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A carboxyl derivative of the antimalarial cytotoxic drug cryptolepine was 

introduced into synthetic oligonucleotides by reaction of the carboxyl derivative 

of cryptolepine with oligonucleotides carrying an amino group either at the 3’- 

end or at the 5’-end. Oligonucleotides carrying the cryptolepine derivative binds 

their complementary sequences with greater affinity than unmodified ones. When 

cryptolepine is attached to a polypyrimidine oligonucleotide designed to form a 

parallel triplex,  the triplex shows none or weak stabilization. 

 

Introduction.- Cryptolepine (1, Scheme 1) is a naturally occurring 

indoloquinoline alkaloid used mainly as antimalarial drug. It has been shown to 

intercalate into DNA, preferably at cytosine-cytosine sites [1]. Compounds that 

intercalates into DNA increase the affinity of synthetic oligonucleotides for their 

complementary sequence when intercalating agents are attached to the 5’ and 3’-

ends of the synthetic oligonucleotides [2]. Acridine, anthraquinone, 

phenanthroline, ethidium and, ellipticine derivatives, among others, stabilize 

duplexes [2], while daunorubicin [3], benzopyrridoindole (BPI) and 

benzopyrridoquinoxaline (BPQ) [4, 5] increase the stability of triplexes. There is 

large interest in oligonucleotides carrying intercalating agents given their higher 

affinity for complementary sequences [2]. These oligonucleotides have been used 

in both antisense and antigene strategies for the inhibition of gene expression [6, 

7]. Those carrying small DNA binding molecules have recently been reported as 

more efficient primers for the polymerase chain reaction (PCR) [8].  

Here we described the synthesis of oligonucleotides carrying 10H-

indolo[3,2-b]quinoline-11-carboxylic acid (2). Several sequences were designed 



to study whether the presence of compound 2 at the 5’- and 3’-ends of the 

oligonucleotides stabilizes duplex and / or triplex DNA structures. 

 

Results and discussion. - 1. Synthesis of oligonucleotides carrying compound 2. 

Small ligands can be incorporated into synthetic oligonucleotides at specific sites 

preparing oligonucleotides carrying aliphatic amino groups and performing a 

conjugation reaction with the carboxylic derivatives of the ligands [9, 10]. This 

strategy was used to incorporate the carboxyl derivative of cryptolepine (2) into 

oligonucleotides (Schemes 2 and 3).  

Oligonucleotide sequences 3-7 (Table 1) carrying an amino group either at 

the 5’- or 3’-end were prepared using the phosphoramidite of the N6-

monomethoxytrityl (MeOTr) protected derivative of 6-aminohexanol [10] and a 

controlled pore glass support carrying the 2-(N-9-fluorenylmethoxycarbonyl 

(Fmoc)-4-aminobutyl)-1,3-propanediol linker [9] (Scheme 3). We used the 

benzoyl (Bz) group for the protection of the amino group of C and A and the 

isobutyryl (ibu) or the dimethylaminomethylidene (dmf) group for the protection 

of G.  

1.1 Synthesis of oligonucleotides carrying cryptolepine at the 3’-end. The 

reaction with carboxyl derivative 2 with oligonucleotide sequences 3 and 7 was 

examined following two protocols.  

a) Solid-phase coupling protocol (Scheme 3). The Fmoc group that protects 

the amino group is removed selectively with a non-nucleophillic base (DBU, 1,8-

diazabicyclo[5.4.0] undece-7-ene). The carboxyl derivative 2 is reacted with the 

support carrying the amino-oligonucleotide using (benzotriazol-1-yloxy) 

trispyrrolidinophosphonium hexafluorophosphate (PyBOP) as carboxyl activator. 



The excess of chemicals was washed and the solid support carrying the 

oligonucleotide was treated with concentrated ammonia (1 h at 50ºC for sequence 

3 using the dmf protecting group for G; 2 h at room temperature for sequence 7). 

The solution was analyzed by HPLC. The desired oligonucleotide carrying the 

cryptolepine eluted at around 14 min. Unreacted amino-oligonucleotides eluted at 

9 min. The desired product was characterized by UV-spectra and mass 

spectrometry (Table 1).  

b) Solution-phase coupling protocol. After the synthesis, the support 

carrying the amino-oligonucleotide is deprotected using concentrated ammonia. In 

these conditions all protecting groups including the Fmoc group are removed 

yielding unprotected 3’-amino oligonucleotide. This compound is treated with the 

carboxyl derivative 2 activated with diisopropylcarbodiimide and N-

hydroxysuccinimide. The reaction is performed at room temperature overnight in 

aqueous sodium bicarbonate 1 M pH 9.0 /dimethylformamide (1:1). HPLC 

analysis revealed the presence of the desired oligonucleotide in higher yields than 

the solid-phase protocol (Table 1). Oligonucleotide sequence 5 was prepared 

following the solution-phase coupling protocol (Figure 1). 

 

1.2 Synthesis of oligonucleotides carrying cryptolepine at the 5’-end. 

Oligonucleotide sequences carrying cryptolepine at the 5’-end (4 and 6) were 

prepared using the solution-phase coupling protocol. As described above the 

support carrying the amino-oligonucleotide was deprotected using concentrated 

ammonia. The resulting 5’-amino-oligonucleotide was treated with 10 molar 

excess of the carboxyl derivative 2 activated with diisopropylcarbodiimide and N-

hydroxysuccinimide. The reaction was performed at room temperature overnight 



in aqueous sodium bicarbonate 1M pH 9.0 /dimethylformamide (1:1) followed by 

the work-up described above. HPLC analysis revealed the presence of the desired 

oligonucleotide (Table 1).   

 

2. Hybridization properties of oligonucleotides carrying cryptolepine. The 

hybridization properties of oligonucleotides carrying cryptolepine 2 were 

measured spectrophotometrically on the duplex formed by the self-

complementary sequences 3-6 and on the duplex formed by sequence 7 and its 

complementary sequence (Table 2). Unmodified duplexes were included for 

comparison purposes. The duplex formed by sequence 3 carrying two molecules 

of compound 2 melted at 52 ºC, while the unmodified duplex melted at 35 ºC. 

This involves an increase of 8.5 ºC per intercalating molecule. The duplex formed 

by sequences 4-6 carrying two molecules of compound 2 melted at 46-47 ºC 

(increase in Tm of 5.5-6 ºC per substitution). Elevenmer sequence 7 carrying 

compound 2 melted at 59 ºC, while the unmodified sequence melted at 52 ºC 

(increase in Tm= 7 ºC). 

 The increase of 5.5-8.5 ºC per substitution points the strong stabilization of 

the duplex induced by the presence of the cryptolepine derivative 2 (for 

comparison similar acridine derivatives lead to increases of 3-6 ºC per 

substitution, [2]). In the sequence TTCCGGAA (3 and 4), there are differences 

when the crytolepine derivative is at the 3’ or at the 5’-end whereas in the 

sequence CCAATTGG (5 and 6) these differences are very slight. Competition 

dialysis experiments on free cryptolepine indicated a preference for CC and GG 

sites [1]. This preference was not observed in  the oligonucleotide carrying 



compound 2. On the contrary, the highest melting temperature was detected on 

sequence 3, bearing two adenines near the anchoring sites.   

 The dependence of the duplex to random coil transition on DNA 

concentration was studied on oligonucleotide sequence 5. Melting temperatures 

decreased with the concentration as expected for a bimolecular reaction. The plot 

of 1/Tm versus ln concentration was linear, giving a slope and a y-intercept from 

which ΔH, ΔS and ΔG were obtained (Table 3). The ΔG for the duplex 

dissociation was –20.2 Kcal/mol for the unmodified duplex, -20.8 Kcal/mol for 

the duplex carrying an amino group at the 3-‘end and -24.6 Kcal/mol for the 

duplex carrying two molecules of compound 2. The ΔG of these values differed in 

4.4 Kcal/mol (2.2 Kcal/mol per substitution).  

The effect of compound 2 on triplex stability was studied with sequence 7 

(Table 4). This oligonucleotide can form a parallel triplex with the appropriate 

target sequences (Table 4). When the target oligonucleotide was a hairpin duplex 

with 26 bases (h26), no differences in Tm were found, when the target sequence 

was a larger hairpin duplex (h34), Tm increased by 3 ºC, indicating a slight 

stabilization due to the presence of compound 2 (Table 4). We can not rule out 

that in this triplex, the cryptolepine moiety of oligonucleotide 7 is anchored into 

the remaining duplex.   

 

Conclusion. We have described the preparation of oligonucleotides carrying the 

cryptolepine derivative 2 either at the 3’ or at the 5’-end. The addition of 

compound 2 to synthetic oligonucleotides increases the stability of the duplex. 
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Experimental Part 

 

General. The phosphoramidites and ancillary reagents used during 

oligonucleotide synthesis were from Applied Biosystems (PE Biosystems Hispania 

S.A., Spain), Cruachem (Cruachem Ltd., Scotland) and Glen Research (Glen 

Research Inc., USA). The rest of the chemicals were purchased from Aldrich, 

Sigma or Fluka (Sigma-Aldrich Química S.A., Spain). Solvents were from S.D.S. 

(S.D.S., France). NAP-10 columns (Sephadex G-25) were purchased from 

Pharmacia Biotech. Instrumentation. Oligonucleotide sequences were synthesized 

on an Applied Biosystems DNA synthesizer model 392 (Applied Biosystems, 

USA). Mass spectra (matrix-assisted laser desorption ionization time-of-flight, 

MALDI-TOF) were provided by the Mass spectrometry service at the University 

of Barcelona. UV-Visible spectra were recorded on a Shimadzu UV-2101PC 

spectrophotometer.  

 

Synthesis of oligonucleotides carrying amino groups. Oligonucleotide sequences 

carrying an amino group either at the 5’-end or at the 3’-end were assembled on a 

1 μmol scale. The phosphoramidite derivative of 6-aminohexanol carrying the 

monomethoxytrityl group (Glen Research and Cruachem [10]) was used for the 

introduction of the amino group at the 5’-end. The 3’amino C7 modifier 



controlled pore glass (CPG) [9] (Glen Research) was used for the preparation of 

oligonucleotides carrying amino groups at the 3’-end. The benzoyl (Bz) group 

was used for the protection of the amino group of C and A and the 

dimethylaminomethylidene (dmf) or the isobutyryl (ibu) group for the protection 

of G. Coupling yields were >95%. The last (MeO)2Tr  protecting group was 

removed.   

 

Synthesis of oligonucleotides carrying cryptolepine derivative 2 using the solid-

phase coupling protocol. Oligonucleotide sequences 3 and 7 carrying an amino 

group at the 3’ end were prepared as described above using the dmf group for the 

protection of G. The resulting solid supports were treated with a 0.1M soln. of 1,8-

diazabiciclo[5.4.0] undece-7-ene (DBU) in dry acetonitrile (2 min, room 

temperature). Thus, the Fmoc group that protects the amino group was removed 

selectively with a non-nucleophilic base. The resulting supports were washed with 

acetonitrile and reacted with 10H-indolo[3,2-b]quinoline-11-carboxylic acid (2) as 

follows. A mixture containing 10 molar excess of 10H-indolo[3,2-b]quinoline-11-

carboxylic acid, 20 molar excess of diisopropylethylamine (DIEA) and 10 molar 

excess of (benzotriazol-1-yloxy) trispyrrolidinophosphonium 

hexafluorophosphate (PyBOP) was prepared in dry dimethylformamide (DMF) 

(0.2 ml). The mixture was left for 2 min at room temperature and added to the 

support. After 1 h at room temperature, the mixture was filtered and washed with 

DMF and acetonitrile (ACN). The support was dried and the concentrated 

ammonia (1 ml) was added. The ammonia solution was left for 1 h at 50 ºC (or for 

2 h at room temperature in sequence 7). The mixture was filtered and the 

ammonia solution was concentrated to dryness. The residue was dissolved in 



water and desalted by a NAP-10 (Sephadex G-25) column eluted with water. 

Finally, the oligonucleotide fractions were analyzed by HPLC. HPLC solutions 

were solvent A: 5% ACN in 100mM triethylammonium acetate pH 6.5 and solvent 

B: 70% ACN in 100mM triethylammonium acetate pH 6.5. Column: PRP-1 

(Hamilton), 250 x 10 mm. Flow rate: 3 ml/min. A 20 min lineal gradient from 5-

35% ACN. The desired oligonucleotide carrying the 5-methyl-5H-quidoline at 14 

min  The unreacted amino-oligonucleotide eluted at around 9 min. The desired 

product was characterized by UV and mass spectra (Table 1). 

 

Synthesis of oligonucleotides carrying cryptolepine derivative 2 using the 

solution-phase coupling protocol. Oligonucleotide sequences 3-7 carrying an 

amino group either at the 3’- or at the 5’-end were prepared as described above. 

The solid support obtained after the assembly of the sequence was treated with 

concentrated ammonia for 1 h at 50ºC (when using the dmf group for the 

protection of G) or for 16 h at 50ºC (when using the ibu group for the protection 

of G). The mixture was filtered and the ammonia solution was concentrated to 

dryness. The residue was passed over a Dowex 50x4 (Na+ form) column to 

exchange ammonium ions for sodium ions. The resulting amino-oligonucleotide 

was dissolved in 0.1 ml of water, and mixed with 0.1 ml of 1M sodium carbonate 

aqueous buffer pH 9. In a separate container 10H-indolo[3,2-b]quinoline-11-

carboxylic acid (10 molar excess) was dissolved in 0.1 ml of DMF and mixed 

with N-hydroxysuccinimide (10 molar excess) and N,N-diisopropylcarbodiimide 

(10 molar excess). The mixture was left for 10 min at room temperature and  

added to the aqueous solution of the amino-oligonucleotide. The reaction mixture 

was kept at room temperature overnight. The mixture was concentrated to dryness 



and the residue was dissolved in water. The solution was passed through a NAP-

10 column. The fractions containing oligonucleotide were analyzed by HPLC as 

described above. The desired product was characterized by UV-spectra and mass 

spectrometry (MALDI-TOF) (Table 1) 

 

Melting experiments. Melting experiments were performed as follows. Solutions 

of equimolar amounts of the appropriate oligonucleotides were mixed either in a 

soln. containing 1M NaCl, 10mM sodium phosphate buffer of pH 7.0 (in 

experiments on duplex formation) or in a soln. containing 1M NaCl and 0.1M 

sodium phosphate / citric acid buffer of pH 6.0 (in experiments related on triplex 

formation). DNA concentration was determined by UV absorbance measurements 

(260 nm) at 90 ºC, using for the DNA coil state the following extinction 

coefficients: 7500, 8500, 12500 and 15000 M-1 cm-1 for C, T, G and A, 

respectively. The solutions were heated to 90 ºC, allowed to cool slowly to room 

temperature and stored at 4ºC until UV was measured. UV absorption spectra and 

melting experiments (absorbance vs temperature) were recorded in 1 cm path-

length cells using a spectrophotometer, with a temperature controller and a 

programmed temperature increase rate of 0.5 ºC/min. Melting curves were 

recorded at 260 nm and melting temperatures were measured at the maximum of 

the first derivatives of the melting curves. Results: see Tables 2-4. 

The samples used on the thermodynamic studies were prepared in a similar 

way but melting experiments were recorded at 260 nm using 0.1, 0.5 and 1 cm 

path-length cells. Melting curves were obtained at concentrations ranging from 1 

to 35 μM of duplex. Melting temperatures (Tm) were measured at the maximum 

of the first derivative of the melting curve. The plot of 1/Tm versus lnC was 



linear. Linear regression of the data gave the slope and the y-intercept, from which 

ΔH and ΔS were obtained. The free energy was obtained from the standard 

equation: ΔG = ΔH -TΔS. 
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Table 1. Synthesis and characterization of oligonucleotides carrying the 

cryptolepine derivative 2. 

Sequence (5’-3’) Protocol yield UV(max) EM(Found) Expected 

3: TTCCGGAA-2 Solid phase 7% 258, 348 2861 (M-H+) 2862 

3: TTCCGGAA-2 Solution 18% 258, 348 2861 (M-H+) 2862 

4: 2-TTCCGGAA Solution 12% 260, 349 2831 (M-H+) 2832 

5: CCAATTGG-2 Solution 15% 260, 349 2831 (M-H+) 2832 

6: 2-CCAATTGG Solution 22% 270, 349 2861 (M-H+) 2862 

7: CTTCCTCCTCT-2 Solid phase 5% 273, 349 3646 (M-H+) 3647 

7: CTTCCTCCTCT-2 Solution 20% 273, 349 3646 (M-H+) 3647 

 

 



Table 2. Melting temperatures of duplexes carrying compound 2 

 

Sequence (5’-3’) Tm (ºC)* ΔTm (ºC) 

TTCCGGAA  35 -- 

3, TTCCGGAA-2 52 17 

4, 2-TTCCGGAA 47 12 

CCAATTGG 35 -- 

5, CCAATTGG-2 46 11 

6, 2-CCAATTGG 47 12 

CTTCCTCCTCT# 52 -- 

7, CTTCCTCCTCT-2# 59 7 

*1M NaCl, 0.1 M sodium phosphate pH 7.0 at 4 μM concentration. 

#complementary sequence 5’-AGAGGAGGAAG-3’ 

 



Table 3. Thermodynamic parameters for duplex to random coil transitions in 1M 

NaCl, 0.1 M sodium phosphate pH 7.0 from the slope of the plot 1/Tm versus lnCa. 

 

 

duplex Tm 

(ºC)b) 

ΔH 

(kcal/mol) 

ΔS (cal/mol 

K) 

ΔG (kcal/ 

mol) 

5’-CCAATTGG-3’ 34.7 -107 -293 -20.2 

5’-CCAATTGG-NH2-3’ 35.8 -111 -303 -20.8 

5, 5’-CCAATTGG-2-3’ 45.8 -121 -323 -24.6 
a) ΔH, ΔS and ΔG are given as round number, ΔG is calculated at 25ºC, with the 

assumption that ΔH and ΔS do not depend on temperature; analysis was carried 

out using melting temperatures obtained from denaturation curves; b) at 4 μM 

duplex concentration. 



 

Table 4. Melting temperatures of triplexes carrying compound 2. 

 

 
 

Sequence R= Tm(triplex)* Tm(duplex)* ΔTm(triplex) 

h26+ unmodified  H 26 ºC 77 ºC -- 

h26+ sequence 7 2 26 ºC 77 ºC 0 

h34+ unmodified  H 26 ºC >80 ºC -- 

h34+ sequence 7  2 29 ºC >80 ºC 3 ºC 

*1M NaCl, 0.1 M sodium phosphate-citric acid pH 6.0 at 4 μM concentration. 
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LEGENDS 

 

Scheme 1: Cryptolepine (1) and the carboxyl derivative 2 used for the 

derivatization of oligonucleotides. 

 

Scheme 2: Synthesis of oligonucleotides carrying cryptolepine at the 5’-end by 

recation of a 5’-amino-oligonucleotide with the carboxyl derivative of 

cryptolepine 2. 

 

Scheme 3: Synthesis of oligonucleotide carrying cryptolepine derivative 2 at the 

3’-end. 

 

Figure 1: HPLC profiles of oligonucleotide sequence 5 carrying cryptolepine at 

the 3’-end.  A) Oligonucleotide carrying an amino group at the 3’-end before 

conjugation. B) Mixture obtained after the reaction with compound 2. The desired 

oligonucleotide carrying cryptolepine eluted at 14 min.  
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