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Abstract 

Fungicides are crucial for food protection as well as for the production of crops of suitable 

quality and quantity to provide a viable economic return. Like other pesticides, fungicides are 

widely sprayed on agricultural land, especially in wine-growing areas, from where they can 

move-off after application. Furthermore, residues of these agrochemicals can remain on crops 

after harvest and even after some food processing operations, being a major exposure pathway. 

Although a relatively low toxicity has been claimed for this kind of compounds, information 

about their neurotoxicity is still scarce.  

In the present study, nine fungicides recently approved for agricultural uses in the EU 

―ametoctradin, boscalid, cyazofamid, dimethomorph, fenhexamid, kresoxim-methyl, 

mepanipyrim, metrafenone and pyraclostrobin― have been evaluated for their toxicity in 

primary cultured mouse cortical neurons.  Exposure to 0.1‒100 µM for 7 days in vitro resulted 

in a dose-dependent toxicity in the MTT cell viability assay. Strobilurin fungicides kresoxim-

methyl (KR) and pyraclostrobin (PY) were the most neurotoxic compounds (lethal 

concentration 50 were in the low micromolar and nanomolar levels, respectively) causing a 

rapid raise in intracellular calcium [Ca2+] i and strong depolarization of mitochondrial 

membrane potential. KR- and PY-induced cell death was reversed by the calcium channels 

blockers MK-801 and verapamil, suggesting that calcium entry through NMDA receptors and 

voltage-operated calcium channels are involved in KR- and PY-induced neurotoxicity. These 

results highlight the need for further evaluation of their neurotoxic effects in vivo. 

 

Keywords: cortical neurons; fungicides; neurotoxicity; calcium channels; mitochondrial 

membrane potential; strobilurin 
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1. Introduction 

In recent years, the agricultural industry has experienced strong market and technological 

competition among the producing countries, resulting in increased production yields while 

reducing costs for both producers and consumers. In this regard, pesticides are of paramount 

importance since they allow controlling insect or fungal infestations or growth of weeds, either 

to handle immediate infestations or to anticipate long-lasting problems (Regueiro et al., 2015). 

Among them, fungicides are used to manage fungal disease organisms on growing crops, or 

used as a post-harvest treatment to prevent fungi or molds causing food to rot during storage or 

transport. Therefore, fungicides have become essential for food protection as well as for 

maintaining healthy crops, and consistent yields of high quality produce. In fact, fungicides 

accounted for over 52% of all plant protection products used in the European Union (EU) in 

2003, with an estimated consumption above 100 kilotons (Eurostat, 2007). Like other 

pesticides, fungicides are widely sprayed on agricultural land and therefore they can move-off 

of fields after application, becoming a potential health risk not only for farm workers, but also 

for residents and children by exposure through the air, soil and water environment (Kamel and 

Hoppin, 2004). Furthermore, residues of these agrochemicals can remain on crops after harvest 

and even after some food processing operations (Kaushik et al., 2009). 

Because of the growing health concerns about the use of ethylene-bis-dithiocarbamate (EBDC) 

fungicides, especially maneb and mancozeb (Bjørling-Poulsen et al., 2008; Domico et al., 

2006), a number of fungicides showing new modes of action have been released in the recent 

years. These include compounds which affect cell wall biosynthesis in fungal cells 

(dimethomorph), sterol biosynthesis in membranes (fenhexamid), amino acid and protein 

synthesis (mepanipyrim), fungal respiration (ametoctradin, boscalid, cyazofamid, kresoxim-

methyl and pyraclostrobin) or even with unknown mode of action (metrafenone) (FRAC, 

2014). Some of them have been very recently included in EU list of authorized plant protection 
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products (Table 1) according to Commission Regulation (EC) No 1107/2009 concerning the 

“placing of plant protection products on the market” (European Commision, 2009). The main 

properties of these new fungicides are their broad spectrum of action, their special penetration 

and redistribution properties and their long-term stability, which results in better long-term 

efficacy, allowing the use of lower concentrations of active substances (Wightwick et al., 

2010). These fungicides are used to treat and prevent a broad range of fungal diseases such as 

late blight and downey mildew on potatoes, eyespot and powdery mildew on cereals, grey 

mould on strawberries, grapes, tomatoes and cucumbers, or scab on apples and pears (PPDB, 

2014). They have also been proposed as effective agents against the fungal production of 

aflatoxins (Sakuda et al., 2014). 

Recent studies suggest that exposure to certain agrochemicals, including fungicides such 

maneb and mancozeb, may be involved in the development of neurodegenerative disorders 

such as Parkinson´s disease (Bjørling-Poulsen et al., 2008; Costello et al., 2009). Although a 

relatively low toxicity is claimed for the newly formulated fungicides, which acceptable daily 

intakes (ADI) have been established from 0.02 to 10 mg/kg body weight (Table 1), little is 

known regarding their contribution to neuronal toxicity. Thus, the aim of the present work was 

to investigate the toxic effects of nine recently approved fungicides with different modes of 

action on primary cultured cortical neurons. 

 

2. Materials and methods 

2.1 Materials 

Pregnant NMRI mice (16th gestational day) were obtained from Charles River/Iffa Credo 

(Saint Germain-sur-l'Arbreste, France). Plastic multi-well culture plates were purchased from 

Nunc (Rockilde, Denmark). Fetal bovine serum (FBS) was from Gibco (Invitrogen, Barcelona, 

Spain). Dulbecco’s modified Eagle’s minimum essential medium (DMEM) was obtained from 
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Biochrom (Berlin, Germany). Isofluorane (FORANE) was from Abbot Laboratories (Madrid, 

Spain). Fluo-3 acetoxymethyl ester (Fluo-3/AM), rhodamine-123 (Rho-123) and pluronic F-

127 were from Invitrogen (Carlsbad, CA, USA). Ametoctradin (AM), boscalid (BO), 

cyazofamid (CY), dimethomorph (DI), fenhexamid (FE), kresoxim-methyl (KR), mepanipyrim 

(MY), metrafenone (ME) and pyraclostrobin (PY) were Pestanal Grade standards, of certified 

purity from 97.9 to 99.9%, from Sigma (St. Louis, MO, USA). Dimethyl sulfoxide (DMSO), 

glacial acetic acid, formic acid (≥98%), ethanol, methanol, acetonitrile, poly-D-lysine, trypsin, 

soybean trypsin inhibitor, bovine serum albumin (BSA), DNAse, HEPES, (+)-MK-801 

hydrogen maleate (MK-801), (±)-verapamil hydrochloride, antimicyne A, 3-(4,5-

dimethythiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT), 2',7'-dichlorofluorescin 

diacetate (DCFH-DA), Triton-X 100 and sodium dodecyl sufate (SDS) were obtained also 

from Sigma. D-(+)-glucose monohydrate was purchased from Merck (Darmstadt, Germany). 

 

2.2 Instrumentation 

All absorbance measurements were performed on a microplate spectrophotometer Multiskan 

Spectrum from Thermo Fischer Scientific (San Jose, CA, USA). A microplate 

spectrofluorometer Spectramax Gemini XS from Molecular Devices (Wokingham, UK) was 

used for all fluorescence readings. 

 

2.3 Neuronal Cultures 

Primary cultures of cortical neurons were prepared from cerebral cortices of 16th gestational 

day mice fetuses as previously described (Briz et al., 2010; Solà et al., 2011). Pregnant animals 

were anesthetized with isofluorane, killed by cervical dislocation, and the fetuses were 

extracted. Cortices were dissected with forceps and mechanically minced, and cells were then 

dissociated by mild trypsinization 0.02% (w/v) at 37 °C for 10 min followed by trituration in a 
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DNAse solution 0.004% (w/v) containing soybean trypsin inhibitor 0.05% (w/v). The cells 

were then suspended in DMEM containing 31 mM glucose, and 0.2 mM glutamine 

supplemented with p-aminobenzoate, insulin, penicillin, and 10% fetal bovine serum. The cell 

suspension (1.5 × 106 cells per milliliter) was seeded in 6- or 96-well plates precoated with 

poly-D-lysine and incubated in a humidified 5% CO2/95% air atmosphere at 37 °C. A mixture 

of 5 µM 5-fluoro-2′-deoxyuridine and 20 µM uridine was added after 1 day in vitro (DIV) to 

prevent glial proliferation. By using this protocol 94% of the cells are neurons (as identified by 

immunostaining with tau antibody) and 2 % of the cells are astrocytes (as identified by 

immunostaining with GFAP antibody). Animals were handled in compliance with protocols 

approved by the Generalitat de Catalunya Spain, following the EU guidelines. 

 

2.4 Chemical treatments 

Stock solutions of each fungicide were prepared in DMSO and then stored at -20 ºC. Different 

working standard solutions were made by appropriate dilution in DMSO and then further 

diluted in the culture medium so that the final organic solvent concentration never exceeded 

0.5% (v/v), which was not cytotoxic.  

For prolonged exposure periods, neurons were treated at 1 DIV and exposed during 7 days. For 

short-term exposure experiments, mature cultured neurons were exposed to the fungicides at 7 

DIV for periods of time ≤24h. The medium was not changed until the completion of the 

experiments. 

 

2.5 Cell viability 

Following each exposure period, cell viability was first assessed by visual inspection under 

phase-contrast microscopy and then by the MTT assay, which is based on the reduction by 

viable cells of 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) to a 
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formazan product via a group of nonspecific mitochondrial dehydrogenases. Briefly, a MTT 

solution in phosphate buffered saline (PBS) was added to each well to a final concentration of 

5 mg/mL and cells were incubated for 3 h at 37 ºC. MTT solution was removed and 100 

µL/well of SDS 10% (w/v) in water were added and allowed to dissolve the intracellular 

formazan crystals overnight at 37°C in darkness. Absorbance was measured at 570 nm with 

background subtraction. Cell viability was expressed as a percentage of the controls (cells 

exposed to the DMSO). 

Additionally, cell viability was evaluated by the propidium iodide (PI) assay as described by 

Rosa et al. (Rosa et al., 1997). This fluorescent dye rapidly enters cells with damaged 

membranes and binds to nucleic acids, rendering them brightly fluorescent, whereas it is 

excluded by living cells (Macklis and Madison, 1990). A PI solution in PBS was added to each 

well to a final concentration of 10 µg/mL and cells were incubated for 1 h at 37 ºC.  

 

2.6 Mitochondrial membrane potential (∆Ψm) 

Changes in mitochondrial membrane potential were monitored using rhodamine-123 (Rho-

123), a cell permeable cationic dye, which is rapidly sequestered by active mitochondria. 

Depolarization of the membrane results in the release of Rho-123 from the mitochondria and 

the subsequent increase of fluorescence due to the dequenching of the dye. Cells grown for 7 

DIV in 96-well plates were washed twice with Hank´s buffered salt solution (HBSS) (1.3 mM 

CaCl, 5.4 mM KCl, 0.4 mM KH2PO4, 0.5 mM MgCl, 0.4 mM MgSO4, 137 mM NaCl, 4.2 mM 

NaHCO3, 0.3 mM Na2HPO4, 8 mM HEPES, and 5.5 mM glucose, adjusted to pH 7.4) and 

incubated with 10 µM Rho-123 for 15 min at 37 ºC. Cells were washed again to discard the 

non-retained Rho-123 and the chemical exposure was performed by adding the fungicide 

immediately. After 1 h exposure, fluorescence was determined at 485 nm excitation and 530 

nm emission wavelengths. Responses were normalized to maximal fluorescence, obtained after 
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treatment with a revealing solution of acetic acid/ethanol (1:2, v/v) or after treatment of sister 

cells with 15 µM antimycin (ANT). 

 

2.7 Determination of intracellular calcium 

Intracellular calcium levels were measured by using the fluorescent calcium indicator fluo-3 

acetoxymethyl ester (Fluo-3/AM). This cell-permeable dye is hydrolyzed by intracellular 

esterases and trapped in cells as Fluo-3, which increases its fluorescence upon binding of Ca2+. 

Cells grown for 7 DIV in 96-well plates were washed twice with HBSS and incubated for 1 h 

at 37 °C with 9 µM Fluo-3/AM in HBSS containing 0.5% DMSO and 0.08% of the nonionic 

surfactant pluronic F-127. Excess Fluo-3/AM was rinsed away, and the cells were treated with 

the studied fungicides in HBSS. Fluorescence was immediately determined at 485 nm 

excitation and 530 nm emission wavelengths. Results were expressed as the intracellular 

calcium percentage of the untreated cells (DMSO). 

 

2.8 Cellular uptake of fungicides 

2.8.1 Extraction and cleanup 

Cells were grown in 6-well plates and after 7 DIV they were exposed to the selected fungicides 

(100 µM AM, 100 µM CY, 10 µM KR and 1µM PY) for 8 h. At the end of the experiment, 

culture medium was removed and cells were rinsed three times with HBSS. Cells were then 

scrapped into 2 mL ultrapure water and disrupted by sonication (5 x 10 s pulses, 30% power) 

on ice with an ultrasonic homogenizer. Protein content of the cell lysates was determined by 

the Bradford assay (Bio-Rad Laboratories, München, Germany) using bovine serum albumin 

(BSA) as protein standard. 

Fungicides were extracted from the homogenates by solid-phase extraction (SPE) using 

polymeric SPE cartridges Strata-X (200 mg, 6 mL) from Phenomenex (Torrance, California, 
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USA). Briefly, 1.8 mL sample were loaded into the SPE cartridge previously conditioned with 

5 mL 2% (v/v) formic acid in methanol followed by 5 mL water. After washing with 2 mL 

water, fungicides were eluted with 10 mL 2% (v/v) formic acid in methanol. The eluate was 

brought to dryness under a gentle stream of nitrogen, reconstituted in 300 µL of 

methanol/water/formic acid (30:69.8:0.2, v/v/v), filtered through a 0.20 µm PTFE syringe filter 

and analyzed by HPLC–DAD/ESI-MS/MS. 

Recoveries for AM, CY, KR and PY were evaluated at 0.5 and 50 ng/mL. Values ranged from 

88% to 99% at both spiked levels. Limits of quantification (LOQ), defined for a signal-to-noise 

ratio of 10 (S/N=10), below 0.3 ng/mL were obtained for these four compounds. 

The cellular uptake of fungicides was normalized to milligrams of cell protein. The percentage 

of cellular uptake was calculated with respect to the amount of fungicides initially present in 

the culture medium. 

 

2.8.2 HPLC–DAD/ESI-MS/MS analyses 

Analyses were carried out in a Thermo HPLC system (Thermo Fisher Scientific, San Jose, CA, 

USA) consisting of a TSP AS3000 autosampler with column oven, a Surveyor LC quaternary 

pump, a Surveyor PDA diode array detector (DAD) coupled to a triple stage quadrupole mass 

spectrometer TSQ Quantum Access equipped with a electrospray ionization (ESI) source. 

Instrument control and data acquisition were performed with Xcalibur 2.0 software also from 

Thermo.  

Chromatographic separation of the fungicides was performed on a reversed-phase column 

Luna C18(2) (150 x 3.0 mm, 3 µm) from Phenomenex, maintained at 30 ºC. Mobile phases A 

and B were respectively, water/formic acid (99.8:0.2, v/v) and acetonitrile/water/formic acid 

(95:4.8:0.2, v/v/v). The following linear gradient was used: hold at 65%A for 1 min, decreased 

to 20%A over 6 min, decreased to 5%A over 13 min and hold for 2 min, then returned to initial 
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conditions over 2 min and re-equilibrated for 7 min. The flow rate and the injection volume 

were set at 0.4 mL/min and 20 µL, respectively.  

UV/Vis spectra were recorded from 200 to 600 nm with the DAD, whereas the mass 

spectrometer was operated in the positive ESI mode at a spray voltage of 4500 V.  Nitrogen 

(>99.98%) was employed as sheath gas and auxiliary gas at pressures of 40 and 10 arbitrary 

units, respectively. The capillary temperature was set to 270 ºC. The detection was performed 

in the multiple reaction monitoring (MRM) mode using argon (>99.999%) as collision-

induced-dissociation (CID) gas at 1.5 mTorr. Optimized MS/MS ion transitions for each 

compound are detailed in Table 2. The linearity of the method was tested using standard 

solutions at six concentration levels from 5 ng/mL to 1000 ng/mL for all compounds. 

Calibration curves were found to be linear in the studied ranges with determination coefficients 

(R2) ≥0.9941 and RSD (n=3) ≤7%.  

 
2.9 Data Analysis 

Data are expressed as mean ± standard error of the mean (SEM) of at least three experiments 

from independent culture batches, each performed in triplicate; the number of independent 

cultures (n) for each experiment is indicated in the corresponding figure caption. Statistical 

significance was determined by one-way ANOVA followed by Dunnett’s multiple comparison 

tests when comparing more than two groups, and by two-way ANOVA followed by 

Bonferroni’s test when comparing two factors. Dose-response curves were fitted to sigmoidal 

curves. All statistical calculations were made using the software package GraphPad Prism 

version 4.0 (GraphPad Software, San Diego, CA). 

 

3. Results 

3.1 Effects of short- and long-term exposure on cell viability 
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Exposure of cultured cortical neurons to 100 µM of the fungicides cyazofamid (CY), 

kresoxim-methyl (KR) and pyraclostrobin (PY)  for 24 h resulted in a significant decrease in 

cell viability >20 % (the considered Low Effect Level –LOEL) (Fig. 1A, white bars). In 

agreement with the general concept that toxicity is dependent on both drug concentration and 

exposure time, the toxicity of the fungicides increased after long-term exposure and cell 

viability was significantly reduced (p <0.001) by all the evaluated fungicides (CY, KR, PY and 

ametoctradin –AM-, boscalid –BO-, dimethomorph –DI-, fenhexamid –FE-, mepanipyrim –

MY- and metrafenone -ME) (Fig. 1A, black bars). Concentration-dependent behavior was 

observed for all fungicides, being PY and KR the most neurotoxic compounds, exhibiting 

LC50 values in the nanomolar and low micromolar range, respectively, when the exposure was 

continued for several days. Furthermore, all the compounds except KR showed higher toxicity 

at the longer exposure period. The results were confirmed by phase-contrast microscopic 

visualization and propidium iodide uptake (data not shown). Fig. 1B shows the concentration 

response curves for the effects of fungicides on cell viability after short exposure (24 hours in 

vitro) and continuous exposure (7 days in vitro). Table 3 shows the concentration that produces 

50% of cell cytotoxicity (LC50). CY was tested up to 30 µM in the continuous exposure 

because of the formation of crystals after two days of exposure at higher concentrations. For 

comparison, we also determined the toxicity of the widely used fungicide maneb in cultured 

cortical neurons after continuous exposure for 7 days in vitro. LC50 value was 26 ± 2 µM 

(n=3). Furthermore, for the most toxic compound PY no differences were found when mature 

cells were continuously exposed from DIV 7 to DIV 13 (LC50: 0.05 ± 0.01 µM, n=6) with 

respect to neurons continuously exposed during the first week in culture (LC50: 0.06 ± 0.01 

µM, n=5).   

Furthermore, in order to determine if there was any relationship between intracellular 

concentration and the observed cell death, cellular content was quantified for AM, CY, KR and 
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PY (Table 4). AM was evaluated as it did not induce major toxicity in neurons whereas the 

other three compounds exhibited the lowest LC50 values in both short- and long-term 

exposures. To avoid significant metabolism of the fungicides, the cells were exposed for a 

short period (8 hours). CY intracellular content and its percentage of cellular uptake were 

significantly higher than those of AM (p <0.01). On the other hand, assuming that 

accumulation of PY and KR was lineal in the low micromolar range (1–10 µM), the 

intracellular content and percentage of cellular uptake of PY were significantly higher than that 

of KR (p <0.01). These findings were in relation with the highest toxicity of CY compared to 

AM and of PY compared to KR.  

 

3.2 Pyraclostrobin (PY) and kresoxim-methyl (KR) rise intracellular calcium [Ca2+]i and 

induce mitochondrial membrane potential (∆Ψm) depolarization  

It is well known that when Ca2+ homeostasis is disrupted, this ion can behave as a powerful 

activator of multiple damaging processes. We determined whether fungicides increased 

cytosolic calcium. Fig. 2A shows that PY and KR increased [Ca2+]i in a concentration-

dependent manner.  Results showed a significant increase (p <0.01) of [Ca2+] i when cells were 

exposed to ≥1 µM PY (26.7 ± 2.8%) and to ≥10 µM KR (31.7 ± 4.4%) in comparison to 

control conditions (Fig. 2A).  AM, DI, FE, ME and MY (up to 100 µM) and CY (up to 30 µM) 

did not induce by themselves an increase of intracellular calcium (data not shown). The 

increase of intracellular calcium induced by PY and KR was significantly reduced in a nominal 

calcium-free medium (Fig. 2B). 

The inhibition of mitochondrial complex III is one of the proposed mechanisms of action for 

several fungicides, among them AM, CY, KR and PY (see Table 1). Furthermore, a rise in 

intracellular calcium may lead to the loss of mitochondrial potential (Duchen, 2000). Five out 

of the nine evaluated fungicides ―CY, FE, KR, ME and PY― were able to significantly 
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induce (p <0.01) mitochondrial membrane depolarization when tested up to 100 µM in cultured 

cortical neurons (Fig. 3A). PY, KR and CY were the compounds that produced highest 

mitochondrial membrane depolarization with EC50 values of 5 ± 1 µM, 29 ± 9 µM and 20 ± 5 

µM  (n=3), respectively (Fig. 3B).   

 

3.3 Neuroprotection with NMDA receptor antagonist and L-type Ca2+ channel blocker 

Both elevated intracellular calcium and reduced mitochondrial membrane potential represent 

major pathophysiologic conditions affecting neuronal viability. Furthermore, the depolarization 

of mitochondrial membrane may be the result of increasing accumulation of calcium within 

mitochondria and, viceversa, an increase of cytosolic calcium may be the consequence of 

disrupted integrity of the mitochondria. Therefore, we evaluated whether blocking two main 

pathways leading to increased intracellular calcium (the N-methyl-D-aspartate receptor -

NMDAR- and the voltage-operated Ca2+ channels -VOCC) would have a protective effect 

against fungicides-induced toxicity.  Results of cell viability in the presence of 1 µM PY or 10 

µM KR together with calcium channel blockers (10 µM of MK-801 for the NMDAR and 50 

µM of verapamil for the VOCC) are depicted in Fig. 4. MK-801 significantly protected cells 

against fungicide effects (p <0.01) and the neuroprotective effect was still increased by a 

combination of MK-801 and verapamil (p <0.001).  

 

4. Discussion 

All the tested fungicides produced a reduction of cell viability. Whereas four of these 

compounds (BO, CY, KR and PY) displayed a toxic effect after a short time of exposure (24 

hours), all nine fungicides resulted toxic after 7 days of exposure. Those acting by inhibiting 

the mitochondrial respiration complex III (CY, KR and PY but not AM, see Table 1) displayed 

the higher levels of toxicity. This complex is one of the four multiprotein complexes within the 
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inner mitochondrial membrane involved in the passage of electrons in the respiratory chain. 

The well-known electron transporter ubiquinone or coenzyme-Q (CoQ) binds to complex III at 

the Qo (quinol-oxidizing) site when it is reduced and at the Qi (quinol-reducing) site when it is 

oxidized allowing the electron movement. CY seems to bind at the quinol-reducing site Qi 

whereas KR and PY seem to bind at the quinol-oxidizing site Qo (FRAC, 2014; Li et al., 2014). 

The inhibition of any of these sites would inhibit the natural electron transport and finally 

induce decreased ATP generation and mitochondrial membrane depolarization eventually 

leading to increased cytosolic calcium and to cell death (Boutilier, 2001; Chinopoulos and 

Adam-Vizi, 2010; Pham et al., 2000; Zhang et al., 1998). It is worth to note that the toxicity of 

PY and KR found in this work was higher than that induced by the widely used fungicide 

maneb in cortical neurons.  

In this work we have determined the effect of new fungicides with different mode of action on 

cultured cortical neurons. In agreement with their mode of action (respiration inhibition of 

mitochondrial complex III), CY, KR and PY were able to significantly induce mitochondrial 

membrane depolarization in mature neurons. This may be related to the alteration of electron 

transport and alteration of the proton gradient across the mitochondrial inner membrane, 

thereby breaking down the mitochondrial membrane potential (Pham et al., 2000). The affinity 

of these compounds for the porcine mitochondrial complex III (PY > KR > CY) (Li et al., 

2014; Zhao et al., 2009) has a pattern similar to that shown in this work for the mitochondrial 

membrane depolarization, the increase of cytosolic calcium and the loss of cell viability in 

cultured cortical neurons. These three compounds induced the higher cell death as well as the 

higher level of membrane depolarization and increased cytosolic calcium in comparison to the 

control condition. The fact that the increase in intracellular calcium induced by PY and KR was 

abolished in the absence of external calcium suggests an influx of calcium ions through 

membrane calcium channels (either voltage- or NMDA receptor-operated). This increase of 
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cytosolic calcium can lead to a neurotoxic cascade eventually inducing cell death. In this sense, 

the blockage of membrane calcium channels by MK-801 (antagonist of the glutamate-NMDA 

receptor) and by verapamil (antagonist of voltage-operated Ca2+ channels) resulted in 

neuroprotection. When both NMDA and L-type channels where unable to conduct calcium 

ions, there was a neuroprotective effect since cell death was further diminished. In this case, a 

reduced entrance of Ca2+ ions may be delaying calcium overload and cell death (Dong et al., 

2006). Nonetheless, the imbalance of [Ca2+] i together with the mitochondrial membrane 

depolarization may be responsible for cell death. 

On the other hand, FE and ME also induced mitochondrial membrane depolarization. FE 

inhibits sterol biosynthesis and specifically targets 3-keto reductase (Debieu et al., 2001). 

There is no known mode of action for ME, however it likely disturbs the organization of the 

actin cytoskeleton (Opalski et al., 2006). Both inhibition of 3-keto reductase and disruption of 

the actin dynamics may indirectly affect mitochondrial membrane fluidity and function 

(Breitenbach et al., 2005; Vrablik and Watts, 2012). Both CY, FE and ME displayed similar 

LC50 values (∼ 25 µM) against cortical neurons viability when they were exposed to the 

fungicides for 7 days in vitro, despite the fact that CY was much more potent than FE and ME 

in inducing mitochondrial membrane depolarization (Fig. 3A). This suggests that in addition to 

mitochondrial failure, alteration of lipid biosynthesis and of actin dynamics may play a role on 

the cytotoxic effects of FE and ME, respectively. On the other hand, MY scarcely induced 

cytotoxic effects in cortical neurons (LC50 values around 100 µM after seven days of exposure 

in vitro). Unlike FE and ME, the acute exposure to MY did not alter mitochondrial membrane 

potential in cultured cortical neurons. In relation to this, a similar exposure to MY on cultured 

hepatocytes did not reduce the cellular ATP content (Terada et al., 1999).  

Finally, neither AM nor BO reduced cell viability by more than 50% even after prolonged 

exposure for 7 days in vitro to 100 µM of each compound. Despite the proposed mechanism of 
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action for AM is through the inhibition of the mitochondrial complex III, it exerts a unique 

mode of action by binding to the very specific stigmatellin sub-site at the Qo, being currently 

the only fungicide belonging to this category (FRAC, 2014). Thus, the difference in toxicity 

observed between the two representatives of the strobilurin family, KR and PY, and the AM 

could be explained based on their differential binding. Although all three compounds bind to 

the Qo site of the mitochondrial complex III, strobilurin fungicides bind the heme bl proximal 

domain, whereas AM has been reported to act by binding in the same domain as stigmatellin, 

i.e. in the distal pocket close to the Rieske iron-sulfur protein (Crofts et al., 1999; Fisher and 

Meunier, 2008).  

In the case of BO, this compound inhibits mitochondrial complex II which will not have a 

direct effect on the electron flux to the mitochondrial respiratory chain. Instead, the inhibition 

of complex II would disturb the tricarboxylic acid cycle (Nicholls, 2002). Therefore we would 

not expect that BO depolarized the mitochondrial membrane potential like complex III 

inhibitors PY, KR and CY did.  

In summary, we have reported that the fungicides PY, KR and CY are incorporated into 

neurons in primary cultures of cortical neurons. In doing so, they target the mitochondria as 

they do as pest controllers, disrupt intracellular calcium homeostasis and induce cell death. It is 

noteworthy that the neuronal toxicity was induced at concentrations lower than those inducing 

toxicity in human lymphocytes (Çayır et al., 2014). The higher energy demand of neurons in 

relation to other cells in mammals may make neurons to be critically susceptible to lipophilic 

compounds that interfere with the mitochondrial respiratory chain. Among them, PY showed 

the highest neurotoxicity with a LC50 in the nanomolar level, above 400-fold higher than the 

toxicity observed under the same conditions for maneb, a fungicide which has been recently 

related with an increased risk of Parkinson´s disease. Thus, these results highlight the need for 

further evaluation of its neurotoxic effects in vivo.  
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Regarding AM, which has been very recently approved in the EU for its use in crop protection 

products, it was observed a much lower toxicity (LC50 >100 µM) which is in agreement with 

the higher acceptable daily intake established for this fungicide (Table 1).  
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Legends 

Figure 1.- Effects of fungicides on cell viability measured by the MTT assay in primary 

cultures of cortical neurons. A) Cells were acutely exposed to fungicides at day in vitro 7 (DIV 

7) for 24 hours (white bars) or continuously exposed from DIV 1 to DIV 8 (black bars). All 

fungicides were applied at 100 µM, except for continuous exposure to CY at 30 µM due to 

solubility problems. Results are expressed as mean ± SEM; n = 3-4 cultures. * p <0.05; # p 

<0.001 compared to control cells. B) Concentration-response curves for the effects of 

fungicides on cell viability in cultured cortical neurons. Solid symbols and lines represent 

continuous exposure while open symbols and dashed lines represent acute exposure. Results 

are expressed as mean ± SEM; n = 3-4 cultures. 

 

Figure 2.- A) Concentration-response curves for the increase of intracellular calcium induced 

by PY (▼; blue)  and KR (�;  red). Results are means ± SEM of 3-4 independent experiments. 

B) The increase of [Ca2+]i induced by 1 µM PY (blue bars; diagonal) or 10 µM KR (red bars; 

crossed) was inhibited in the nominal absence of calcium in the medium. Results are mean ± 

SEM of 3-4 independent experiments. ** p <0.01 and *** p <0.001 with respect to control 

(black bars) in plain buffer; ## p <0.01 and ### p <0.001 with respect to fungicide treatment in 

plain buffer. 
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Figure 3.- Depolarization of mitochondrial membrane (MM) induced by fungicide exposure. 

Cells were acutely exposed to fungicides at DIV 7. Values are mean ± SEM; n = 3 cultures. 

Responses are normalized to maximum depolarization induced by 15 µM antimycin (ANT). A) 

Fungicides were tested at 100 µM, except KR and PY at 50 µM. ** p <0.01, *** p <0.001 

compared to control cells. B) Concentration-response curves for PY (▼; blue), KR (�; red) 

and CY (■; green). 

 

Figure 4.- Effect of calcium channel antagonists on the reduction of cell viability induced by 

PY and KR. Cells were continuously exposed to vehicle (DMSO) or fungicides from DIV 1 to 

DIV 8 in the absence  (black bars) or in the presence of 50 µM verapamil (red bars; dotted), 10 

µM MK-801 (green bars; horizontal lines) or verapamil plus MK-801 (blue bars; vertical lines) 

from DIV 1 to DIV 8. Results are expressed as mean ± SEM of 5-6 independent experiments. 

** p < 0.01 and *** p < 0.001 vs corresponding exposure to fungicide alone. 

 

 



Table 1 

Structures, characteristics and modes of action of the studied fungicides 

Fungicide Structure Chemical Group Log P
a
 Mode of action

b
 

Approval  

year
c
 

ADI 

(mg/kg 

bw/d) 

Ametoctradin (AM) 

 

Triazolo-

pyrimidylamine 
4.4 

Respiration inhibition of complex III: cytochrome bc1(ubiquinone 

reductase) at Qo site, stigmatellin binding sub-site  
2013 10 

Boscalid (BO) 

 

Pyridine-

carboxamide 
2.96 Respiration inhibition of complex II: succinate dehydrogenase inhibitors 2008 0.04 

Cyazofamid (CY) 

 

Cyano-

imidazole 
3.2 

Respiration inhibition of complex III: cytochrome bc1(ubiquinone 

reductase) at Qi site 
2003 0.17 

Dimethomorph (DI) 

 

Cinnamic acid 

amide 
2.68 Cell wall biosynthesis: cellulose synthase 2007 0.05 

Fenhexamid (FE) 

 

Hydroxyanilide 3.51 
Sterol biosynthesis in membranes: 3-keto reductase in C4-de-methylation 

(erg27) 
2001 0.2 

Kresoxim-methyl (KR) 

 

Strobilurin 3.40 
Respiration inhibition of complex III: cytochrome bc1(ubiquinol oxidase) 

at Qo site (cyt b gene)  
1999 0.4 

Mepanipyrim (MY) 

 

Anilino-

pyrimidine 
3.28 Amino Acid and Protein Synthesis: methionine biosynthesis (cgs gene) 2004 0.02 

Metrafenone (ME) 

 

Aryl-phenyl-

ketone 
4.3 Unknown: actin disruption (proposed) 2007 0.25 

Pyraclostrobin (PY) 

 

Strobilurin 3.99 
Respiration inhibition of complex III: cytochrome bc1(ubiquinol oxidase) 

at Qo site (cyt b gene) 
2004 0.03 

a 
(Tomlin, 2004); 

b 
(FRAC, 2014); 

c
 (European Commision, 2009); Log Kow: octanol-water partition coefficient; ADI: Acceptable Daily Intake 
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Table 2 

Specific MRM conditions for determination of selected fungicides by LC−ESI-MS/MS 
 

Fungicides tR (min) Parent ion MS/MS transition CE (eV) 

AM 10.83 [M+H]
+
 

276>176
a
 35 

276>149 36 

CY 13.62 [M+H]
+
 

325>108
a
 15 

325>280 12 

KR 13.74 [M+H]
+
 

314>222
 a
 15 

314>235 12 

PY 14.51 [M+H]
+
 

388>194
a
 15 

388>164 16 

a 
Quantifier transition; CE: collision energy 
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Table 3.- LC50 values for the cytotoxicity of the fungicides in cortical neurons  after 

exposure for 1 DIV (acute exposure) and 8 DIV (continuous exposure). Values are 

mean ± SEM of 3 – 5 experiments. * p< 0.05; # P< 0.001with respect to acute exposure 

 

 

Fungicide 
 LC50 values (M) 

 Acute exposure Continuous exposure 

AM  No effect at 100 μM >100 

BO  >100 >100 

CY  95 ± 2 25 ± 2 

DI  No effect at 100 μM 58 ± 6 

FE  No effect at 100 μM 27 ± 1 

KR  2.6 ± 0.1 4.4 ± 0.1 

ME  No effect at 100 μM >100 

MY  No effect at 100 μM 26 ± 1 

PY  0.15 ± 0.02 0.06 ± 0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3



Table 4.- Intracellular levels of selected fungicides in CN after 8 h of exposure at 7 

DIV. 

 

Fungicide (MW) 
Treatment  

(µM) 

Cellular uptake  

(ng/mg protein) 
% Cellular uptake  

AM (275) 100 980.0 ± 1.8 (3.6 nmol/mg prot) 0.73 ± 0.02 

CY (325) 100 9115 ± 1526 (28 nmol/mg prot) 6.0 ± 1.0 

KR (313) 10 86 ± 3 (0.3 nmol/mg prot) 0.54 ± 0.02 

PY (388) 1 37 ± 5 (0.095 nmol/mg prot) 2.14 ± 0.27 
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