lakes 

flooding behavior by using a hierarchical cluster analysis.  

In the second step, the water data were collated with the rainfall and with the 

evapotranspiration (ET0), those being the main meteorological factors controlling the 

hydrological status in the playa-lakes. For these analyses, we have included five 

different periods for calculating the rainfall accumulated as well as the ET0, previous to 

the water record date : 15, 30, 90, 180 and 365 days. 

The rainfall record was taken from the Petris weather station (9552O), located in 

the area at latitude 41º 26’ 04’’N and longitude 3º 32’ 32’’E, and at 345 m elevation 

above sea level. There are no available wind records or measurements of the saline 

water evaporation for this area. Thus, the evapotranspiration data were estimated by the 

Hargreaves method (Allen et al., 1998) using daily temperature data from the 

Candasnos weather station (9578A) located at latitude 41º 30’ 3’’N and longitude 0º 3’ 

39’’E, the closest station maintaining temperature records during the period studied. 
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Our calculated ET0 represents the evaporation of well-irrigated grass. Since we have 

used ET0 for exploratory purposes, we did not apply a conversion coefficient to ET0 to 

obtain the free saline water sheet ET0. The Hargreaves method was used because of its 

simplicity and its good monthly estimations of ET0 when compared with lysimetric 

measurements (Martínez-Cob, personal communication) for our experimental farm 

located 60 km away. 

In addition to the rainfall and evapotranspiration, we have considered two factors 

influencing water occurrence: (i) the elevation of the playa-lake bottom above sea level, 

and (ii) the ratio between the extent of each playa-lake and that of its corresponding 

basin. For this last measurement we have used the values obtained by Berga (1993), 

who employed topographic maps of a scale of 1:5000. This author used the visible mark 

produced by the saline sediment at the bottom of the depression to estimate the bottom 

extent of each playa-lake. 

 

5. RESULTS AND DISCUSSION 

5.1. Water presence variability obtained from ground data. 

Monthly observations from 1987 to 1990 allowed Berga (1993) to distinguish a 

similar seasonal pattern for Salineta, La Playa, and Guallar, where water is present for 

more than six months every year (Table 1). Their wet cycle begins in autumn and 

continues until March. 

Using only the first weekly measurement for every month during the period 1993-

1997, Salineta is the only playa-lake with water for more than six months. However, 

taking into account all the weekly observations (Table 2) the wet cycle of all the saladas 

lengthens and their response to the spring rains is detected. These data confirm the 
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longer wet cycle for Salineta and Guallar found by Berga (1993), the next longest cycles 

are found for La Playa and Camarón. 

Table 1 

Table 2 

The annual minimum water depth record puts the playa-lakes in two groups: (i) 

Salineta, La Playa, Guallar, Muerte and Piñol with minimums in 1995; and (ii) 

Camarón, Rebollón and Rollico, all located in the SW sector of the study area with 

minimums in 1996. The absolute maximum water depth in this period was 51 cm, 

recorded for La Playa, 21 December 1994. 

Figure 3 shows four distinct distributions of the monthly maximum water 

depths: (i) Camarón, Rollico, and Rebollón showing synchronous variations; (ii) Piñol, 

Muerte, and Guallar, also with synchronous variations, but of shorter duration and 

delayed from the previous group; (iii) La Playa, with the sharpest and highest peaks and 

a more delayed swell; and finally (iv) Salineta with a great number of fluctuations and 

the less synchronization with the other playa-lakes. 

Figure 3 

From the weekly water depths, Salineta, Camarón and La Playa appear as the 

more wet playa-lakes, and Muerte and Piñol as the driest. The adjusted trend lines show 

an increase in water depth from 1993 to 1997 for five playa-lakes while Camarón, Piñol 

and Rebollón are static. 

The eight playa-lakes were classified according to their similarity using a cluster 

analysis based on the simple linkage method, also called “nearest neighbor”. The 

similarity between two playa-lakes i and j is given by s(i,j) = 100 (1 - d(i,j)/d(max), 

where d(max) is the maximum distance value in the original matrix of water data. 

Similarity is higher than 80% for all them (Figure 4), suggesting a common behavior for 
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the studied playa-lakes. The most dissimilar salada is La Playa, followed by Salineta 

and Guallar. So, from 1993 to 1997 the behavior of these three playa-lakes differs from 

the pack, which agrees with the results of Berga (1993) for the period 1987 to 1990. The 

highest similarity occurs between Rollico and Rebollón, and then between Muerte and 

Piñol. As reported previously, both these pairs show a parallel evolution of their water 

depth. The similarities shown by Figure 4 agree with the hydraulic connection 

established by Álvarez (1996) and previously described. 

Figure 4. 

A principal component analysis was applied in order to eliminate redundant 

information, the result being that the three first components have more than the 80% of 

the total variance. Table 3 shows the values of the three first components. The first 

component collects the common terms for all the playa-lakes; the second one enables us 

to make two groups by their negative and positive values; and the third component 

isolates La Playa. The result of the cluster analysis applied to the three first components 

is similar to the result obtained with the original data. 

Table 3. 

 

5.2. Water surface area variability using satellite data. 

Two analyses have been carried out. In the first, the total water surface area for all 

the 39 playa-lakes is summed for each image date. As expected, and illustrated in Figure 

5, this net water extent has a large variability; the highest values are detected in winter 

and spring. Both the maximum and minimum water area occur in 1987, with the 

maximum of 402 ha in January and the minimum of 9 ha in August. As a rule, in 

summer, water extent is lower than 15 ha, with July 1997 (146 ha) and August 1998 (80 

ha) being the two exceptions. A rare case emerges for 1999, with more water in August 
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than in June in spite of the poor July rainfall (43 mm) and the intense summer 

evaporation. It is not possible at this time to determine whether this increase of water 

occurrence in summer was produced by a water tables rising due to the irrigation of the 

conterminous lands. 

A high variability of water extent from year to year is observed even when 

comparing years for the same season. Winter water extent, for example, ranges from 

100 to 400 ha, spring data fluctuates from 60 ha to more than 340 ha. Summer water 

extent is more regular, ranging from 19 to 9 except for the rainiest years (1993, 1997, 

and 1999). 

Figure 5. 

In the second analysis, the percent of water extent is stated for each of the eight 

playa-lakes (Figure 6). The Figure shows that this relative water extent ranges from 

82.7% (La Playa) to 56.5% (Muerte) with its maximum in January 1987. The graphic 

also shows a consistent evolution for all the playa-lakes except for Salineta, which 

shows a lower variability and less spiked peaks. Never appearing totally dry, its mean 

water extent is 50.5%. Usually, the only playa-lake having water in August is Salineta, 

when the other playa-lakes were dry. Perhaps due to its hydrological connection to the 

two main aquifers in the area (García Vera, 1996) and to its proximity to the irrigated 

lands. 

Figure 6. 

Figure 7. 

Figure 7 shows one more time the great year to year variability of the water extent 

in winter. The bar graph also reveals the similar behavior of Rollico and Rebollón, and 

then Camarón, as well as the dissimilarity of Salineta. How all this relates to precedent 

rain will be examined in the next section. 



 13

Following the same approach used for ground data, we now apply two cluster 

analyses to the satellite data. First, the eight playa-lakes are clustered by their water 

extent for each date (Figure 8). Seven saladas have similarity values of over 92%, and 

the particularly close relationship of Rollico and Rebollón is again observed; Salineta 

stands out for its lowest similarity (76%). 

Second, we clustered the dates of the images by their water extent for each playa-

lake, resulting in three groups of dates (Figure 9). Making an analogy with remote 

sensing studies, here every group represents a “hydrologic signature” similar to the 

spectral signature, where the playa-lakes correspond to the bands, and the water extent 

to the digital number. Every hydrological signature depicts a transient status of the 

saladas constellation. June, July and August are in the first group, with similarity values 

close to 99%. The second group, with similarity values of 90%, comprises dates from 

February to August. The third group, with a similarity of 78% brings wetter dates in 

January, March, and April. Moreover every group can be related to the water extent in 

La Playa. For the first, La Playa has less than 10 ha of water while the other playa-lakes 

are dry, except for Salineta again. For the second La Playa has less than 60 ha of water. 

The third group includes dates when La Playa hosts more than 70 ha of water. So, it can 

be said that the greater the water extent for La Playa, the greater the water extent for the 

rest of the playa-lakes, and simultaneously the less interrelated is the behavior of all the 

playa-lakes. 

The satellite data allows us to group the playa-lakes by their behavior, with a 

result similar to that of the previous analysis based on the ground records. Salineta is 

characterized by having water more frequently than the other playa-lakes, which present 

almost yearly dry periods. The maximum percentage of covered lake-bed in Salineta is 
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71%, though La Playa reaches a maximum of almost 90%. The other studied playa-

lakes can be assembled in two groups. In the first are Rollico, Rebollón and Camarón, 

with the higher similarity between the two first playa-lakes. Guallar, Muerte and Piñol 

form the second group. Their geographical distribution and their similar behavior 

suggest a close groundwater connection, in agreement with the hydrogeological study of 

Álvarez (1996). A relationship between the aquifers flow directions and these groups of 

playa-lakes could be established if groundwater dynamics were monitored. 

The distinct behaviors of all groups could be related to the lineaments studied by 

Arlegui et. al. (2000) and to the geological origin of the playa–lakes, as suggested by 

their shapes. The first group is spread along a mayor axis in NE-SW direction whereas 

the second is more rounded in shape. 

Figure 8. 

Figure 9. 

5.3. Relationship between water depth and rainfall. 

In this section, the water occurrence in the playa-lakes is studied in relation to the 

rainfall registered at Petris Weather Station. Berga (1993), analyzing the monthly 

ground data, points out the lack of a clear relationship between water occurrence and 

rainfall, as water was present during some periods with hydrologic deficit. In order to 

analyze the weekly ground records for the 1993-1997 period, the maximum monthly 

water depth is related to the rainfall of the 30-previous days (Figure 10) as a first 

approximation. The playa-lakes water extent is directly related to rainfall, and this 

relation is most obvious when the hydrological year is wetter. When rainfall decreases, 

the emptying occurs with a delay, as it clearly happens during 1994 in all the playa-

lakes without exception. After the rainfall and in spite of the high evaporation, water 
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remains during some months revealing the role of the groundwater as the main regulator 

of surficial water permanence. 

During the most evaporative period, water is prevented from remaining very long 

despite occasionally persistent rain. This occurs when groundwater level is very low 

under the playa-lakes bottom. The response of La Playa to rainfall presents a slight 

delay and remarkable water dissipation in summer, perhaps due to the relatively large 

evaporative surface of this playa-lake, 200 ha. 

Figure 10 

We have explored the relationship between water presence and immediately 

precedent accumulated rain for different accumulation periods. The linear regression 

between the maximum monthly water depth and the accumulated rain for the previous 

15, 30, 90, 180 and 365 days were calculated. We deduce a significant relationship 

between the water depth and the previous rains, as all the playa-lakes have a significant 

relation (P < 0.05) with the 90- and 180-day periods with the strongest relationship for 

the 180-day period. In the best cases the 50% of the variance of the water depth data can 

be explained by the variations of the accumulated rainfall in the 180 previous days. 

The determination coefficients (r2) in Figure 11 show that the northeastern playa-

lakes are most strongly related to their 90-day accumulated rain, whereas the 

southwestern playa-lakes are most strongly related to the 180-day period. The other 

playa-lakes are positioned in the middle, both geographically and for their estimated r2. 

Thus, the rain response is faster for the northern playa-lakes and slows as a 

southwestern path is traced. This geographical variation agrees with the hydraulic 

connection established by Álvarez (1996) and suggests once more their regulation by 

groundwater. 

Figure 11 
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5.4. Relationship between water surface area and rainfall. 

The relationships between the water surface area as detected by remote sensing 

and the accumulated rainfall were analyzed for periods of 30, 90, 180 and 365 days 

previous to the image date. The eight playa-lakes show one significant relationship (P < 

0.05) for the 180 day accumulated rainfall period. In the most favorable of cases, only 

30% of the water surface area variation can be explained by the rainfall variation for the 

previous 180 days. Salineta is an exception, having no significant relation with any 

analyzed rain period. 

Water surface area and depth share a significant (P < 0.05) relationship with the 

previous 180 days of rainfall. The r2 between accumulated rainfall and water surface 

area was lower than that for accumulated rainfall and water depth. This is attributed to 

the different kind of data sets used. First, the water surface areas are a long set of sparse 

records, much less frequent than the water depth records. Second, the water surface data 

includes Watery Ground, surfaces not measurable with a ruler but noticeable on the 

satellite images. This last component is most likely the main culprit for the attenuation 

of the r2 values. 

 

5.5. Relationship between water depth and evaporation. 

Severe evaporation is a key factor influencing the presence of water in the playa-

lakes, better said, in the emptying of water from the lakes. The r2 values of the linear 

regression between the maximum monthly depth and the accumulated ET0 for the 15, 

30, 90, 180 and 365 previous days. All the playa-lakes have a significant relationship (P 

< 0.05) with the 15-, 30- and 90-day period of accumulated ET0. And all the playa-lakes 

have their maximum r2 for the 15-day period. 
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We have evaluated the effect of the extent of the bottom surface of each playa-

lake, since lake size should condition the evaporation rate, but no relationship with r2 

variation was found. 

 

5.6. Relationship between water surface area and evaporation. 

The regressions of water surface areas on the accumulated ET0 for the same five 

accumulation periods yield r2 values that decrease as the period of accumulated ET0 

increases. The best relationships occur for ET0 (15) and give r2 values between 40% and 

50%. Salineta is an exception, with significant relationships only for the long periods of 

90 and 180 days. 

A significant relationship between ET0 and water surface area was found: the 

shorter the accumulation period the stronger the relationship. Salineta is again an 

exception, showing the strongest relationship for the ET0 (180). For the most favorable 

cases, 50% of the water surface area variation can be explained by ET0 variations. 

Surface area variations have a tighter relationship to ET0 variations than do water depth 

variations. 

In summary, ET0 is similarly related both water surface areas and the water depth, 

with r2 values increasing as the previous period of computed ET0 decreases. For the 15-

day period, the maximum r2 is 40% for water depth and 50% for water surface area. 

Salineta is the exception, with stronger relationships for the longer periods. Those 

disparities can be attributed to (i) a difference in the amount of water computed from the 

two sources of water data, satellite and ruler, as in previous sections; (ii) the use of 

Hargreaves ET0 as surrogate for the real ET. Hargreaves’ estimate, for example, does 
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not account for the salinity of the water or the permanently humid bottom where 

evaporation continues even after the water sheet has disappeared. 

 

5.7. Other factors 

Two additional factors supposedly influence water presence - absence and the 

length of the playa-lake humid cycles: (i) the elevation of the playa-lake bottom, since 

this should be connected to groundwater level, and (ii) the ratio between the area of 

each playa-lake and its basin extent, since it could be related to the runoff. 

In Figure 12 the water occurrence is computed as the percent of watery weeks 

during the period 1993-1997. This number is then plotted against the elevation and the 

latitude of the eight playa-lakes. Though there appears to be no direct relationship 

between elevation and water occurrence, playa-lakes can still be grouped as in previous 

sections. Rebollón and Rollico, with the lowest elevation, have a higher water 

occurrence than Guallar, Muerte and Piñol, which are more elevated. Salineta continues 

as the oddball, wetter than the other playa-lakes while situated at a medium elevation in 

the platform. 

Figure 12 

The second factor examined was the ratio between the basin area and the bottom 

extent of each playa-lake, defined by ρ, as shown in Table 4. During the period 1987-

1991, there was no significant relation between ρ and the water occurrence of each 

playa-lake (Berga, 1993). During the period 1993-1997 it is also observed that the size 

of the playa-lakes does not influence the water occurrence. Judging by their ρ value, La 

Playa and Rebollón seem to be collecting significant runoff seeing as their basin area is 

five times their bottom extent. But both playa-lakes have a medium wet period (42%) 

similar to Guallar which has a low ratio. Salineta continues as the Lone Ranger Playa-
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lake, for its small size, for having the smallest ρ values, and as the playa-lake with the 

largest wet period. From among the smallest of the studied playa-lakes (< 18 ha), Piñol 

and Muerte have similar water occurrence and similar ρ values to Salineta. 

Table 4. 

5.8. Future uses of our study 

The flood regime of the Monegros playa-lakes has been described in relation to 

the climatic and hydrogeological features of the basin. The irrigation of the 

conterminous lands threatens the playa-lakes with artificial over-flooding and a drastic 

alteration of the brine composition. For this reason it is urgent to document the natural 

baseline of the hydrological regime so as to be able to detect undesirable environmental 

effects such as a rising water table or soil salinization. 

A sufficiently prolonged study of the natural regime of these playa-lakes together 

with the available climatic series analysis should allow us to uncover any parallelism 

that there may be with the evolution of Lake Gallocanta, the largest endorheic lake in 

the Ebro basin, where Rodó et al. (1977) have demonstrated a close relationship 

between the variations of standing water and climatic oscillations of the North Atlantic. 

The comparison could be extended to similar environments studied by other authors, for 

similar bodies such as Lake Chad or the Tunisian playas of northern Africa, though 

differences in their dry and wet seasons from those of Spanish playa-lakes, would have 

to be taken into account. And unlike their African cousins, the variations of the Spanish 

playa-lakes (< 200 ha), are difficult to detect with sensors of low spatial resolution and 

high sampling frequency, as are used in monitoring the African playas. 
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6. CONCLUSIONS 

The water presence-absence cycles in the major Monegros playa-lakes have been 

identified using ground observations and satellite data. Both data sources agree, 

allowing us to group the playa-lakes according to their common inundation patterns. 

There is a close relationship between each of these groups and their location on 

hydrogeological units established by other authors. 

The first group comprises the southwestern playa-lakes, Rollico, Rebollón and 

Camarón, with a higher similarity between the first two. The second group unites 

Guallar, Muerte and Piñol, and lies in the middle of the platform. Salineta, in the north, 

is in a class by itself with more water occurrence than the other playa-lakes. La Playa, 

also a singleton, stands out as the largest in size and has an intermediate behavior 

between Salineta and the second group. The water extent in La Playa has been found to 

be an indicator of the general water status of the playa-lakes during the period studied. 

The relationship between the water occurrence and both the previous rainfall and 

ET0 is confirmed. Up to 50% of the variance of the water depth can be explained by the 

variations of the accumulated rainfall for the 180 days previous to the water presence 

measurements, and this relationship decreases as a path is followed in a southwesterly 

direction, from Salineta to Rebollón. Precedent rainfall is a better predictor of playa-

lake water surface areas than of lake depth, though the former relationship occasionally 

reaches the highest r2 values. 

A significant relationship between ET0 and water occurrence was found, being the 

relationship tightest for the shorter accumulation period. Up to 40% of the variance of 

the water depth data can be explained by variations in the 15-day accumulated ET0. 

Similarly, 50% of the variation of the water surface area can be explained by the same 
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ET0 variations. Salineta is again an exception, showing the strongest relationship for 

the180 day ET0. 

Water depth and water extent respond differently to accumulated rainfall and ET0. 

These differences are attributable to the different frequency and time span covered by 

each data set. Water depth and surface extent are distinct but equally useful scales of 

observation, more synoptic for the last. 

The relationships between the water occurrence and the playa-lake elevation 

confirm the previous groups. The potential runoff from the playa-lake basins does not 

play a role in water persistence. 

Remote sensing has yielded excellent synoptic information and quantitative data 

on water occurrence and the hydrologic behavior of the Monegros playa-lakes. Given 

the lack of ground observations before 1993 and after 1997, the use of remote data 

becomes necessary in the monitoring of hydrologic processes, and environmental 

conditions. As an extension of this study, the evolution data of these playa-lakes could 

be integrated with that of other playa environments for regional or worldwide climatic 

studies. 

Our full empirical approach to hydrologic behavior is a straightforward way to 

make good use of limited available observations and to design effective monitoring 

schemes until such time as soil hydrology, brine evaporation and other as yet 

unavailable field information can be applied to construct a mechanistic hydrological 

model. 

Our study confirms the role of the aquifers in the hydrological cycle of these arid 

wetlands although the monitoring of the groundwater levels is necessary to quantify the 

relationship. This groundwater connection with the playa-lakes and their water budget 
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are modeled in a forthcoming article. The increasing of the saline water table by the 

future irrigation flows threatens these habitats, by changing their ephemeral saline sheet 

of water into a permanent non saline and contaminated water. Our full empirical 

approach to hydrologic behavior is a straightforward way to make good use of limited 

available observations and to provide important information on the changing hydrology 

of these playa-lakes and on their natural state prior to the anthropogenic activity. 
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Table 1 

Playa-lake 1987 1988 1989 1990 

Amarga I                                              

Amarga II                                              

Camarón                                              

Guallar                                              

Muerte                                              

Pez                                              

Piñol                                              

Pito                                              

La Playa                                              

Pueyo                                              

Rebollón                                              

Rollico                                              

Saladar                                              

Salineta                                              

Salobral                                              

 

Table 2 

 
 

Playa-lake 1993 1994 1995 1996 1997 

Camarón                                  *             *      

Guallar                                  *                   

Muerte                                  *             *      

Piñol                                  *           * * * * * * * *

La Playa                                  *                   

Rebollón                                  *             *      

Rollico                                  *             *      

Salineta                                  *                   
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Table 3 

Playa-lake CP1 CP2 CP3 

Salineta - 0.790 0.268 0.197 

La Playa - 0.775 - 0.107 0.425 

Guallar - 0.754 0.358 0.341 

Muerte - 0.803 0.274 - 0.367 

Piñol - 0.845 0.315 - 0.242 

Camarón - 0.840 - 0.187 - 0.260 

Rollico - 0.877 - 0.334 - 0.059 

Rebollón - 0.780 - 0.556 0.059 

 

 
Table 4 

Playa-lake
(1) 

Playa-lake bottom 
extent (ha) 

(2) 
Playa-lake basin 

area (ha) 

ρ 
(2) / (1)

Water 
occurrence (%) 

Salineta 15.0 27.5 1.83 64 

La Playa 190.0 2052.0 10.80 43 

Guallar 15.0 32.5 2.17 43 

Piñol 15.0 32.5 2.17 36 

Muerte 17.5 27.5 2.19 34 

Camarón 37.5 72.5 1.93 52 

Rollico 30.0 85.0 2.83 42 

Rebollón 12.5 90.0 7.20 42 

 

 
 



Figure captions 

 

Figure 1. Location of the studied playa-lakes digitized from Landsat imagery. 

Figure 2. The studied playa-lakes and the two main aquifers in the platform. 

These aquifers are related to the Miocenic gypsum-limestone units described by García-

Vera (1996). 

Figure 3. Monthly maximum values of water depth for the eight playa-lakes. 

Figure 4. Similarity of the playa-lakes based in the weekly measurements of their 

water depth from 1993 to 1997. 

Figure 5. Total water surface area detected in Landsat imagery in every date. 

Figure 6. Percentage of the playa-lake bottom covered by water. 

Figure 10. Percentage of the playa-lake bottom covered by water, for the winter 

months. 

Figure 8. Similarity of the playa-lakes according with their water surface area 

detected using 26 Landsat images. 

Figure 9. Similarity between the dates of the images analyzed according to the 

water surface area of the eight playa-lakes. 

Figure 10. An example of the maximum monthly water depth plotted together 

with the rainfall of the previous 30 days, for Salineta playa-lake. 

Figure 11. Determination coefficients (r2) between the maximum monthly water 

depth and the accumulated rain for the 15, 30, 90, 180 and 365 days previous to the 

depth measurement. 

Figure 12. Water occurrence in terms of percentage of watery weeks plotted 

against elevation and latitude. 



Table captions 

Table 1. Months with water presence (grey) and absence (white) according to 

Berga (1993). 

Table 2. Months with water presence (grey) and absence (white) according to 

Dirección General de Medio Natural observations (Castañeda, 2002). *: O data. 

Table 3. Values of the first three principal components obtained from the weekly 

water depth measurements in the eight playa-lakes. 

Table 4. The bottom extent (ha) of the eight playa-lakes and their basin area 

estimated by Berga (1993). ρ: ratio between the basin area and the playa-lake bottom 

extent area. 
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