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Abstract 

 
Rationale: Alveolar type II cell transplantation has been proposed as a cell therapy for the 

treatment of idiopathic pulmonary fibrosis. Its long-term benefits include the repair of lung 

fibrosis, but its success partly depends on the restoration of lung homeostasis. 

Objectives: To evaluate surfactant protein restoration after alveolar type II cell 

transplantation in an experimental model of bleomycin-induced lung fibrosis in rats. 

Methods: Lung fibrosis was induced by intratracheal instillation of bleomycin. Alveolar type II 

cells were obtained from healthy animals and transplanted 14 days after bleomycin 

instillation. Furthermore, one group transplanted with alveolar macrophages and another 

treated with surfactant were established to evaluate the specificity of the alveolar type II cell 

transplantation. The animals were sacrificed at 21 days after bleomycin instillation. Lung 

fibrosis was confirmed by a histological study and an evaluation of the hydroxyproline 

content. Changes in surfactant proteins were evaluated by mRNA expression, Western blot 

and immunofluorescence studies. 

Measurements and Main Results: The group with alveolar type II cell transplantation was 

the only one to show a reduction in the degree of lung fibrosis and a complete recovery to 

normal levels of surfactant proteins. 

Conclusion: In conclusion, this study shows that one of the mechanisms involved in the 

beneficial effect of alveolar type II cell transplantation is the restoration of the lung surfactant 

protein levels, needed for proper respiratory function. 
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Introduction 

 

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive and fatal disease of unknown 

etiology. The median survival time is 3 to 5 years from the time of diagnosis (1). At present 

there is no effective pharmacological therapy for IPF, although some new treatment 

approaches have shown a degree of efficacy (2-3).  

It has been suggested that chronic injury and apoptosis of alveolar type II cells (ATII) 

underlie the development and progression of IPF (4-5), ultimately resulting in fibroblast 

proliferation, increased extra-cellular matrix deposition and loss of alveolar structure (6). In 

normal physiological conditions, the renewal of alveolar epithelial cells occurs through the 

specific proliferation and differentiation of ATII into alveolar type I cells (ATI). In pulmonary 

fibrosis, however, the ATII and ATI die, compromising the normal regeneration process and 

leading to an aberrant wound healing response (4-6). Therefore, any strategy seeking to 

attenuate or reverse pulmonary fibrosis should involve the maintenance of alveolar 

epithelium integrity. In this respect, our group has previously demonstrated that intratracheal 

transplantation of ATII is able to reverse bleomycin (BLM)-induced pulmonary fibrosis in a rat 

model (7).  

ATII have a great number of complementary physiological functions, besides replacing 

alveolar epithelial cells (8). ATII are the only cells to synthesize, secrete and recycle the 

pulmonary surfactant needed to prevent alveolar collapse, by reducing the surface tension 

across the air-liquid interface of the alveoli (9). The presence of lung surfactant also helps to 

maintain the lung’s gas exchange area and prevents the formation of edema. The loss of 

ATII during the development of pulmonary fibrosis contributes to alveolar collapse caused by 

a lack of surfactant (10). 

Pulmonary surfactant is a complex molecule composed of 90% lipids and 10% proteins. 

There are four surfactant proteins (SP-A, SP-B, SP-C and SP-D) and they play pivotal roles 

in the alveolar homeostasis and host defence. 
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Several studies have shown that changes in pulmonary surfactant could cause interstitial 

lung diseases in both children and adults (11-16). Moreover, patients with IPF have 

presented a down-regulation of SP-B and SP-C levels during the fibro-proliferative period 

(11-13). Mutations in the gene encoding SP-C have been identified in both familial and 

sporadic cases of IPF (15), while transgenic mice deficient in SP-C or SP-D have shown 

greater susceptibility to BLM, indicating that a lack of SP-C or SP-D predisposes to the 

development of lung fibrosis (17, 18). Lastly, patients with IPF have also presented 

alterations in the surfactant protein processing due to endoplasmic reticulum stress (19). All 

these findings show that surfactant alterations are involved in the development of pulmonary 

fibrosis and may be partly responsible for alveolar collapse, ventilation-perfusion 

mismatching and/or hypoxemia (20). 

In this study we have focused on changes in pulmonary surfactant protein levels during BLM-

induced lung fibrosis in rats and the ability of ATII transplantation to restore these surfactant 

protein levels. 

 

Methods 

 
Animals. Sprague-Dawley rats, weighting 200-225 g at the beginning of the experiment, 

were used, in accordance with the European Community (Directive 86/609/EEC) and 

Spanish guidelines for experimental animals and it was approved by the institutional 

committees of animal care and research of University of Barcelona. 

Bleomycin-induced lung fibrosis. Lung fibrosis was induced by intratracheal instillation of 

a single dose of BLM (2.5 U/kg) (Sigma, USA) dissolved in 400 l of sterile saline under 

isofluorane anesthesia (7). Control animals received the same volume of saline. The animal 

body weights were recorded every 2 days during the course of the experiment. 

Isolation of Alveolar Type II Cells. ATII were isolated from healthy donor animals. For more 

details, see the online data supplement.  
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Cell yield, purity and characterization of freshly isolated ATII were established by the 

presence of intracellular alkaline phosphatase (Sigma, USA) (Fig. 1A), lamellar bodies and 

microvilli at the electron microscope level (Fig. 1B) by immnunofluorescence (Fig 1C), real-

time PCR (Fig 1D) and by flow citomety (Fig 1E). For more details, see the online data 

supplement.  

Isolation of Alveolar Macrophages. An additional alveolar macrophage (AM) 

transplantation group was established,using another unrelated cell type, to evaluate whether 

the beneficial effect was specific to ATII transplantation. AM were isolated from healthy donor 

animals. For more details, see the online data supplement.  

Cell yield, purity and characterization of freshly isolated AM were evaluated in cytospin 

preparations, after staining with the Diff-Quick kit (Diagnostics Grifoll S.A, Spain). Over 95% 

(n=8) of brochoalveolar lavage cells were macrophages (Fig. 1F). AM were also 

characterized by transmission electron microscopy (Fig 1G).  

Transplantation procedure. At day 14 after intratracheal BLM, recipient animals were 

transplanted with labelled ATII or labelled AM by intratracheal instillation (2.5 x 106 

cells/animal suspended in 400µl of sterile saline) under isofluorane anesthesia. The control 

group received the same dose of cells 14 days after saline instillation. The animals were 

sacrificed 21 days after the induction of lung fibrosis (7).  

Surfactant administration. A surfactant administration group was also established in order 

to evaluate the specificity of the beneficial effect of ATII transplantation. At day 14 after 

intratracheal BLM, the animals were treated with commercial surfactant (Survanta, Abbott 

Laboratories, Spain) by intratracheal instillation (0.5 ml/animal) under isofluorane anesthesia. 

The control group received the same dose of surfactant 14 days after saline instillation. The 

animals were sacrificed 21 days after the induction of lung fibrosis. 

Experimental groups. The animals were randomly distributed into eight experimental 

groups (n=8 in each group): 

Control:  Saline instillation.  
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Control + ATII Transplantation (C+ATII): Saline instillation + alveolar type II cell 

transplantation. 

Control + AM Transplantation (C+AM): Saline instillation + alveolar macrophage 

transplantation. 

Control + Surfactant (C+SP): Saline instillation + surfactant administration. 

BLM: Bleomycin instillation. 

BLM + ATII: Bleomycin instillation + alveolar type II cell transplantation. 

BLM + AM: Bleomycin instillation + alveolar macrophage transplantation. 

BLM + SP: Bleomycin instillation + surfactant administration. 

 

For details on the hidroxyproline content, real-time PCR, Western blot studies,  histology and 

immunostaining studies, see the online Data Supplement. 

Statistical analysis. Data are expressed as mean ± SEM values with 95% confidence 

intervals (CI). Statistical analysis was carried out by analysis of variance (ANOVA) followed 

by appropriate post hoc tests, including the Newman-Keuls test when differences were 

significant (GraphPad Software Inc, USA). A p value of <0.05 was considered significant. 

 

Results 

At the end of cell isolation, purity of the ATII cells was 86 ± 6 %, as shown by positive 

staining with alkaline phosphatase or with the immunohistochemstry for p180 (Fig 1A, 1C). 

Results of real-time PCR showed a higher expression of SP-B and SP-C in the isolated ATII 

compared to the expression of these two surfactant proteins in the isolated AM (Fig 1D). 

Finally, the percentage of p-180 positive cells was determined by flow cytometry in three 

independent experiments. The purity of isolated ATII measured by flow cytometry was 81.56 

± 3.26 % (Fig. 1E). 

BLM instillation caused a marked loss in body weight, which was normally recovered later 

on. The animals subjected to ATII transplantation gained weight more quickly than those in 
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the BLM, BLM+AM and BLM+SP groups (Fig. 2A). This indicates that ATII transplantation 

was the only therapy that enhanced the animals’ health. Moreover, BLM caused an increase 

in lung weight, owing to the inflammatory and fibrotic component (7). Lung weight 

significantly decreased only in the ATII transplanted group after BLM instillation, compared 

with the BLM, BLM+AM and BLM+SP groups (Fig. 2B). The amount of hydroxyproline – a 

modified amino acid specific to collagen – was assessed to determine how ATII 

transplantation could alter the course of BLM-induced lung injury. BLM, BLM+AM and 

BLM+SP lungs showed a significant increase in the amount of lung hydroxyproline when 

compared with saline control groups (Fig. 2C). In contrast, hydroxyproline levels were 

significantly reduced in the BLM+ATII transplanted group (Fig. 2C). These results confirm 

that ATII transplantation induces a reduction in collagen deposition and, consequently, in the 

fibrotic response.  

Since the control groups were found to present equivalent data (data not shown) for 

histology, immunofluorescence, mRNA and Western blot, the results are matched in a single 

control group for graphic tractability.  

The engraftment of the transplanted cells in the recipient animals was assessed by 

fluorescent microscopy. In the BLM + AM group only a few AM red PKH26 positives were 

observed in some areas of the lung sections (Fig. 3A). In contrast, in the BLM+ATII 

numerous ATII red PKH26 positives were observed in the transplanted animals, mainly in 

areas of fibrosis (Fig. 3A). The percentage of engrafted cells in the transplanted animals after 

one week of the infusion was 14 ± 9 %. 

To confirm the presence of fibrotic lesions, lung serial sections were stained with Masson 

trichrome and examined by light microscopy (Fig. 3B). Lung tissue sections from control rats 

showed no evidence of inflammation or epithelial damage but, as expected, lung tissue 

sections from rats with BLM-induced fibrosis showed marked peribronchiolar and interstitial 

infiltration, with inflammatory cells, extensive cellular thickening of interalveolar septa, 

interstitial edema, an increase in interstitial cells with a fibroblastic appearance and an 

excess of collagen deposition (Fig. 3B). Similar results were obtained in the lung tissues from 
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the BLM+AM and BLM+SP groups (Fig. 3B). However, although multifocal parenchymal 

lesions were still present in the BLM+ATII group, the organized fibroblast foci were smaller 

and considerably fewer than those observed in the BLM, BLM+AM and BLM+SP groups (Fig. 

3B). Moreover, the reduction in parenchymal lesions was evidenced by large areas of 

undamaged tissue with normal alveolar architecture (Fig. 3B).  

To determine one of the mechanisms involved in the beneficial effect of ATII transplantation, 

we studied the changes in the expression and release of pulmonary surfactant proteins (Fig. 

4 and 5). Quantitative real-time PCR analysis (Fig. 4) revealed a significant decrease in the 

expression of all the pulmonary surfactant proteins in the BLM group, compared to the 

control group. ATII transplantation was the only therapy that showed a significant increase in 

the expression of all the pulmonary surfactant proteins, compared with the BLM group (Fig. 

4). Since macrophage transplantation and surfactant administration did not induce changes 

in the expression of the surfactant proteins, its quantification was determined only in the 

BLM+ATII group. Alterations in protein expression corresponding to mRNA changes were 

assessed by Western blot analysis for SP-B, SP-C and SP-D. Surfactant protein levels were 

significantly decreased in the BLM group, compared with the control group (Fig. 5). In 

contrast, the levels of SP-B, SP-C and SP-D were significantly increased in the BLM+ATII 

group compared to the BLM group, although SP-C and SP-D did not achieve the control 

levels, while SP-B was increased to levels above those of the control group, albeit without 

any significant difference (Fig. 5). All in all, these results indicate the re-establishment of 

pulmonary surfactant protein levels. 

To further examine the increase in the surfactant levels caused by ATII transplantation in 

BLM-induced pulmonary fibrosis, lung serial sections were immunostained, using an 

antibody anti-p180 lamellar body (Fig. 6), and then examined by fluorescent microscopy. 

Lung tissue sections from BLM, BLM+AM and BLM+SP showed only a weak staining for the 

anti-p180 lamellar body (Fig. 6). In contrast, the BLM+ATII group was once again the only 

group to show a marked increase in positive cells for the p180 lamellar body. Furthermore, 

some of the positive anti-p180 cells were donor cells as they were also positives for the red 
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PKH26 marker (Fig. 6); in addition, some of these cells were located in the corner of the 

alveolus, the usual site of ATII (Fig 6), indicating that after ATII transplantation takes place 

the repopulation of the pulmonary epithelium and also the restoration of the pulmonary 

architecture. 

 

Discussion 

Previous studies performed by our group have demonstrated that ATII transplantation 

produces several beneficial effects in an animal model of BLM-induced lung fibrosis, leading 

ultimately to the reversal of disease (7). Since ATII are the cells exclusively responsible for 

the synthesis and release of some pulmonary surfactant proteins and are specifically 

involved in the regulation of the surfactant pool, we hypothesized that depletion of ATII 

during pulmonary fibrosis compromises the capacity to regulate normal levels of pulmonary 

surfactant, further amplifying the fibrogenic process.  

The present study demonstrates that some of the beneficial effects observed after ATII 

transplantation may be explained by the restoration of surfactant levels. Furthermore, ATII 

transplantation was able to increase the levels of all four surfactant proteins. In contrast, 

neither AM transplantation nor exogenous surfactant administration led to any recovery in the 

expression of surfactant proteins, or in body weight, nor a decrease in collagen deposition or 

an improvement in parenchymal lesions. These results confirm that ATII transplantation has 

a specific role in the resolution of disrupted alveolar surfaces, partly by inducing the 

restoration of surfactant levels.  

It is known that ATII death is a key component in the progression of pulmonary fibrosis (21). 

ATII synthesizes all four surfactant proteins, and SP-C is the only surfactant protein 

expressed exclusively by ATII in the mature lung. SP-A, SP-B and SP-D may also be 

expressed by other airway cells, such as Clara cells and submucosal cells (4-8). Although 

fibrosis extend into alveolar spaces and induce epithelial cells damage, other airway cells 

capable of maintaining the expression and synthesis of SP-A, SP-B and SP-D could still 

remain unaffected. However, in our study both the mRNA and protein of all four surfactant 
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proteins were significantly reduced in lung homogenates of animals treated with BLM, 

indicating a broad extension of fibrotic areas in this animal model. In this sense, it is 

important to point out that surfactant synthesis, internalization, reutilization and secretion 

comprise a highly regulated system that maintains appropriate levels of pulmonary surfactant 

throughout life. This process is essential for proper respiratory function, (22-24). ATII are the 

specific cells that recycle surfactant proteins and phospholipids from the alveolar space 

incorporating them directly into their secretory pathway. Therefore, any additional alterations 

to surfactant turnover caused by ATII death may lead to a marked loss of surface tension-

lowering capacity, inducing changes in the biophysical and immunological surfactant 

function.  Furthermore, epithelial and endothelial damage at the alveolo-capillary junction in 

pulmonary fibrosis results in plasma leakage, accumulation of fibrin, inflammatory cell and 

necrotic cell debris, while the formation of hyaline membranes causes alterations resulting 

from the inhibition or degradation of surfactants (13). This phenomenon has been observed 

in IPF patients, where neutrophil infiltration is capable of degrading surfactant proteins (25). 

Altogether, these factors indicate that alterations in the surfactant system during the 

development of pulmonary fibrosis may amplify the fibrogenic processes.  

The most important result of this study is that only the ATII transplantation induced the 

restoration of the surfactant protein pool. In contrast, neither macrophage transplantation nor 

surfactant administration were able to recover the expression levels of any surfactant 

proteins after BLM administration. Furthermore, ATII transplantation was able to increase the 

release of all surfactant proteins. This recovery of surfactant protein suggests not only the 

expression and release of new protein but also the reestablishment of the recycling capacity 

intrinsic to healthy transplanted ATII. Nevertheless, we observed that positive cells for SP-C 

were not only transplanted ATII but also own ATII cells, indicating that after ATII 

transplantation takes place the recovery of the own pulmonary epithelium cell functionality.  

This means that the restoration of the surfactant system could be attributed not only to the 

new donor cells but also to the recruitment of own epithelial cells thus amplifying the 

beneficial effect of ATII transplantation. The functional surfactant synthesized and released 
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will keep the alveoli clear of liquid, while also maintaining a thin fluid film that will enhance 

breathing capacity. These findings were only induced in the ATII transplantation group. In 

contrast, surfactant administration was not able to reestablish the surfactant system, 

increasing the importance of healthy ATII in opening up collapsed but still functional alveoli. 

In this regard, the immunofluorescence studies confirm all these results, as the lung of 

animals transplanted with ATII showed extensive restoration of the pulmonary architecture, 

together with a clear increase in the number of surfactant positive cells.  

 
In conclusion, this study shows that one of the mechanisms involved in the beneficial effect 

of ATII transplantation is the restoration of the lung surfactant protein levels, released by 

themselves or trough the recovery of the own pulmonary epithelium cell functionality needed 

for proper respiratory function. 
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Legends 

 

Figure 1. Purity of isolated donor cells. (A) In red, positive ATII cells for alkaline phosphatase 

after cytospin. Magnification x 200. (B) Transmission electron micrograph of an ATII cell 

showing lamellar bodies (see detail in the upper right corner). (C) Immunochemistry for ATII 

cells against p180 protein. Positive cells are labelled in red. Magnification x 400 (D) Real-

time PCR for SP-B and SP-C of isolated ATII and AM. (E) Flow cytometry analysis of p180 in 

isolated ATII and isolated AM. Cells were immunostained with PE-labelled anti p180 

antibody. Flow cytometry analysis of p180 in isolated AM were used as a control for the 
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analysis of isolated ATII purity. Cells were immunostained with PE-labelled anti SP-C 

antibody. (F) Diff-Quick stain of AM after cytospin . Magnification x 200. (G) Transmission 

electron micrograph of AM. 

 

 

Figure 2. Biomarkers of lung fibrosis progression (A) Curves of animal body weight over time. 

On day 0, the animals received bleomycin (BLM). On day 14, animals were treated with 

ATII,AM or surfactant (Arrowhead). (B) Lung weight at the end of the experiment (21 days) in 

all the experimental groups. (C) Lung hydroxyproline levels at the end of the experiment (21 

days) in all the experimental groups. Data are means  SEM (n = 8 animals per group) 

(*p<0.05 1 vs control groups, # p<0.05 vs BLM group). 
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Figure 3. Lung histology in experimental groups (A) Fluorescence microscopy of ATII and 

AM engraftment after 21 days of cell infusion. For tracking cell purposes, donor cells were 

labelled in red with PKH26 (group BLM+ATII and group BLM+AM). Nuclei were stained in 

blue with DAPI. Magnification x 400. (B) Bright field microscopy photomicrographs of lung 

histopathology at the end of the experiment (21 days) in all the experimental groups. Lung 

sections were stained with Masson trichrome. ATII transplantation is the only therapy that is 

able to ameliorate the inflammatory and pulmonary lesions. The presence of interstitial 

collagen (blue staining) was also diminished only in the BLM+ATII group. Magnification x 

200. 



 

19 

 

Figure 4. Gene expression of four surfactant proteins in lung tissue. (A) SP-A, (B) SP-B, (C) 

SP-C and (D) SP-D at the end of the experiment (21 days) in all groups. Results are 

obtained according to the Ct method related to GAPDH. Bars represent the fold change  

SEM with respect control group (n = 8 animals per group). *p<0.05 01 vs control groups, # 

p<0.05 vs BLM group.  
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Figure 5. Protein levels of three pulmonary surfactant proteins. (A) SP-B, (B) SP-C and (D) 

SP-D from lung tissue at the end of the experiment (21 days) in all the experimental groups. 

Protein level was normalized for tubulin expression. Data are mean  SEM (n = 8 animals 

per group). *p<0.05 vs control groups, # p<0.05 vs BLM group. 

 

Figure 6. Immunofluorescence for p180 lamellar body in lung tissue in all the experimental 

groups at the end of the experiment (21 days). In green is shown positive cells for p180 
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lamellar body. ATII donor cells were labelled in red with PKH26. Colocalization of p180 and 

PKH26 is shown in yellow only observed in BLM+ATII transplanted group. Nuclei were 

stained in blue with DAPI. Magnification x 640. 
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Online Data Supplement 

 

This appendix has been provided by the authors to give readers additional information about 

their work. 

 

Supplement to: ALVEOLAR TYPE II CELL TRANSPLANTATION RESTORES 

PULMONARY SURFACTANT PROTEIN LEVELS IN LUNG FIBROSIS 
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SUPPLEMENTAL METHODS  

Isolation of Alveolar Type II Cells. Fresh alveolar type II cells (ATII) were isolated from 

healthy donor animals. To isolate ATII, the lungs were removed from the animal and lavaged 

with 5 x 10 ml saline. The lungs were digested by filling with 0.25% trypsin dissolved in saline 

(100 ml) (T8003, Sigma, Missouri, USA) and suspended in 0.9% NaCl at 37 °C for 30 min, 

with the trypsin constantly topped up to expand the parenchyma for 30 min, suspended in a 

saline solution at 37 ºC. Following digestion, the lungs were chopped into 1-2 mm2 cubes, 

treated with 75 U/ ml DNase dissolved in saline and filtered through nylon meshes ranging 

from 150 to 30 µm. The resulting cell suspension was centrifuged (250 x g, 20 min at 10 ºC) 

through a sterile Percoll gradient and the ATII rich band was removed. A second DNase 

treatment of 20 U/ml was administered and the cells were recovered as a pellet by 

centrifugation at 250 x g for 20 min. These cells were resuspended in 5 ml DCCM 1 

(Biological Industries, Kibbutz Beit Haemek, Israel) completed with a 2% (w/v) L- Glutamine 

and subjected to differential attachment on a plastic Petri dish. Non-adherent ATII were 

collected after 2 h and counted to establish the final cell yield of freshly purified cells.  

The ATII viability was assessed by Tripan Blue (Sigma, Missouri, USA), showing >95% 

viability.  

Cell yield and purity of Alveolar Type II Cells isolation. Cell yield and purity were 

assessed by different techniques: by alkaline phosphatase staining kit (Sigma, Missouri, 

USA), by immunochemistry, by real-time PCR and by flow cytometry.  

To perform the phospatase alkaline kit and the immunochemistry assay isolated ATII were 

cytocentrifuged (Cytospin 3 centrifuge Shandon Scientific Ltd, Grupo Taper, Spain), allowed 

to dry in air for 15 min at RT. The phosphatase staining was conducted according to the 

manufacturer’s protocol for alkaline phosphatase.  

Immunochemistry analysis were done in ATII cytospins, the cells were labelled using an 

antibody against p180 lamellar body (Abcam, UK), specific to surfactant lamellar bodies, and 
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revealed with a secondary antibody anti-mouse Alexa fluor 594 (Life Technologies, Spain). 

The nuclei were labelled with DAPI.  

Real-time PCR was performed to verify the expression of SP-B and SP-C in the isolated 

ATII. Isolated AM were used as a negative control. Total RNA was extracted using TRIzol 

reagent (Invitrogen, Carlsbad, CA, USA) and reverse-transcribed into cDNA, according to the 

manufacturer’s instructions. Quantitative real-time PCR amplification was performed using 

TaqMan technology and mix buffer Universal PCR Master Mix No Amp Erase® UNG 

(Applied Biosystems, CA, USA). The cycle conditions were as follows: 95 °C, 10 min, 

followed by 40 cycles of amplification (95 °C denaturation, 15 s, and 60 °C combined 

annealing/extension for 1 min). The primers used came from Applied Biosystems: SP-B, 

Rn00569225-m1 for SP-C, Rn00563557-m1 and for GAPDH. Results are expressed 

according to the Ct method related to GAPDH  (n=8).  

Finally, the puryity of ATII isolation was analyzed by flow cytometry. The flow cytometry 

assays were performed in triplicate. For each assay, 1 x 106 cells were analyzed. Flow 

cytometry analysis was performed with a cytometer (FACSCanto II, BD Pharmingen, San 

Jose, CA). The data were analyzed with a specific software (FACSDiva™ , BD Pharmingen). 

Cells were incubated with irrelevant immunoglobulins IgG (Sigma-Aldrich) to block Fc 

receptors for nonspecific binding and then resuspended in 1000 μl of a solution of 

permeabilization (saponine 0.05 % in PBS) and incubated for 10 min at 4 °C. The cells then 

were incubated with the p180 lamellar body (Abcam, UK) primary antibody (dilution 1/100) in 

the dark for 15 min at 4 °C.  The cellular pellet then was resuspended and incubated in the 

dark for 15 min at 4 °C with the secondary antibody conjugated with PE (dilution 1/50) in 

PBS. The cells were washed (2 x 5 min x 1200 rpm) with 1 ml of PBS. The cells were then 

fixed with 0.01% para-formaldehyde + 0.1% of sodium azide in PBS and incubated in the 

dark for 15 min, washed (2 x 5 min x 1200 rpm) with 1 ml of PBS + 0.1% sodium azide and 

resuspended with PBS + 0.1% sodium azide  until the analysis. Alveolar macrophages (AM) 

were labelled with the antibody p180 lamellar body and used as a negative control of isolated 

ATII purity. 
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Isolation of Alveolar Macrophage. Fresh AM were isolated from healthy donor animals by 

performing a bronchoalveolar lavage. Bronchoalveolar lavage was undertaken by washing 

the lung five times with 10 ml saline aliquots via a tracheal cannula and centrifuging (300 x g, 

20 min, 4 ºC). The AM viability after isolation was assessed by Trypan Blue and proved to be 

>95%.  

Transmission electron microscopy. The ATII and AM characterization was evaluated by 

transmission electron microscopy. The cells were fixed in 2.5% glutaraldehyde in 0.1 mol/l 

phosphate buffer (pH 7.4) for at least 2 h at 4 ºC. The cells were secondarily fixed in 1% 

osmium tetroxide and 0.8% potassium ferrocyanide for 1 h at 4 ºC. After 3 washes with cold 

double distilled water, the sample was dehydrated with an ascending concentration of 

acetone (30%, 50%, 70%, 95%, and 100%), and three changes of 100% acetone. They were 

then embedded in Spurr resin and polymerized at 60 °C. The embedded blocks were 

sectioned using a diamond knife (Diatome) on a Leica Ultracut UCT (Leica Microsystems, 

Deerfield, IL). Ultrathin sections were placed on copper grids and stained with ranyl acetate 

and lead citrate before examination under a JEM 1010 (Jeol Ltd., Tokio, Japan) equipped 

with a Gatan/BioScan digital camera (Gatan Inc., Pleasanton, CA). 

Cell Engraftment. After cell isolation the ATII and the AM were labeled by the PKH26 Red 

Fluorescent Cell Linker Kit (Sigma, Missouri, USA) following the manufacturer’s protocol, and 

then transplanted to the animals. To evaluate cell engraftment, the lungs were collected, 

frozen and embedded in OCT (Jung, Japan). Eight µm sections were examined under 

fluorescent microscopy. The nuclei were stained with DAPI. The percentage of engrafted 

cells was evaluated by counting positive PKH26 cells over the total cell number on 15 

randomly selected fields by two blinded different observers. 

Hidroxyproline content. Lung hydroxyproline content was measured as an indicator of 

collagen deposition, following the method outlined by Woessner (E1). Samples were 

homogenized and then hydrolyzed in 6 M HCl, and the hydrolysate was then neutralized with 
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2.5 M NaOH. Hydroxyproline in the hydrolysate was assessed colorimetrically at 550 nm with 

p-dimethylaminobenzaldehyde. The results are expressed as µg of hydroxyproline per lung.  

RNA isolation and real-time PCR analysis. Total RNA was extracted from lung tissue 

using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) and reverse-transcribed into cDNA, 

according to the manufacturer’s instructions. Quantitative real-time PCR amplification was 

performed using TaqMan technology and mix buffer Universal PCR Master Mix No Amp 

Erase® UNG (Applied Biosystems, CA, USA). The cycle conditions were as follows: 95 °C, 

10 min, followed by 40 cycles of amplification (95 °C denaturation, 15 s, and 60 °C combined 

annealing/extension for 1 min). The primers used came from Applied Biosystems: 

Rn00824545-m1 for SP-A, Rn00593742-m1 for SP-B, Rn00569225-m1 for SP-C, 

Rn00563557-m1 for SP-D and Rn-99999916-s1 for GAPDH. Results are expressed 

according to the Ct method related to GAPDH  (n=8 in each group). 

SDS-PAGE and Western blot. Protein samples were extracted using Nonidet P-40 buffer. 

SDS-PAGE was performed on 5%-13% acrylamide gels. Proteins were electrotransferred to 

nitrocellulose membrane and probed with primary antibodies. The antibodies used included 

mouse anti-SP-B (dilution1/2000) (Acris Antibodies, Germany), rabit anti-SP-C (dilution 

1/1000) (Santa Cruz Biotechnology, USA), anti-SP-D (dilution 1/1000) (Acris Antibodies, 

Germany), and mouse anti- alpha-tubulin (dilution (1/1000) (Sigma, USA), which served as a 

housekeeping reference. The membranes were incubated with the corresponding 

peroxidase-conjugated secondary antibodies, washed, and then incubated with ECL 

reagents (GE Healthcare Europe GmbH; Freigburg; GE) before exposure to high 

performance chemiluminescence films. Gels were calibrated using Bio-Rad standard 

proteins (Hercules, CA) with markers covering a 7-240 kDa range. 

Films were scanned by using image-editing software NIH ImageJ software for densitometric 

analysis of immunoreactive bands. 

Immunostaining studies. For the immunofluorescence studies the lungs were collected, 

frozen and embedded in OCT (Jung, Japan). Eight µm tissue sections were obtained and the 

pulmonary surfactant proteins were assessed using an antibody against p180 lamellar body 



 

27 

(Abcam, UK), specific to surfactant lamellar bodies, and revealed with a secondary antibody 

anti-mouse FITC (Acris, Germany). The surfactant was observed in green colour. The nuclei 

were stained with DAPI. 

Histology. Lungs used for histology were inflated and fixed with 10% neutral buffered 

formalin, immersed in the fixative solution for 24 h and paraffin-embedded. Four µm sections 

were stained with Masson’s trichrome to identify connective tissue and collagen deposition. 
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