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 Alzheimer's disease (AD) is a neurodegenerative disorder 

characterized by a progressive loss of memory and cognition, wherein 

a deterioration of cholinergic synapses occurs in hippocampus and 

neocortex. Decreased concentration of the neurotransmitter 

acetylcholine (ACh) appears to be a contributing factor in the 

development of the dementia. In this regard, current therapeutic 

approach to treat AD symptoms is based in the inhibition of 

acetylcholinesterase (AChE), the enzyme responsible for ACh 

degradation. The AD brain is characterized by co-existence of amyloid 

plaques, extracellular protein deposits where the major component is 

the β-amyloid peptide (Aβ), and of neurofibrillary tangles (NFT), 

composed of paired helical filaments of the microtubule-associated 

protein tau abnormally hyperphosphorylated (P-tau).  The Aβ peptide 

is a small polypeptide generated by processing of a much larger 

transmembrane protein, the β-amyloid precursor protein (APP) 

through the successive action of two proteolytic enzymes, β-secretase 

and γ–secretase. γ-Secretase is an intramembranous multi-protein 

complex that cleaves many type-I proteins with critical roles in 

neuronal function. Presenilin-1 (PS1) is the catalytic component of the 

γ-secretase complex. Our group has previously demonstrated by 

reciprocal co-immunoprecipitation that AChE can interact with PS1. 

Moreover, AChE can modulate PS1 levels. In cellular models AChE over-

expression increases PS1 levels, while AChE knock-down with siRNA 

leads decrease level of PS1 protein in transfected cells. 

Our present study addresses how AChE influences PS1 

expression by examining changes in PS1, at both protein and 

transcriptional levels, in several conditions where distinct AChE 

variant and molecular forms have been modulated. We demonstrate a 

modulation of PS1 by AChE variants via non-cholinergic mechanisms, 
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and by a mechanism independent of its catalytic activity. Our data also 

suggest that AChE may function as an inhibitor of  γ-secretase activity, 

and provide evidence that γ-secretase inhibition could result in PS1 up-

regulation. 

In this regard, we have re-analyzed the expression levels of AChE 

in the brain of AD subjects. We demonstrated by Western blotting and 

immunohistochemistry that a prominent pool of enzymatically inactive 

AChE protein existed in the AD brain. The potential significance of 

these unexpected levels of inactive AChE protein in the AD brain may is 

of relevance in the context of protein-protein interactions with PS1.  

 Conversely, we have also studied the influence of PS1/                  

γ-secretase activity on AChE. The major AChE variant expressed in the 

brain is a tetramer (G4) of four catalytic subunits attached to the 

plasma membrane by a proline-rich membrane anchor subunit 

(PRiMA).  We demonstrate that PS1 participates in AChE processing, 

cleaving PRiMA with the consequent release of a C-terminal PRiMA 

fragment. We are also able to localize PRiMA immunoreactivity in the 

nucleus, which suggest the possibility that the PRiMA segment 

participates in the regulation of gene transcription, a possibility that 

deserves thoroughly investigation. 

Understanding the relationship between PS1 and AChE may be 

useful not only for the physiopathology of the disease, but also to 

develop more effective Alzheimer’s therapies. 
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La enfermedad de Alzheimer (EA) es una enfermedad 

neurodegenerativa caracterizada por la pérdida progresiva de 

memoria y capacidades cognitivas, siendo especialmente afectadas las 

áreas y conexiones colinérgicas del hipocampo y neocortex. Así, la 

depleción en los niveles del neurotransmisor acetilcolina (ACh) aparece 

como un factor de importancia en el desarrollo y progresión de la 

demencia. En este contexto, las actuales terapias paliativas con las que 

se trata la EA se basan en mantener niveles altos de ACh, mediante la 

inhibición de la enzima que hidroliza al neurotransmisor, la 

acetilcolinestarase (AChE). En el cerebro de sujetos con EA co-existen 

dos entidades neuropatológicas que la caracterizan, los depósitos 

proteinaceos extracelulares, cuyo componente mayoritario es el 

péptido β-amiloide (Aβ), y los ovillos neurofibrilares intraneuronales, 

un conglomerado anormal de proteínas compuesto por pequeñas 

fibrillas entrelazadas de la proteína citoesquelética tau anormalmente 

hiperfosforilada (P-tau). 

El Aβ es un pequeño polipeptido, de 40 a 42 aminoácidos de 

longitud en sus isoformas mayoritarias, generado tras el 

procesamiento de una proteína de transmembrana tipo I denominada 

precursor de la proteína amiloide o APP. El Aβ se genera tras el 

procesamiento secuencial del APP por las enzimas proteolíticas             

β-secretasa y γ–secretasa. La actividad γ-secretasa es llevada a cabo 

por un complejo proteico que procesa un gran número de proteínas 

transmembrana tipo I con un corto domino intracelular, muchas de 

ellas de conocida importancia en la función neuronal. La enzima 

presenilina-1 (PS1) es el componente catalítico del complejo                  

γ–secretasa. Nuestro grupo ha demostrado previamente, mediante 

experimentos de co-inmunoprecipitación recíproca, que AChE puede 

interaccionar con PS1. Además, AChE aparece como una proteína 
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moduladora de los niveles de PS1. En modelos celulares, la sobre-

expresión de AChE promueve aumentos de PS1, mientras que el 

silenciamiento de la expresión de la colinesterasa causa disminución de 

PS1 en células transfectadas con siRNA de AChE. 

El estudio recogido en esta memoria se adentra en el mecanismo 

de dicha interacción, analizando la influencia de las diferentes 

variantes y formas moleculares de AChE en los niveles de expresión de 

PS1. Demostramos que la modulación de PS1 por AChE es llevada a 

cabo por mecanismo no colinérgicos, y en concreto independientes de 

la capacidad catalítica de AChE, dado que mutantes inactivos de la 

proteína mantienen la capacidad de influenciar los niveles de PS1. 

Nuestros datos indican que AChE puede funcionar como un inhibidor 

de la γ-secretasa, y, lo que es más importante, sugieren que la 

inhibición de la actividad γ-secretasa puede promover, mediante un 

mecanismo compensatorio, el aumento de expresión de su componente 

activo, la PS1. 

En nuestros estudios también hemos re-analizado los niveles de 

expresión de AChE en extractos cerebrales de sujetos con EA; hasta 

ahora la inmensa mayoría de los estudios clásicos habían abordado tan 

solo los niveles de actividad enzimática. Nuestro análisis mediante 

técnicas de Western blotting e inmunohistoquímica indican que 

mientras los niveles de actividad están disminuidos, los de proteína 

AChE aparecen preservados, lo que demuestra la existencia de un 

importante reservorio de proteína AChE no activa en el cerebro 

afectado por la patología. El potencial papel y significado 

fisiopatológico de esta AChE inactiva en el cerebro de enfermos de EA 

requiere ser analizado, con mayor interés si cabe a la vista de la 

capacidad de AChE de influir sobre PS1 mediante interacciones 

proteína-proteína independientes de su actividad catalítica. 
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Finalmente, hemos estudiado la influencia recíproca de PS1/      

γ-secretasa sobre AChE, y en concreto la posibilidad de que la actividad 

secretasa participe del procesamiento de AChE. La variante de AChE 

mayormente expresada en el cerebro humano es un tetrámero de 

subunidades catalíticas de AChE (G4) anclada a la membrana mediante 

una subunidad estructural rica en prolina y denominada PRiMA, una 

proteína transmembrana de tipo I. Hemos demostrado que PS1 

participa en el procesamiento de AChE, actuando sobre PRiMA y 

liberando un pequeño fragmento intracelular de la misma. 

Caracterizamos y localizamos dicho fragmento de PRiMA en el núcleo, 

lo que sugiere su potencial participación en mecanismo de regulación 

transcripcional, una posibilidad que abre una nueva vía de estudio que 

puede resultar de importancia tanto en condiciones fisiológicas como 

patológicas. 

Una mayor comprensión de las complejas inter-relaciones de 

PS1 y AChE puede ser de importancia no sólo para avanzar en el 

conocimiento de los mecanismos fisiopatológicos afectados en la 

demencia, sino también para el desarrollo de nuevas y mejoradas 

estrategias terapéuticas para el tratamiento de la EA. 
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1.  Alzheimer’s Disease  

 In 1907, in the article “UbereineeigenartigeErlranliung der 

Hirnrinde”, the Bavarian psychiatrist Alois 

Alzheimer described for the first time the 

special disease of a patient called Auguste D, a 

51-year-old woman from Frankfurt who had 

shown progressive cognitive impairment. 

From 1901, Alzheimer followed Auguste D’s 

case until her death in 1906. After that, using 

the newly developed Bielschowsky’s silver 

staining method, Alzheimer observed and 

described the anatomical features of a new 

disease, different from all the others known at 

this time. It was named after his name in 

1910 by Emil Kraepelin (Alois Alzheimer’s superior) (Ramirez-

Bermudez 2012). For this reason, he is considered to be the founding 

father of the neuropathology. 

He reported:  

…She is entirely disoriented to time and place. Once in a while she makes 

comments that she does not understand anything going on; or has lost 

track of things… 

…A single one or a few fibrils come to prominence on the inside of an 

otherwise still “normal” appearing cell. Then, during further progression, 

many such fibrils running next to each other show changes in the same 

way. They subsequently fold together into dense bundles and move 

towards the cell surface. Eventually the nucleus and the cell disintegrate, 

and only a tangled bundle of fibrils indicates the place which had 

formerly been occupied by a ganglion cell. Since these fibrils are stainable 

with other dyes than normal neurofibrils, a chemical transformation of 

the fibril substance must have taken place; which appears to be the cause 

 

 

Alois Alzheimer 
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for the fibrils’ persistence after demise of the cell. The transformation of 

the fibrils seems to go hand in hand with the deposition of a not yet more 

closely examined pathological metabolic product into the ganglion cell… 

(Alzheimer et al 1995). 

 

1.1 Social Impact 

There are 7.7 million new cases of dementia each year, implying 

that there is a new case of dementia somewhere in the world every 

four seconds. Alzheimer's disease (AD) is responsible for 60-80% of all 

these dementia cases, which represented in 2010 an estimated 35.6 

million people suffering of this senile dementia worldwide (from 

WORLD ALZHEIMER REPORT 2013). Nowadays, this disease is 

considered as a major public health problem, affecting 30% of aged 

people in the Western world. 

Clinically, AD is an irreversible, progressive brain disease that 

slowly impairs memory and cognitive skills.  Symptoms of AD usually 

develop slowly and gradually worsen over time, progressing from mild 

forgetfulness to widespread brain impairment. The earliest changes 

that are part of the pathology of AD usually occur in medial temporal 

lobe structures (e.g., hippocampus, entorhinal cortex; [see (Braak & 

Braak 1991)], interrupting the neural network critical for episodic 

memory function. Thus, the ability to learn and remember new 

information (i.e., anterograde amnesia) is the clinical hallmark of AD 

pathology. However, many changes occur in cortical areas (i.e., 

posterior cingulate, inferior parietal lobule, lateral temporal neocortex, 

ventromedial and dorsomedial prefrontal cortex) that project heavily 

to medial temporal lobe structures (Buckner et al 2008). All these 

chemical and structural changes in the brain slowly destroy the ability 

to create, remember, learn, reason, and relate to others. Drastic 
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personality loss occurs and the body systems fail (Weintraub et al 

2012). 

 

1.2. Genetics 

From a genetic point of view, AD is divided in two forms: the 

genetic or familiar AD (FAD) and the sporadic AD (referred hereafter as 

AD). 

 

1.2.1 Familiar AD  

Familiar AD (FAD) represents less than 1-5% of all AD cases. It is 

also known as early-onset AD as it can begin in the second decade of 

life, however not all the early-onset AD cases are responding to genetic 

predispositions. The first candidate gene for FAD to be discovered was 

the gene encoding the amyloid β-protein precursor (APP). Since that, 

30 AD-causing mutations on APP gene have been reported, but they all 

together explain only one-tenth of all FAD cases (Cruts & Van 

Broeckhoven 1998). Interestingly, most of the mutations in APP gene 

occur around the putative γ-secretase cleaving site, which generates 

the amyloid-β peptide (Aβ), suggesting the critical implication of this 

proteolytic enzyme in FAD (Goate et al 1991). Indeed, most of the 

mutations linked to FAD are identified in the Presenilin-1 (PS1) gene, 

that encodes the catalytic subunit of the γ-secretase complex; also 

mutations in its close homolog Presenilin-2 (PS2) gene, which protein 

can substitute PS1 as the catalytic part of the γ-secretase complex, has 

been identified (Lleo et al 2002, Thinakaran & Parent 2004). All the 

mutations identified in FAD share a common feature, all increase the 

generation of the amyloidogenic isoforms of Aβ (see section 3.2.1).  

The discovery of these genetic mutations also has allowed 

researchers to create transgenic animal models that display some 
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important aspects of the disease and serve as a basis of AD research.  

 

1.2.2 Sporadic  AD  

Sporadic AD is associated to aging and is usually diagnosed after 

age 65. The sporadic is the major form of the disease and is not caused 

by a mutation in a single protein. In fact, multiple genetic and 

environmental risk factors have been related with the progression of 

this disease.  

The strongest genetic risk factor associated to AD is the ε4 allele 

of the apolipoprotein E (APOE) gene on chromosome 19. ApoE 

regulates lipid homeostasis by mediating lipid transport from one 

tissue or cell type to another. In the brain, ApoE is mainly produced by 

astrocytes and transports cholesterol to neurons via ApoE receptors, 

which are members of the low-density lipoprotein receptor (LDLR) 

family [for a review see (Liu et al 2013)]. The human APOE gene exists 

as three polymorphic alleles, ε2, ε3 and ε4, which have a frequency of 

8.4%, 77.9% and 13.7%, respectively. However, the frequency of the ε4 

allele is dramatically increased to ~40% in patients with AD. A meta-

analysis of clinical and autopsy-based studies demonstrated that, 

compared with individuals with an ε3/ε3 genotype, risk of AD was 

increased in individuals with one copy of the ε4 allele (3-4 times) or 

two copies (~15 times) among Caucasian subjects (Farrer et al 1997). 

The biochemical consequences of APOEε4 in AD pathogenesis are not 

yet fully understood. Current hypotheses propose that APOEε4 

predisposes patients to increased plasma cholesterol levels and has 

direct toxic effects on the cerebrovascular system. High plasma 

cholesterol, in turn, has been correlated with increased Aβ deposition 

and stabilization in the AD brain (Zlokovic 2013). Interestingly, in 

APOEε4 homozygous patients, the pathological process differed from 

that typically seen in AD. These patients showed a heavy burden of 
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perivascular tau-immunopositive cell processes associated with severe 

amyloid beta protein angiopathy, neurofibrillary tangles, some cortical 

Lewy bodies and an absence of neuritic plaques (Vidal et al 2000). 

Other genetic risk factors have been described, moreover in the 

last 10 years but their contribution is probably minor (Tanzi 2013). In 

parallel, sedentary and smoking behavior, obesity and head trauma are 

usually accepted as common risk factors of sporadic AD (Borenstein et 

al 2006). 

 

1.3. Pathogenesis 

At the microscopic level, the characteristics lesions described by 

Alzheimer are now defined as extracellular senile or neuritic plaques, 

deposits of the β-amyloid protein (Aβ), and intracellular neurofibrillary 

tangles (NFTs), composed of paired helical filaments of the 

microtubule-associated protein tau abnormally hyperphosphorylated 

(P-tau). 

 

1.3.1 Senile Plaques  

The amyloid beta (Aβ) peptide, at sufficiently high concentration, 

form a beta sheet-rich tertiary structure that aggregates to form 

amyloid fibrils that deposit outside neurons in dense formations 

known as senile plaques or neuritic plaques and in less dense 

aggregates called diffuse plaques. In some cases, Aβ can aggregate 

inside the walls of small blood vessels in the brain in a process called 

amyloid angiopathy. Senile plaques, together with the amyloid 

angiopathy and the abundance of microglia and astrocytes, are typical 

degenerative structures of AD. Diffuse plaques are more considered a 

byproduct of senescence or biological aging.  
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Large numbers of senile plaques is characteristic features of AD 

(Figure 1). 

 

 

 

 As mentioned above, Aβ represents the core of the amyloid 

plaques in AD and, depending by the different sequential proteolysis of 

the largest β-amyloid precursor protein (APP), we can distinguish 

different forms of different lengths. Aβ40 and Aβ42 (with 40 and 42 

amino acids of lenght) are the two major forms in AD. An 

immunohistochemical study revealed that the longer (Aβ40 and Aβ42) 

and shorter (Aβ17) Aβ peptides are differently distributed along the 

various types of amyloid deposits in AD. In fact, while the amyloid 

angiopathy and senile plaques are constituted of both longer and 

shorter Aβ peptides, the diffuse plaques have Aβ17 peptides as its 

principal component (Rabano et al 2005). 

APP is a single pass transmembrane protein, with a large 

external  N-terminal and a short cytosolic C-terminal, thus, classified as 

a Type-I protein. It is characterized by the presence of a β-domain of 

39/43 amino acids partly located at the ectodomain and mainly within 

the transmembrane  domain (TMD) (Thinakaran & Koo 2008). Three 

 

 

Figure 1. Human neuritic plaque. Large extracellular plaque with amyloid 
core from a patient who died of AD. The histologic section of neocortex has been 
stained with a modified Bielschowsky method (Schellenberg & Montine 2012). 
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proteases, called α-, β- and γ-secretase, are involved in the APP specific 

processing. The name “secretases” refers to the secretion of the 

proteolytically cleaved substrates. The activities of the three proteases 

are described below. 

In the APP processing, we discriminate two principal pathways: the 

amyloidogenic pathway, which leads to Aβ generation; and the non-

amylodoigenic pathway, which prevents Aβ generation (Figure 2). 

 

 

 

 

 

 

In normal conditions, most of the APP molecules are cleaved by 

the α-secretase, leading the non-amylodoigenic pathway. Several zinc 

metalloproteinases, members of the “A Disintegrin And 

Metalloprotease” (ADAM) family, such as ADAM9, ADAM10, 

Figure 2. Proteolytic processing of APP. A schematic structure of APP is shown 
with the Aβ domain in red. In the non-amyloidogenic processing of APP the                 
α-secretase cleaves within the Aβ domain, thus precluding the generation of an 
intact Aβ peptide. The amyloidogenic processing of APP is carried out by 
sequential action of membrane β- and γ-secretase. sAPPβ: soluble ectodomain 
APPβ; sAPPα: soluble ectodomain APPα; CTF: C-terminal fragment; AICD: 
Amyloid intracellular domain. 
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TACE/ADAM17 and ADAM19, can function as α-secretases (Allinson et 

al 2003). Recent evidence suggests that, at least in neurons, the 

principal constitutive α-secretase activity is exerted by ADAM10 (Kuhn 

et al 2010). α-Secretase cleaves APP  extracellulary, within the β 

domain inducing the shedding of nearly the entire ectodomain. This cut 

generates an α- C-terminal fragment (α-CTF) bound to the membrane. 

Subsequently, γ-secretase cut inside the transmembrane domain of the 

α-CTF and generates a cytoplasmic polypeptide termed AICD and a 

non-fibrilar 3 kDa peptide that is released in the medium (p3). 

In the alternative amylodogenic pathway, APP is first cleaved by 

β-secretase. β-secretase mediates the initial and the rate-limiting 

processing step during Aβ generation. β-secretase activity has been 

identified in a unique enzyme which originally was referred with 

different names, such as memapsin, aspartyl protease 2, or BACE1 (β-

site APP cleaving enzyme-1); BACE1 is now the generally accepted 

term for the enzyme harboring the β-secretase activity [for a review 

see: (Wang et al 2013a)]. β-Secretase also cleaves APP at the 

ectodomain, generating the N-terminal of the Aβ fragment (see Figure 

2). The resulting membrane-bound C-terminal fragment, as in the non-

amylodoigenic pathway, is a γ-secretase substrate, releasing the 

cytoplasmic polypeptide AICD and the Aβ peptides. γ-secretase cleaves 

within the membrane-spanning domain of APP at multiple potential 

cleavage sites, thus generating peptide isoforms of 36–43 amino acids. 

The Aβ40 is the most common specie, but the Aβ42 variant is the most 

amyloidogenic form of the peptide and more intimately associated to 

AD progression [for a review see: (Steiner et al 2008)].  

γ-Secretase is an intramembranous protease complex, composed 

of four components: presenilin-1 (PS1), nicastrin (NCT), presenilin 

enhancer 2 (Pen-2) and anterior pharynx-defective 1 (Aph). PS1 

constitutes the catalytic domain of γ-secretase (for further details see 
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section 3.1). The APP protein processing, to produce Aβ peptide, has 

been described in vitro in several cellular membranes, including the 

endoplasmic reticulum (ER), the trans-golgi network (TGN), the early 

and late endosomes, recycling endosomes, and in lysosomes (Choy et al 

2012). Despite large localization of PS1 and BACE1 within the 

endoplasmic reticulum and golgi, it is assumed that APP cleavage 

occurs on the surface and in endosomes/lysosomes compartments, 

where the proteolytically active PS1/γ-secretase is principally localized 

[for a review see: (Haass et al 2012)]. Moreover, it has been suggested 

that the amyloidogenic processing occurs in the cholesterol- and 

sphingolipid-enriched membrane raft microdomains of intracellular 

organelles and cell surface (Vetrivel et al 2004). 

Under normal conditions, both, amyloidogenic and non-

amyloidogenic pathways co-exist and Aβ is found in appreciable 

amounts in the non-pathological human brain. The Aβ peptide can be 

degraded in the brain by several peptidases including the insulin-

degrading enzyme, neprilysin, and the endothelin-converting enzyme 

(Finder 2010, Miners et al 2011). Moreover, Aβ is also cleared from the 

brain in a process balanced by the efflux and the influx across the 

blood–brain barrier. It is a matter of controversy whether disturbance 

in Aβ clearing mechanism contributed to AD. Indeed, it has been 

proposed that Aβ accumulation in the brain, but not necessarily his 

production, is the event leading to neuronal degeneration and 

dementia. The so-called Amyloid Cascade hypothesis was proposed in 

1991 by John Hardy and David Allsop (Hardy & Allsop 1991, Hardy & 

Higgins 1992) and reformulated during the last decade to focus on 

oligomeric aggregates of Aβ as the prime toxic species causing AD 

(Hardy & Selkoe 2002). The Amyloid Cascade hypothesis is supported 

by the findings that the unique mutations identified in FAD are present 

in the genes that encodes both the substrate (APP) and the proteolytic 
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enzymes (presenilins) responsible of Aβ generation [for a review see: 

(Karran et al 2011)]. 

To date, it is accepted that the initiation of the neurotoxic 

downstream changes in AD is due to the increase of Aβ diffusion and 

assembly, to form, from monomers of 4 kDa, Aβ oligomers of 8,  12 kDa 

and larger size aggregates (Lue et al 1999). The dynamic and the 

mechanism (or mechanisms) of toxicity of these soluble Aβ species are 

still unclear. Moreover, Aβ peptides can also operate inside the cells. 

They accumulate in distal neurites and synaptic compartment 

compromising the synaptic activity. Part of this pool can be 

subsequently secreted or released as a consequence of degenerating 

neuronal processes (Gouras et al 2005). Recently, it has been shown in 

SH-SY5Y neuroblastoma cells that the intracellular Aβ is not 

preferentially localized to any particular organelle and, to a large 

extent, is secreted from the cells (Zheng et al 2013). Soluble Aβ 

monomers and oligomers finally diffuse and associate to gradually 

form the extracellular senile plaques that may further disrupt neuronal 

circuits. 

  Several studies tried to correlate the progressive cognitive 

impairment and the morphological alterations in human autopsied 

brain. Surprising, is not the increase of insoluble Aβ aggregation to 

correlate with the severity of the disease, or the numbers of amyloid 

plaques,  but the smaller soluble pool, that can move and interact with 

many other proteins, changing their functions (McLean et al 1999).  

Many studies in human demonstrated that the highest statistical 

correlation between cognitive impairment and morphological 

alterations, is the cortical levels of soluble Aβ and the extent of synaptic 

loss [for a review see: (Shankar & Walsh 2009)]. It seems in fact that 

the synaptic function is compromised before its physical degeneration 

(Alonso-Nanclares et al 2013). 
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1.3.2 Neurofibrillary Tangles  

Tau is a soluble Microtubule-Associated Protein (MAPs) that, 

inside a neuron, participates in several physiological functions 

including microtubule assembly and stability, vesicle transport, 

neuronal outgrowth and neuronal polarity (Grundke-Iqbal et al 1986, 

Weingarten et al 1975).  These functions are strictly regulated by the 

degree of tau phosphorylation (Figure 3). 

In a pathological state, tau is abnormally hyperphosphorylated at 

certain residues and displays different solubility, as well tends to form 

clusters of paired helical filaments (PHF) (Wang et al 2013b).  

 

 

 

 

 

 

 

 

 PHF are filamentous structures of a modified version of tau, 

highly stable to proteolysis, insoluble and toxic, able to aggregate to 

form the neurofibrillar tangles (NFTs). The core of a PHF is composed 

of hyperphosphorylated tau that can be truncated at the C- and N-

Figure 3. Normal function of tau protein. Tau protein stabilizes 
microtubules through the tubulin binding domains (blue boxes). The binding 
is maintained in equilibrium by coordinated actions of kinases and 
phosphatases. The phosphorylation of tau (pink balls) regulates its activity to 
bind to microtubules and can affect axonal transport. Tau protein may inhibit 
the plus-end-directed transport of vesicles along microtubules by kinesin 
(Kolarova et al 2012). 
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terminals. It has been proposed that such truncations favored tau 

polymerization and the subsequent NFT formation (Fasulo et al 2000, 

Guillozet-Bongaarts et al 2005, Wischik et al 1988a, Wischik et al 

1988b). The PHF-core tau is not only unable to bind tubulin, but also 

binds normally-phosphorilated tau, sequestering it and blocking its 

physiological function (Alonso et al 1994). The final results are the 

disruption of microtubules, of the cellular structure and of the cargo 

transport. In the hippocampus, the amygdala and the cerebral cortex of 

AD patients, tau is mislocalized and shows a prominent 

immunoreactivity in the somatodendritic compartment of the neurons 

(Figure 4).  

 

  

 

 

 

 

 

 

 

 

Figure 4. NFTs Immunostaining with antibody against phospho-tau 

protein. Cholinergic neurons from the nucleus basalis of Meynert (NbM) 
show NFTs mainly distributed in the perinuclear area of the neuron and in 
proximal processes. Midstage (AD). Scale bar = 50μM. (Nelson et al 2009). 
 

Althought the mechanism of tangles formation is not completely 

understood, many researchers proposed the Tau hypothesis of AD, 

where tau protein dysfunction is the primary pathological event that 
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brings to neurofibrillary tangles formation, susceptibility to Aβ toxicity, 

degeneration and dementia (Gotz et al 2011). 

Despite that in the AD field, the “Amyloid” is the dominant 

hypothesis and it is still a matter of controversy whether tangles are 

also a primary causative factor in AD, or play a more peripheral role.  

 

1.4    Diagnosis 

An early and accurate diagnosis of AD during life is essential. The 

diagnostic of AD requires careful evaluation of the patient medical 

history, mental status and physiological condition through tests (such 

as blood tests and brain imaging) to rule out the dementia-like 

symptoms. Recognize an AD case largely depend on the exclusion of 

other dementias and in any case cannot be diagnosed before the 

disease become severe and the memory impaired. Thus, potential 

biomarkers are of capital importance.   

Both, Aβ and P-tau are key pathological effectors, but also they 

are recognized biomarkers that can be monitored in the cerebrospinal 

fluid (CSF). Numerous laboratories have reported an increase in P-tau 

and total tau (T-tau) levels in CSF, although tau alone lacks of 

specificity since it is also increased in other neurological processes 

(Rosen et al 2013). Abnormal metabolism of Aβ is considered a more 

specific phenomenon related to AD. The increasing deposition of the Aβ 

peptide, especially of the Aβ42 form, determines that its level in CSF is 

decreased while pathological Aβ42 species are increased in the AD 

brain (Blennow et al 2010). 

The combination of Aβ42 and P-tau/T-tau leads to high (~80%) 

levels of sensitivity, specificity, and diagnostic accuracy. However, 

there is a continuing search for new CSF (or blood) biomarkers to 

improve the clinical diagnosis, especially on the early stages of AD, and 

the clinical trials [reviewed in (Cedazo-Minguez & Winblad 2010)]. 
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1.5 The cholinergic hypothesis of AD 

For a long time AD was considered a cholinergic disease 

treatable. Today, AD is known to be an enormous complex of cellular 

and biochemical changes inside the brain, where cell death is only the 

late step of several dysfunction cascades.  

A global vision of AD, considering senile plaques and NFT as final 

conditions, leads to several questions.  First of all, where does AD 

happen and where does it start? 

Comparing a normal aged brain (left) and the brain of a person 

with Alzheimer's (right), there is a massive neuronal atrophy in the AD 

brain that affects many regions like the temporal, frontal and parietal 

lobe of the cortex, the limbic structures, like the hippocampus and the 

amygdale. In addition, the ventricles, that contain CSF, are noticeably 

enlarged (Figure 5). 

 

 

 

 

 

Cholinergic neurons, coming from the medial septum of the brain 

and directed to the hippocampus, neocortex and amygdale, are the first 

to undergo protein changes, that can be defined at the beginning of AD 

(Muir 1997). As consequence, all cholinergic proteins resulted affected, 

with decreased in the acetylcholine-synthesizing enzyme, choline 

acetyltransferase (ChAT), as well as the acetylcholine-hydrolyzing 

enzyme, acetylcholinesterase (AChE) (Atack et al 1983, Davies 1979, 

Figure 5. Healthy brain 

versus Alzheimer’s Brain. 

View of the massive cell loss, 
that in AD change the whole 
brain conformation. See the 
text. 
 



  INTRODUCTION 

 

43

Perry et al 1977). In addition, there is a reduction of the muscarinic 

acetylcholine (ACh) receptors (M2), most of them pre-synaptically 

located (Quirion 1993). Finally, the discovery of the cholinergic 

neurons loss coming from the nucleus basalis of Meynert, confirmed a 

substantial presynaptic cholinergic deficit [reviewed in (Burns et al 

1997)]. Thus, the cholinergic hypothesis proposes that the cholinergic 

neurons degeneration, associated with the loss of cholinergic 

neurotransmission to the cerebral cortex and the subsequently 

reduced synthesis of the neurotransmitter ACh, contributes 

fundamentally to the AD cognitive function decline. This hypothesis has 

been supported by studies showing the emerging role of ACh in 

learning and memory (Drachman & Leavitt 1974). Moreover, even if 

the mechanisms underlying the cholinergic-induced memory formation 

remain unclear, it has been recently demonstrated that the cholinergic 

denervation of hippocampus leads to impairment of spatial memory 

acquisition possibly through the activation of the muscarinic receptors 

(Gil-Bea et al 2011). 

The cholinergic hypothesis was postulated more than 30 years 

ago (Bartus et al 1982), and today it is well accepted that, during the 

early pathological period of AD, many other dysfunctions appear. For 

instance, the Nerve Growth Factor (NGF) metabolic pathway, 

fundamental for the maintenance of the biochemical and anatomical 

phenotype of the basal cholinergic neurons coming from the basal 

forebrain, is deregulated (Bruno & Cuello 2006). It was further shown 

that this deregulation decreases the cholinergic presynaptic buttons, 

inducing cholinergic atrophy and decrease in ACh release (Cuello & 

Bruno 2007, Cuello et al 2010). This can explain, at least in part, the 

susceptibility of some cholinergic neurons to develop the first 

symptoms of AD. In parallel, impairments of the part of the 

monoaminergic system coming from the serotonergic raphe nuclei, and 
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of a part of the noradrenergic system coming from the locus coeruleus, 

induce respectively a reduction of the Serotonine and Noradrenaline 

release (Trillo et al 2013). All together these dysfunctions may be able 

to explain the progression and extension of memory loss, the cognitive 

decline, correlating with a drastic change in behaviour including an 

increase of aggression, depression, fear-induced stress and wandering 

mood. 

Anyhow, which is the cause of AD? As commented above, the 

first step in AD generation is still unclear but it is plausible that the 

abnormal Aβ metabolism together with the P-tau formation, are closely 

related with particular affectation of the cholinergic system. 

Thus, the soluble Aβ, in the form of monomers or oligomers, 

might exert a pathological influence in cholinergic targets. Recently, 

several laboratories have reported that very low concentrations of Aβ 

peptides (picomolar to nanomolar) can induce cholinergic 

hypofunction (Kar et al 1996). Aβ peptides, under acute conditions, can 

decrease endogenous ACh release and the uptake of choline in slices 

from rat hippocampus and cortex, but exhibit no effect on ChAT activity 

(Kar et al 1998, Kar et al 1996). In SN 56 cells, derived from mouse 

basal forebrain cholinergic neurons, Aβ42 and Aβ28 reduce the ACh 

content accompanied by proportional decrease in ChAT activity 

(Pedersen et al 1996). These results were confirmed in vivo, since the 

continuous infusion of Aβ into rat cerebral ventricle impairs learning 

ability and decreases ChAT activity and ACh release (Itoh et al 1996).  

Conversely, stimulation of muscarinic receptors with carbachol 

caused a time-dependent 2-fold increase in the release of soluble APP, 

parallel with a decrease in Aβ production into the medium (Wolf et al 

1995). Thus, in pathological conditions, sub-toxic levels of Aβ may 

disrupt carbachol-induced muscarinic signal transduction leading to a 

decreased processing of APP via the α-secretase pathway, and 
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potentially increased formation of Aβ which, in turn, might exert 

additional modulation of the cholinergic system (Kelly et al 1996). 

Soluble Aβ peptide can also cause excitotoxicity at the pyramidal 

neurons inducing the over-activation of the N-methyl-d-aspartate 

receptor (NMDAR), the cationic channels gated by the 

neurotransmitter glutamate (Gotz et al 2011). This over-activation 

results in neuronal damage and death due to the generation of 

excessive nitric oxide (NO) (Law et al 2001). NO can mediate 

excitotoxicity by triggering down-stream protein misfolding and 

aggregation, as well as mitochondrial fragmentation. Moreover the 

majority of transduction signal systems end on the activation or 

inactivation of enzymes responsible of tau phosphorylation and de-

phosphorylation (Billingsley & Kincaid 1997, Nuydens et al 1997, 

Rapoport et al 2002, Sindou et al 1992). However, the mechanism that 

regulates in vivo the activities of brain protein kinases and 

phosphatases on tau phosphorylation are not fully understood.  

In addition, our group has recently demonstrated in vitro and in 

vivo that P-tau can trigger an increase in AChE expression (Silveyra et 

al 2012). The possibility that Aβ might influence AChE is discussed 

below (see section 2.6).  

 All these results indicate that Aβ and also P-tau may trigger 

cholinergic dysfunction that strength AD. Improving the understanding 

of the relationship between Aβ/P-tau and cholinergic enzymes will 

help to identify ways to prevent or stop the damage that causes the 

disease. 

 

2. Deep in cholinergic dysfunction 

As stated above, one of the major lesions in AD brain, together with 

the amyloid plaque and NTF deposition, is the substantial loss of 

cholinergic innervation of the cerebral cortex. This loss is predominant 
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in the temporal lobe, the entorhinal cortex, the amygdala and the 

hippocampus, where up to 80% of cholinergic axons are depleted 

(Geula and Mesulam 1996). Furthermore, the fact that the cholinergic 

lesion is part of AD degeneration is corroborating by the evidence that 

pharmacological therapy with cholinesterase inhibitors improved mild 

dementia (Cummings 2004, Giacobini 2003, Lleo 2007). Intriguingly, 

despite the overall decrease of AChE activity in AD brain, AChE levels 

are increased around the amyloid plaques and NFT (Mesulam et al 

1987, Ulrich et al 1990).  

 

2.1 Cholinesterase 

Cholinesterases (ChEs) are crucial enzymes for nerve response 

and functions. They are acetylhydrolases degrading the 

neurotransmitter ACh in the synaptic cleft of peripheral (PNS) and 

central nervous system (CNS), producing inactive metabolites, choline 

and an acetate group (Figure 6). 

 

 

Figure 6. Biosynthetic pathway of ACh neurotransmitter. ACh is an ester 
of acetyl CoA and choline. ACh is synthesized in certain presynaptic neurons 
by the enzyme choline acetylcholine transferase (ChAT).  After release in the 
synaptic cleft ACh is rapidly hydrolysed into the inactive metabolites by the 
enzyme AChE; and choline and acetate transported back to the axon terminal, 
where will be used to make more ACh. AChE is one of the fastest enzymes in 
nature. 
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Thus, ChEs activity serves to terminate synaptic transmission. All 

vertebrates possess two types of ChEs, corresponding to two distinct 

genes: acetylcholinesterase (AChE, EC 3.1.1.7) and butylcholinesterase 

(BChE or BuChE, EC 3.1.1.8). The two enzymes primarily differ on the 

basis of their substrate specificities: ACh for AChE and BuCh 

(butirilcholine) for BuChE, and secondly on their different sensitivity to 

selective inhibitors, e.g. BW284c51 for AChE and iso-OMPA for BuChE 

(Austin & Berry 1953). 

In mammals AChE is encoded by a single AChE gene containing 6 

exons (Figure 7).  

 

 

 
Figure 7. Schematic representation of the gene structure and 

transcripts of mammalian. (a) ACHE gene contains 6 exons that are 
depicted as cylinders, introns as horizontal lines. Splicing options are shown 
as lines above the gene. E1a–1d are alternative versions of human AChE exon 
1. (b) Alternative transcripts of the human AChE. Exons 2, 3 and 4 encode the 
core of human AChE, including the catalytic domain. The alternative exons 
are produced by readthrough of the end of coding exon 4, or by alternative 
splicing to either exons 5 or 6  the text. (Meshorer et al 2004). 
 
 

Diversity in the transcribed products arises from alternative 

mRNA splicing at the 3’ and 5’ termini and from post-translational 
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modifications (Massoulie 2002, Meshorer et al 2004, Taylor & Radic 

1994). The alternative splicing at the 3’ region allows the production of 

three distinct variants, each of them with a different C-terminal 

sequence.  

The principle AChE mRNA transcript in brain and muscle tissues, 

the AChE-T (tail) variant, is formed by joining exon (E) 4 to E6 to give 

rise an amphipathic C-terminus of 40 amino acids (peptide t). This 

transcript is finally constituted by (E1)-E2-E3-E4-E6. The second most 

common transcript in the body is the AChE-H (hydrophobic), where 

the E4 links E5 and encodes a 43 amino acid C-terminal peptide 

(peptide H). This transcript is finally constituted by (E1)-E2-E3-E4-E5.  

The cleavage after amino acid 14 of the open reading frame in E5 

enables linkage to glycosylphosphatidyl inositol (GPI), integration and 

thus anchorage to membrane surfaces, however, this transcript is 

insignificantly expressed in the brain. The third transcript is the AChE-

R (readthrough) that is produced by readthrough of the end of coding 

exon 4. Intron 4 encodes a hydrophilic C-terminal extension of 26 

amino acid residues (peptide r). This transcript is finally constituted by 

(E1)-E2-E3-E4-I4. The 'readthrough' AChE-R is normally expressed in 

low amounts in most tissues, including brain [for a review see 

((Massoulie et al 2005) ].  

In addition to the 3’ alternatively spliced species of AChE that 

generate proteins with distinct C termini, the 5’ end is also subject to 

intricate regulation, as recently demonstrated by Soreq and co-workers 

(Meshorer et al 2004). In human at least three exons 1 (E1) at the N-

terminus have been described: hE1a, hE1b, hE1c and hE1d exons. The 

hE1d exon encodes an additional 46 amino acids that prevent the 

cleavage of the human AChE signal peptide. In this AChE variants [N-

AChE-T, N-AChE-H and N-AChE-R; (Figure 7)] the signal peptide 

sequence, that is not removed, could then serve as a transmembrane 
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domain, enabling N-AChE to anchor itself to the pasmatic membrane. 

Several N-extended AChE mRNAs have been identified in humans 

(Munoz-Delgado et al 2010). 

In contrast, the BCHE gene produces a single type of transcript, 

which generates a single type of variant equivalent to AChE-T 

(Arpagaus et al 1990). The protein product forms G1, G2 and G4 species, 

with hydrophilic or amphiphilic properties. 

 

2.2 AChE structure 

 Knowledge of the AChE 3D structure is essential to understand 

its remarkable catalytic efficacy and to develop therapeutic 

approaches. The structure is characterized by a deep and narrow gorge 

leading to the active site, consisting in a Ser-200, a His-440 and a Glu-

327, surrounded by a ring of 14 conserved aromatic residues (Figure 

8). At the opposite side of the catalytic triad, there is the Peripheral 

binding Anionic Site (PAS), that, at the first step of the catalytic 

pathway, binds transiently ACh, like many others molecules (Johnson & 

Moore 2006, Mallender et al 2000). 

 

 

 

 

Figure 8. Schematic representation 

of an AChE monomer. The PAS is on 
the surface of AChE, approximately at 
20 Å distant from the active site itself 
(Sussman et al 1991). The gorge has 
an aromatic character that might 
contribute to the high rate of ligand 
binding and, thereby, to the high 
catalytic activity. 
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PAS is an extraordinary versatile area consisting of 5 anionic 

residues (Tyr-70, Asp-72, Tyr-121, Trp-279 and Tyr-334) clustered 

around the entrance of the active site gorge (Ordentlich et al 1993). For 

this reason, PAS plays a significant role in the electrostatic attraction of 

cationic substrates and inhibitors. Moreover, it is able to mediate 

protein-protein interactions independently of its cholinergic functions. 

Some examples are the binds with the extracellular matrix molecules 

laminin-1 and collagen IV (Johnson & Moore 2003) and, particularly, 

with the Aβ peptide promoting amyloid fibril formation (De Ferrari et 

al 2001). 

 

2.3 AChE molecular forms 

All transcripts are able to generate AChE monomers, sharing a 

common catalytic domain, but distinct C-terminal domains.  

The C-terminal end of the AChE-R variant end is a short 

sequence of 30 amino acids without cystein, thus lacking the possibility 

to bind others AChE subunits by disulfide bond. Therefore, AChE-R 

exists only as non-amphiphilic monomers (Figure 9). AChE-R transcript 

has been identified in human tumor cell lines with different tissue 

origins (Karpel et al 1994), in tissue from mice (Birikh et al 2003, Legay 

et al 1995) and human (Cohen et al 2003, Garcia-Ayllon et al 2012). 

However, AChE-R normally represents the minor brain AChE specie.  

Considering its low abundance in vivo (less than 2% of total active 

AChE in brain), it seems unlikely to contribute significantly to the 

cholinergic regulation by hydrolyzing ACh in the nervous system. It has 

been assumed that AChE-R is mainly expressed during brain 

development, and increases after stress stimulation (Kaufer et al 1998). 

The AChE-H transcript encodes a subunit anchored to the 

membrane by glycosylphosphatidyl inositol (GPI). AChE-H can exist  
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Figure 9. AChE protein polymorphism. AChE forms are classified as homo 
and heterooligomers depending on the presence of structural elements. Thus, 
the globular monomers (G1), dimers (G2) and hydrophilic tetramers (G4) 
which do not possess structural elements are homomeric forms, while the 
amphiphilic tetramers linked to the PRiMA subunit and the asymmetric 
forms, consisting of one (A4), two (A8), or three (A12) tetramers linked to a 
collagenic ColQ tail, are heteromeric species. (na) non-amphiphilic, (a) 
amphiphilic; WAT, Tryptophan Amphiphilic Tetramerization domain; PRAD, 
an extracellular domain of the mature PRiMA protein that contains a proline-
rich motif (positions 56–70), which is similar to the proline-rich motif of 
ColQ. 
 

like monomers or dimmers, because its C-terminal region also contains 

one or two cysteines, which allow dimerization by disulfide bonds. 

Most AChE activity of non-nervous tissues arises from the AChE-H 

(Montenegro et al 2013) which is not present in brain (Legay et al 

1993). AChE-H is also abundant in the surface of blood cells, mostly in 

erythrocyte (Gomez et al 2003). The large pool of AChE in the blood 
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cells probably serves, together with the plasma BuChE, to hydrolyze 

circulating ACh and other choline esters (Mehlert et al 1993). However, 

AChEs may also exert other alternative functions (see below). 

The AChE-T transcript exists in all vertebrate species. It is 

expresses in all tissues cell types except in erythrocyte, being 

particularly abundant in brain and muscle cells. The specific C-terminal 

peptide contains ~40 amino acidic sequence rich in cysteine and 

aromatic residues that allow AChE-T subunits to form homo-oligomers, 

mostly dimers and tetramers, which also can associate with non-

catalytic anchoring protein subunits (Figure 9). Based on their 

quaternary structure and on their hydrodynamic properties, we can 

distinguish two classes of AChE-T: globular (G) and asymmetric (A). 

The globular forms consist of amphiphilic monomers (G1a), dimers 

(G2a), non-amphiphilic tetramers (G4na), and the membrane anchored 

amphiphilic tetramers (G4a). The amphiphilic tetrameric form is bound 

to the membrane through the transmembrane subunit PRiMA (Proline 

Rich Membrane Anchor) and it constitutes the major AChE form in the 

brain. The asymmetric forms contain one to three tetramers (A4, A8 or 

A12) and are attached to a triple helical tail of the collagenic protein 

ColQ, playing an essential role in the hydrolysis of ACh at the 

neuromuscular junctions [for a complete review see (Massoulie et al 

2005)]. 

The C-terminal “t” peptide of the AChE-T subunit largely controls 

the cellular fate of AChE-T and its interactions with PRiMA and ColQ 

subunits, controlling the folding, oligomerization, segregation and 

physiological localization of the enzyme.  

 

 

2.4 PRiMA protein 

A small protein of ~20kDa associated to G4 forms of AChE was purified 
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from bovine brain in 1987 by Inestrosa (Inestrosa et al 1987). 

Prof. Massoulié named this small protein the P subunit, and was the 

first to hypothesize its role in anchoring AChE-T in neurons, as ColQ 

anchors AChE in the basal lamina of neuromuscular junctions 

(Massoulie et al 1993). Few years later, the molecular and genetic 

structure of the P subunit was described in mice and humans and was 

re-named PRiMA (Massoulie et al 2005, Perrier et al 2002).  

In 2003, a new splice variant encoding PRiMA was discovered 

(Perrier et al 2003). This second variant called PRiMA II contains an 

additional exon (exon 4b), absent in PRiMA I.  The two resulting 

proteins differ in their C-terminal cytoplasmic domains and appear 

equivalent in their capacity to anchor G4 to the cell membrane (Perrier 

et al 2002) (Figure 10).         

 

 

Figure 10: Schematic representation of PRiMA gene, variants transcripts 

and resulting proteins. PRiMA mRNA consists of a 5’ non-encoding exon and 
four coding exons, the last of them contains the 3’ STOP sequence. The 
starting (ATG) and the stop (STOP) codons are indicated. The two resulting 
PRiMA variants differ only in their C-terminal cytoplasmic domain; PRIMA II 
encodes a shorter protein with a smaller cytoplasmic domain. Both proteins 
bind G4 AChE and target it to the plasma membrane. 
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PRiMA I is the major form expressed in the brain, whereas 

PRiMA II is only detected as a minor component at the adult stage in 

the brain (Perrier et al 2003). 

PRiMA I is a type I transmembrane protein, therefore its N-

terminal corresponds to the extracellular domain containing the PRAD 

(Prolines-Rich Anchor Domain) motif, followed by a transmembrane 

domain (TMD) and a short, ~40 amino acids, cytoplasmic domain 

(Noureddine et al 2007) (Figure 11).  

 

 

Figure 11: Schematic representation of PRiMA protein. The extracellular 
domain is characterized by the presence of five cysteines (c), a proline-rich 
sequence (PRAD) and three putative N- and O-glycosilation sites. The N-
terminal is modified by fatty acylation. The cytoplasmic region contains one 
cystein close to the border with the membrane and putative phosphorilation 
sites on serines (s). The PRAD contains 14 prolines. TMD: transmembrane 
domain. 

 

PRiMA is an accessory partner for the disposition of AChE at the plasma 

membrane (Dobbertin et al 2009), and represents a limiting factor for 

production of the G4 AChE (Perrier et al 2003).  

 

2.4.1 AChE-T and PRiMA Association  

PRiMA and AChE-T associate early in the endoplasmic reticulum 

(ER). The AChE-T “t-peptide” or “Tryptophan Amphiphilic 

Tetramerization domain” (WAT) can form an amphiphilic α-helix and 
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represents an autonomous interaction domain (Harel et al 1993, 

Massoulie et al 1993, Simon et al 1998). Crystallographic analyses of 

AChE G4 revealed that four WAT (one from each monomer) form a 

coiled-coil structure around the PRAD of PRiMA (Bon et al 1997, 

Perrier et al 2002). The complex is stabilized by the formation of 

disulfide bonds between the C-terminal cysteine of AChE-T subunits 

and the four N-terminus cysteines of PRiMA (Figure 12). 

 

 

Figure 12: Oligomerization of monomers of AChE-T with PRiMA subunit. 

In violet is representing the PRiMA N-terminal. WAT domain from each AChE-
T peptide binds the PRAD with a hydrophobic interaction. The intercatenary 
disulfide bonds between the t-peptide of AChE-T subunits and the N-terminal 
PRiMA are shown. The anchoring is also realized by a third type of 
hydrophobic interaction between two FHB, for the formation of a dimmer.  

 

The catalytic domain of AChE also influences the oligomerization 

patterns, providing a contact zone called “four-helix bundle” (FHB). 

One catalytic domain formed α-helices, which contact the FHB on 

another AChE subunit (Chen et al 2010, Morel et al 2001, Sussman et al 

1991)).  

The assembly of AChE-T tetramers with PRiMA appears to 

proceed through a stepwise recruitment of two homo-dimers followed 
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by the association with PRiMA (Chen et al 2011)  (Figure13).  

 

 

 

Figure 13: Assembly of AChE complexes. After transcription, in ER, AChE-T 
polypeptide is glycosylated and then it associates with other monomer of 
AChE-T to form homodimers. Then, PRiMA enters in contact with them, 
inducing the formation of PRiMA-linked G4 AChE. PRiMA also targets the 
complex to Golgi apparatus, where AChE subunits are further glycosylated. 
The proper glycosylation makes AChE subunits fully functional and send the 
complex to the plasma membrane. Without glycosylation AChE proteins are 
able to olygomerize, but are inactive and retained in the ER (Chen et al 2010). 

 

Thus, PRiMA participates in the tetramerization of AChE 

subunits and is a necessary accessory partner for the cellular 

disposition of G4 AChE on the plasma membrane. PRiMA represents a 

limiting factor for production of the G4 AChE that is the predominant 

form in mammalian brain. This PRiMA-G4 AChE probably represents 

the cholinergic species located properly in order to hydrolyse the 

neurotransmitter ACh. In accordance with this, it has been recently 

demonstrated that PRiMA address G4 AChE in membrane rafts, a high 

specialized area of the plasma membrane with high content in 

sphingolipids, cholesterol and synaptic proteins (Xie et al 2010). These 
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specialized membrane microdomains compartmentalize cellular 

processes by serving as organizing centers for the assembly of 

signaling molecules, influencing membrane fluidity, membrane protein 

trafficking and regulating neurotransmission. Rafts exist at neuron-

neuron synapses and some synaptic molecules are concentrated in 

rafts. Thus, since PRiMA controls AChE raft localization, also limit 

potential interactions with others proteins (Perrier et al 2002).  

 

2.5 AChE alternative Functions 

The catalytic role of AChE at the cholinergic synapse is note like 

the classical function. However, many others activities not correlated 

with the cholinergic synapses and maybe not at all based on the 

hydrolysis of ACh have been described, and so called non-classical 

functions.  

The first non-classical activity of AChE, clearly distinguished 

from its hydrolytic capacity, was its role in neuritogenesis. In this 

regard, it has been shown that AChE expression occurs largely before 

the onset of synaptogenesis, and in absence of noticeable ACh (Layer & 

Kaulich 1991, Small et al 1992, Small et al 1995). Non-catalytic 

morphogenic activity of AChE can be trigger by over-expression of 

catalytically inactive AChE and functional manipulations of splice 

variants (Dori et al 2005, Grifman et al 1998, Grisaru et al 2006, 

Sternfeld et al 1998). These results, together with the sequence 

homologies of AChE and several known cell-adhesion proteins, 

increased the evidence of a role for AChE in cell adhesion-related 

processes. The cholinesterase-like proteins are catalytically inactive 

and contain a cholinesterase-like domain that has high sequence 

similarity with AChE, and also acts as a protein–protein interaction 

domain. This protein family includes the Drosophila glutactin, 
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neurotactin, gliotactin and the mammalian neuroligins (de la Escalera 

et al 1990). The existence of these proteins provided a convincing 

reason to assume that AChE itself may be engaged in protein–protein 

interactions contributing to the formation of cellular junctions by 

binding to other extracellular ligands. AChE also enhances dopamine 

release from midbrain dopamine neurons in an autocrine form 

(Greenfield 1991). A soluble form of AChE is released from the 

dendrites of dopamine nigrostriatal neurons, independently from the 

cholinergic transmission. This stimulation has a "modulatory" action, 

enhancing the sensitivity of cells to synaptic inputs (Greenfield 1991). 

Other studies reported that AChE plays a role in haematopoiesis and 

thrombopoiesis, acting as a regulator of thrombocytic precursor 

proliferation (Paoletti et al 1992). AChE also seems to be implicated in 

synaptogenesis and stress response (Soreq & Seidman 2001).  

In resume, many evidences present AChE as a multifunctional 

protein, with roles independent of its catalytic activity. Remain to be 

elucidate whether some of these roles are related with changes in AChE 

during neurodegneration. 

 

2.6 AChE dysfunction in AD  

Despite the overall decrease of AChE activity in AD brain, it has 

been demonstrated the presence of AChE as a constituent of the 

amyloid plaque deposits (Ulrich et al 1990). With the progression of 

AD, AChE-positive neurons decrease throughout the entire neocortex 

and most of the cortical AChE activity is predominantly associated with 

the amyloid core (Gomez-Ramos et al 1992, Moran et al 1993) (Figure 

14).  
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Figure14. Cholinergic expression in human brain. The neocortex has been 
stained with the Karnowsky method. Comparision between a non-demented 
case (on the left) and an AD one (on the right). In AD the cholinergic 
extentions decreased and AChE is predominatly associated with the amyloid 
core. Arrows show amyloid and tau deposits (Figure kindly concessed by MM 
Mesulam). 

 

Several other proteins, such as ApoE (Namba et al 1991), α1-

anti-chymotrypsin (Abraham et al 1988), and heparin sulfate 

proteoglycans (Snow et al 1988) have been identified in the amyloid 

plaque suggesting possible involvement of these in the amyloid 

deposition.  

AChE is considered as an endogenous factor that can modulate 

Aβ fibrillogenesis and deposition, playing a significant role in AD 

pathogenesis, nucleation-dependent polymerization and plaque 

formation (Harper & Lansbury 1997, Inestrosa et al 1996). Indeed, 

inside the amyloid core, AChE may directly promote the assembly of Aβ 

peptide into amyloid fibrils, acting like a ‘pathological chaperone’ 

(Alvarez et al 1995). The potential domain of interaction between Aβ 

and AChE is the PAS, near the entrance of the catalytic gorge of AChE. 

Thus, the use of molecules able to bind the PAS prevents the enhancing 

action of AChE on Aβ fibril formation in vitro (Alvarez et al 1995, 

Inestrosa et al 1996). Moreover, biochemical studies in vitro 

demonstrated that the incorporation of AChE into amyloid aggregates 
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is an early event during the polymerization process, and that this 

incorporation is a thermodynamically favored process, since a small 

amount of AChE is required to promote aggregation (Alvarez et al 

1998). The participation of AChE in the amyloid fibrillation changes the 

biochemical and pharmacological properties of the enzyme with 

respect to pH optimum, inhibitor sensitivity, and inhibition by excess 

substrate, and cause an increase in the neurotoxicity of the β-amyloid 

fibrils (Alvarez et al 1998, Geula & Mesulam 1989, Mesulam et al 1987). 

The pathogenic interactions between Aβ and AChE were successively 

described in vivo in a double transgenic mouse offspring of a cross 

between the Tg2576 line, which incorporates the human APP Swedish 

mutation associated with increased production of Aβ40 and Aβ42, and 

a hAChE line, which overexpresses human AChE in a CNS-selective 

pattern. In these double transgenic mice, the development of amyloid 

plaques is accelerated. Plaques are already mature at 6 months of age 

in contrast to Tg2576 line that develops plaques at 9 months, and also 

contain human AChE in addition to Aβ. It seems that the clusters of 

small plaques might be a consequence of the elevated levels of AChE 

expression providing multiple sites of nucleation (Rees et al 2003). 

In another hand, different reports have corroborated the 

possibility that Aβ might also influence AChE expression, increasing its 

activity levels (Hu et al 2003, Sberna et al 1997). For example, 

transgenic mice models of AD such as APPC100 and Tg2576, which 

overproduce human Aβ, (Fodero et al 2002, Silveyra et al 2012) and 

rats treated with intracerebral Aβ (Saez-Valero et al 2002) display an 

increase in AChE levels, particularly of the minor G1 form. 

Not all the molecular forms of AChE are equally affected in AD 

brain. In fact, the selective loss in the cholinergic G4 form, probably 

related with the cholinergic neurons loss (Fishman et al 1986), is not 

parallel to the lighter G1 species levels, which are preserved (Atack et 
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al., 1983; Fishman et al., 1986) or even increased in severe cases of AD 

(Arendt et al 1992, Saez-Valero et al 1999).  Similarly, changes in AChE 

molecular forms in CSF reflect changes in the brain, with increasing 

amounts of G1 AChE in AD affected patients (Saez-Valero et al 1999), 

(Saez-Valero et al 2000a). Also, in plasma from AD subjects the light 

AChE species, which represent the major form of this fluid, are 

increased (Garcia-Ayllon et al 2010). Moreover, this monomeric form 

displays different glycosylation pattern (Saez-Valero et al 2000b, Saez-

Valero et al 1997, Saez-Valero et al 1999).  

Different cell types add different carbohydrate moieties onto 

AChE, so homologous AChE isoforms from different tissues and even 

from the same tissue differ in their glycosylation pattern (Vidal 1996). 

Differences in glycosylation can be detected by lectins, proteins that 

avidly bind to sugar moieties of glycoproteins (Lis & Sharon 1986). The 

ability of lectins to recognize specific carbohydrates in glycoproteins, 

detecting subtle differences in glycosylation patterns, makes them 

excellent tools to investigate glycosylation changes in pathological 

tissues. The pathological impairment of the glycosylation machinery 

could significantly compromise the processing of many glycoproteins, 

thereby resulting in loss of their physiological functions. Therefore, 

abnormal incorporation of carbohydrate moieties in AChE subunits can 

compromise its functional role and/or oligomerization, and also can 

reflect a change in AChE expression pattern.  

Our group has previously characterized in post mortem brain and 

CSF of AD subjects, an increase of the monomeric form of AChE which 

display diminishing affinity for the lectin concanavalin A (Con A) (Saez-

Valero et al 1997, Saez-Valero et al 1999). An altered AChE 

glycosylation patter has been also identified in ante mortem CSF 

samples from subject with probable AD (Garcia-Ayllon et al 2007, Saez-

Valero et al 2000a).  
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Furthermore, many others proteins, such as tau and transferrin, 

show an altered glycosylation pattern in both extracts and CSF of AD 

(Fodero et al 2001, Guevara et al 1998, Kanninen et al 2004, Sihlbom et 

al 2008).  

The expression pattern of AChE, within the embryonic 

development, depends on the developmental stage (Perry et al 1986, 

Zakut et al 1985). Indeed, in the human embryonic brain, the major 

form of AChE is a monomeric specie (Muller et al 1985). During this 

period, the monomeric AChE seems to participate in many functions 

such as neuronal differentiation, regulation of cell growth and cell 

adhesion. All these roles may depend on the protein-protein 

interactions rather than the catalytic activity (Small et al 1996).  In 

particular, in the embryonic cells, AChE-R G1 appears to be the 

predominant form (Grisaru et al 1999). Intringly, aging involves a 

gradual increase of the AChE-R G1 form that attenuates the age-

associated neurodeterioration (Sklan et al 2004, Sternfeld et al 2000). 

Moreover, it has been shown that stress, head injury and exposure to 

cholinesterase inhibitors can induce AChE-R mRNA accumulation 

(Meshorer & Soreq 2006). Reversely, other studies indicated only a 

minor change in AChE-R level after stress and anticholinesterase 

inhibitors (Perrier et al 2005, Perrier et al 2006). 

Interestingly, it has been suggested that changes in AChE-R 

expression are able to modulate β-amyloid pathology. This AChE-R 

splice variant reduces Aβ fibril formation in vitro, inversely from what 

was reported for the AChE-T form (Berson et al 2008). A study of the 

specific changes of the AChE splice variants in AD brain is still pending. 

 

3. γ-Secretase and Presenilin-1 

The notion of a cholinergic-amyloid interrelationship is 

supported by the facts that cholinergic mechanisms modulate amyloid 
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metabolism (Nitsch et al 1992, Rossner et al 1998) as well as AChE 

inhibitors affect APP processing in cells, animals models and in AD-

treated patients (Lahiri et al 1994, Mori et al 1995, Zimmermann et al 

2005). 

In this context, our group has recently demonstrated by 

reciprocal co-immunoprecipitation an interaction between AChE and 

PS1, the catalytic protein of the γ-secretase complex (Silveyra et al 

2008). This interaction, that doesn’t depend on the PAS domain, 

involves both tetrameric and monomeric forms of AChE and can be 

relevant in the pathological progress of AD and in the design of 

therapeutic strategies. Thus, it is important to explore the 

consequences of the AChE-PS1 interactions.  

 

3.1 PS1 protein structure and activity 

PS1 protein has been resistant to crystallographic analysis for 

long time, causing confusion around its topology. PS1 has ten 

hydrophobic regions, which, theoretically, can all form membrane-

spanning domains. Various topology models have been proposed, 

including models suggesting 6 and 7 transmembrane domains (TMD) 

(Lehmann et al 1997, Nakai et al 1999), although the prevalent model 

that has been accepted during many years is a model with 8 TMD with 

the large hydrophilic loop, the N-terminal, and C-terminal domains 

oriented towards the cytosol (Doan et al 1996). The insertion of 

glycosylation sequences into potential loop regions finally 

demonstrates that PS1 is a 9 TMD domain protein (Laudon et al 2005). 

In this last model, PS1 has the N-terminus and a large hydrophilic loop 

in the cytosol, and the C-terminus in the lumen/extracellular space 

(Figure 15).  

The final 3 TMD segments has been the most difficult to confirm. 

TMD 7 is a relatively short hydrophobic domain, that contains one of  
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Figure 15. Membrane topology of presenilin 1. PS1 consists of 9 TMD with 
the N-terminus and the hydrophilic loop in the cytosol, and the C-terminus in 
the lumen/extracellular space. The active site is formed by 2 conserved 
aspartates, in the TMD 6 (Asp257) and 7 (Asp385). During the assembly with 
the other components of γ-secretase, PS1 undergoes endoproteolysis within 
the large loop region, forming a C-terminus (CTF) and a N- terminus fragment 
(NTF). Each subunit of PS1 provides one of the catalytic Asp to the active site 
(Wolfe 2013). Yellow stars symbolize the active Asp(s) involved in catalytic 
activity.  

 

the conseved aspartates in the middle (Laudon et al 2005). TMD 8 and 

9 are membrane spanning, but TMD 8 requires the presence of the 

TMD 9 to integrate into the membrane (Oh & Turner 2005). Moreover, 

it seems that PS1, in presence of its substrate, is finally reorganized in a 

ring structure (Cao & Sudhof 2001). PS1 acts as a membrane-

embedded aspartyl protease, in which the catalytic activity depends of 

the two conserved and essential aspartates (Asp) located at the 

interface of the TM domain 6 of PS-NTF and domain 7 of PS1-CTF 

(Figure 15).  

Although the PS1 holoprotein is synthesized as a polypeptide 

with an apparent size of 42-43 kDa, the mature and active PS1 

undergoes an endoproteolysis that occurs at the aminoacids 292 and 

299, and results in a ~29 kDa N-terminal fragment (NTF; containing 

TMD1-6) and a ~20 kDa C-terminal fragment (CTF; with TMD 7-9), 

which are the more abundant immunoractive bands in brain extracts. 
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The NTF/CTF assembly is the biologically active form of PS1 (Podlisny 

et al 1997, Saura et al 1999).  

 

3.1.1 PS1 localization 

PS1 is ubiquitously expressed in peripheral tissue and in the 

CNS. Several studies have investigated the PS1 subcellular localization 

in neurons using biochemical methods, immunostaining and 

immunoelectron microscopy. It has been reported that PS1 resides 

principally in the endoplasmic reticulum and trans-golgi network, but it 

is also present in small synaptic vesicles, synaptic plasma membranes, 

synaptic adhesion sites and neurite grown cone membranes (Annaert 

& De Strooper 1999, Georgakopoulos et al 1999). However, mature 

forms of PS1 have been found at the cell surface in complex with other 

membrane associated proteins, like nicastrin (Chyung et al 2005). 

Thus, despite the large proportion of PS1 localized within the 

endoplasmic reticulum and early Golgi, it is assumed that APP cleavage 

occurs on the cell surface and in endosomes/lysosomes compartments, 

where the proteolytically active PS1/γ-secretase is principally localized 

[for a review see (Haass et al 2012)]. 

 

3.2 γ-Secretase 

We have previously described the γ-secretase complex formed 

by PS1, together with nicastrin, anterior pharynx-defective 1 (Aph-1) 

and presenilin enhancer 2 (Pen-2). Diverse studies focusing on the 

topology of these proteins revealed that Aph-1 has 7 TMD, with an N-

terminus in the lumen/extracellular space and the C-terminus in the 

cytosol (Fortna et al 2004) (Figure 16). Pen-2 spans the membrane 

twice, with the N- and C-termini facing the lumen space (Crystal et al 

2003).  In contrast, nicastrin has the typical topology of type I 
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transmembrane protein, with a single TMD and an N-terminus 

spanning in the lumen/extracellular space with many potential 

glycosylation sites (Yu et al 2000). 

 

 

Figure 16. Membrane topology of the three components, that with PS1, 

form γ-secretase: nicastrin, Aph-1 and Pen-2. See the text and for a review 
(Wolfe 2013). 
 
 

A close homologue of PS1, PS2, shares with it the catalytic 

activity and can be also found in the γ-secretase, forming similar but 

independent complexes. Similarly, in humans there are two Aph-1 

homologues, Aph-1α (on chromosome 1) and APH-1β (on chromosome 

15). Aph-1α has two C-terminal splicing variants: Aph-1αL (long 

variant) and Aph-1αS (short variant). Aph-1β, Aph-1αL and Aph-1αS 

are functionally redundant in terms of their ability to form active γ-

secretase complexes with the other three subunits. Thus, γ-secretase 

complexes composed by 4 subunits yield six possible distinct γ-

secretase complexes with the possible combinations of Aph-1 and PS 

isoforms (Shirotani et al 2007, Wakabayashi & De Strooper 2008).  

The assembly of γ-secretase complex begins in the ER soon after 

translation and membrane insertion. Several studies indicate that Aph-

1 interacts with the immature, hypoglycosylated form of nicastrin in an 

early stage (Gu et al 2003), forming a low-molecular weight sub-



  INTRODUCTION 

 

67

complex before the incorporation of the other components (LaVoie et 

al 2003). 

At this point, the C-terminus of the nascent PS1 holoprotein 

binds Aph-1 and nicastrin, forming a high molecular weight inactive 

complex where the proteins are stabilized. In this context, PS1 acts as a 

chaperone protein and facilitates nicastrin maturation inducing the 

transport of the complex to the medial Golgi compartments, where 

nicastrin is N-glycosylated (Fraering et al 2004, Kaether et al 2002, 

LaVoie et al 2003). Subsequently, nicastrin undergoes a major 

conformational change that involves the entire ectodomain and 

becomes it selectively resistant to trypsin. This structural 

conformational change doesn’t occur in absence of PS1, and is required 

for the γ-secretase assembly and activity (Shirotani et al 2003). The last 

step consists in the incorporation of Pen-2 into the PS1-nicastrin-Aph-1 

trimeric intermediate. Indeed, it seems that Pen-2 binds to the TMD 4 

of PS1 and provokes its endoproteolysis into NTF-CTF heterodimers 

confering the proteolytic activity (Fraering et al 2004, Watanabe et al 

2005) (Figura 17). The assembled γ-secretase complex is transported 

to the post-Golgi compartments including the plasma membrane where 

can be found in lipid rafts.  

Although the constituents of the γ-secretase complex were 

identified several years ago, there has been controversy concerning the 

stoichiometry of the γ-secretase complex. Sizes of 100-150 kDa up to 2 

MDa have been reported (Capell et al 1998, Edbauer et al 2002, Evin et 

al 2005, Yu et al 1998) even if the expected molecular weight based on 

the protein sequence, assuming that the γ-secretase complex is formed 

of one copy of each subunit, is of about 200-250 kDa. Purified                 

γ-secretase runs on some Blue Native gels at around 500 kDa, implying 

that γ-secretase might be a dimeric complex; however, molecular sizing 

based on gel electrophoresis can be unreliable (Sato et al 2007). 
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Finally, it has been accepted a stoichiometry of 1:1:1:1 for the active 

complex of γ-secretase, even if it is plausible the existence of larger 

aggregates. Consistent with this stoichiometry, the absolute mass of the 

purified γ-secretase measured by scanning transmission electron 

microscopy (STEM) is ~230 kDa (Osenkowski et al 2009).  

 

 

 

Figure 17. Schematic representation of the γ-secretase complex 

formation. The nascent PS1 holoprotein is stabilised by the binding to Aph-
1-nicastrin complex. When this binding doesn’t take place, is rapidly 
degraded. In the complex Aph-1 and nicastrin are bind to the PS-CTF 
fragment while Pen-2 binds the PS-NTF fragment. The coloured tubes 
represent the transmembrane domains of each protein. 
 
 

3.2.1 Proteolytic functions of γ-secretase, the case of APP 

γ-Secretase belongs to a diverse family of Intramembrane-

Cleaving Proteases (I-CLiPs). To date, γ-secretase is also the unique 

intramembrane protease identified that functions as a multi-subunit 

protein complex; all the other I-CLiPs, in fact, are single-protein 

enzymes.   

The notion that PS1 bears the γ-secretase active site was 

strongly supported by the observation that mutations of either of the 
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two conserved aspartate residues substantially reduced Aβ production, 

with a concomitant accumulation of APP βCTF (Kimberly et al 2000, 

Steiner et al 1999, Wolfe et al 1999b) and by the fact that the γ-

secretase activity was inhibited by aspartyl protease substrate-based 

peptidomimetic inhibitors (Esler et al 2000, Wolfe et al 1999a). As 

commented above, in the active γ-secretase complex, PS1 is cleaved 

between residues Asn-292 and Val-293 resulting a NTF and a CTF, 

which remain bound together (Thinakaran et al 1996). This 

endoproteolysis appears to be an intramolecular autocatalytic event 

that is carried out by the same γ-secretase activity (Brunkan et al 2005, 

Wolfe et al 1999b). 

In addition of APP and Notch more than 90 other 

transmembrane protein substrates have been described for PS1-

mediated γ-secretase cleavage (Beel & Sanders 2008, Hemming et al 

2008, Lleo & Saura 2011, Wakabayashi & De Strooper 2008) 

In general, the requirements for being a γ-secretase substrate 

are broad: a type I transmembrane helix with a small ectodomain 

(<300 amino acids), usually resulting from a prior shedding by a 

metalloprotease-like protease (Lleo & Saura 2011). The previous 

shedding of the extracellular domain is usually mediated by specific 

proteases, α- or β-secretases (Brou et al 2000). However,                        

the γ-secretase cleavage doesn’t depend critically on a specific amino 

acid sequence or on endocytosis (Struhl & Adachi 2000). After that, the 

resulting C-terminal fragment is cleaved inside its TMD by the   γ-

secretase complex that executes an endopeptidase-like cleavage, 

followed by carboxypeptidase-like processive/successive cleavage. The 

transmembrane substrate is first proteolyzed at the border between 

the cytosol and membrane, which is called the ε-site (Kimberly et al 

2003, Lichtenthaler et al 1999). This ε-cleavage allows the liberation of 

the intracellular domains (ICDs) of the substrates from the membrane. 
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Some ICDs have been identified as signaling mediators in several 

pathways, including Notch signaling. The remaining hydrophobic 

sequence of the substrate is processed by the γ-secretase 

carboxypeptidase activity, shedding shorter fragments (Qi-Takahara et 

al 2005, Takami et al 2009). 

In the case of APP, the progressive cleavage model of γ-secretase 

is consistent with the detection of several Aβ peptides with lengths 

intermediate between Aβ49 (ε-cleavage) and Aβ42 (γ-cleavage) 

(Figure 18).  

 

 

 

Figure18. APP processing 

by γ-secretase. Β-cleavage of 
the substrate is followed by  
γ-secretase cleavage.       
γ-Secretase processes APP at 
several γ sites producing 
soluble Aβ peptides with 
different C-terminal ends. 
Processing probably occurs 
by progressive cleavage, 
acting first at ε sites, close to 
the membrane-cytoplasm 
boundary, seeding the soluble 
ICD. 

 

In theory, the ε-cleavage yields the formation of an Aβ peptides 

of 49 amino acids, but in practice, Aβ49 is extremely rare to find due to 

the progressive cleavages of PS1. In APP the recognition sequence for 

γ-secretase consists in 11 amino acids (Thr639-Lys649) inside the 

TMD at the C-terminal end, downstream the γ40 cleavage site (Cao & 

Sudhof 2001). One time recognized, APP is presented to the catalytic 
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domain of γ-secretase, which in turn recognizes many hydrophobic 

residues where it can acts (Barthet et al 2012, Tischer & Cordell 1996).  

Interestingly, it seems that the whole known FAD mutations, that 

shift the γ-secretase cleavage toward Aβ42 production, are within the 

small binding site region, probably affecting the presentation of APP to 

γ-secretase (Selkoe 1998). 

At the end, the cytoplasmic APP-ICD (or AICD) binds directly the 

molecular adaptor Fe65 protein, which promotes its entry in the 

nucleus, where it can regulate gene transcription (Baek et al 2002, Cao 

& Sudhof 2001, Wiley et al 2007). 

The large number of γ-secretase substrates that have been 

identified, plus the multiple cellular localizations of this complex, 

suggest that PS1/γ-secretase participates in many biological processes 

including cell adhesion, lateral inhibition, neurotrophin signaling, cell 

differentiation, ligand-receptor binding, calcium influx, NMDA receptor 

activation, substrate recruitment and enzyme trafficking (Thinakaran & 

Parent 2004). The use of PS1 knock-out mice also showed that PS1 is 

not only important in the adult stage of the brain, but is fundamental in 

somitogenesis, axial skeleton formation and neuronal population 

stabilization during development (Shen et al 1997). 

On the other hand, it has been proposed that PS1 is involved in 

the regulation of protein functions independently of the γ-secretase 

activity, playing a critical role in many events during development and 

aging (Parks & Curtis 2007). In this regard, many reports showed, in 

neurons, a large pool of resident PS1 in the early compartments of the 

biosynthetic pathway (Culvenor et al 1997, Huynh et al 1997). It has 

also been suggested that the over-expression of either the wild type or 

mutant PS1 disturbs glycoprotein processing within the golgi 

(Farquhar et al 2003). Indeed, it has been demonstrated that PS1 

regulates the glycosylation and the intracellular trafficking of APP and 
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selected membrane proteins (Leem et al 2002), possibly including 

AChE (Sylveyra et al 2008). Recently, it has been also described the 

implication of PS1 protein in the regulation of neurotransmitter release 

during synaptic transmission. In fact, the presynaptic inactivation of 

PS1 decreases the probability of glutamate release (Zhang et al 2009), 

probably due to its role in modulation of calcium release from 

intracellular stores. Interestingly, it was also proposed that PS1 could 

form calcium leak channels in the ER, independently from its activity in 

the γ-secretase complex (Tu et al 2006). Moreover, PS1/γ-secretase 

can regulate ACh muscarinic receptor-mediated signal transduction [to 

review see (Cowburn et al 2007)].  

However, the participation of PS1 in those biological processes, 

independently from its γ-secretase activity, is not clearly defined. 

 

3.3 Presenilin dysfunction in AD 

To date, more than 150 mutations have been identified in PS1 

and PS2, harbour approximately 90% of FAD (De Strooper 2007). 

These mutations alter APP proteolysis, with an increase of Aβ 

production, especially of the large and amyloidogenic Aβ42 (Duff et al 

1996). Reversely, in PS1 knockout mice, the Aβ42 production is 

reduced (Naruse et al 1998, Qian et al 1998).  

In sporadic AD, it is still unclear if the γ-secretase activity is 

altered. Reported levels of PS1 in AD brains have been contradictory. 

Some of them displayed an increase (Borghi et al 2010, Kakuda et al 

2012), unchanged (Mathews et al 2000) or even a decrease level 

(Davidsson et al 2001, Verdile et al 2004) compared to the one of non-

demented brains.  At the transcriptional level, early reports indicate no 

differences between PS1 mRNA levels in AD brain compared to 

controls (Johnston et al 1996). However, subsequent researches 
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suggested that PS1 mRNA levels, in human AD brains, are significantly 

higher than in those with no dementia (Ikeda et al 2000).  

The progressive memory loss and cognitive decline 

characteristic of AD are strictly regulated by the synaptic spines 

morphology, composition, and stability (Rao & Craig 2000). The 

discovery that PS1 is directly associated with actin filament, 

modulating the synaptic structure, has caught much attention because 

a PS1-mediated synaptic alteration will provide rationales for the 

neuronal defects associated with AD (Sych et al 2000).  This discovery 

is also supported by genetic studies in adult mice where loss of PS1 

function results in progressive synaptic and memory impairments 

prior to age-dependent neurodegeneration (Saura et al 2004, Selkoe 

2002, Zhang et al 2009). For instance, in a triple transgenic mice model 

over-expressing mutant PS1, APP and tau, in an early stage where the 

amyloid and tau pathologies are absent the first alterations are 

associated with the ACh and NMDA receptor components (Wang et al 

2009). This phenomenon may be related with the adverse effects of 

mutant PS1 on synaptic plasticity and proteins trafficking. Similar 

effects have been observed in PS1 conditional knock-out mice, where 

the loss of PS1 causes a reduction in NMDA-receptors mediated 

responses and LTP deficits, which may be due to a defect in 

intracellular trafficking and synaptic delivery (Saura et al 2004). 

Recently, our group has characterized an impairment of AChE 

maturation and glycosylation in mice expressing a PS1-FAD mutation 

(Silveyra et al 2008).  In these mice AChE activity is decreased and its 

glycosylation altered. An inactive, delocalized AChE may have 

physiological consequences such as the loss of cholinergic receptors 

regulation, which can be related with AD impairments. 
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In this Thesis we aim to further explore the complex cholinergic-

amyloid relationship, through the study of the PS1 and AChE cross-talk. 

A better understanding of their relationship, will be relevant to 

understand the pathological processes related with AD progression, in 

order to design possible therapeutic strategies. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 2: OBJECTIVES



 

 



  OBJECTIVES 

 

77

The ultimate goal of this Thesis is to explore and determine the 

interrelationship between PS1 and AChE and its implication in 

Alzheimer’s disease. Specifically, the main objectives of our study are: 

 

I. To investigate the consequences of AChE-PS1 interactions, 

mainly to examine the mechanism exerted by AChE for 

modulating PS1 levels, playing special attention to AChE 

variants, molecular form and enzymatic activity. Finally to study 

whether altered levels of PS1, triggered by AChE, induce changes 

in γ-secretase activity 

 

II. To analyse whether the expression of AChE protein is altered in 

the AD brain, investigating AChE catalytic activity levels, but also 

levels of protein and mRNA of AChE in hipoccampus and 

cerebral cortex of AD.  

 

III. To investigate whether PS1 participates in the processing of the 

cholinergic AChE specie, via cleavage of the PRiMA subunit; and 

whether resulting PRiMA fragments could translocate to the 

nucleus. To examine also in a PS1 conditional knockout mice 

whether PS1 influences the localization of AChE in brain lipid 

rafts.
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ARTICLE I:  

Acetylcholinesterase modulates Presenilin-1 levels and  

γ-secretase activity 

 

Our group has previously identified presenilin-1 (PS1), as an 

interacting protein of acetylcholinesterase (AChE) and has also 

demonstrated that genetic modulation of AChE expression influences 

PS1 levels. In this Thesis we further explore the consequences of AChE-

PS1 interactions. We have found that PS1 is able to co-

immunoprecipitate with all the AChE variants (AChE-R and AChE-T) 

and molecular forms (tetramers and light subunits) present in the 

human brain. Then, we have demonstrated that the overexpression of 

AChE-T or AChE-R in CHO cells lead to a significant increase in PS1 

levels, compared to the untransfected cells. This influence of AChE in 

PS1 levels is exerted by a mechanism independent of its catalytic 

activity since over-expression of inactive mutants of AChE-T and AChE-

R, in which the catalytic serine200 was replaced with a valine, also 

result in increases in PS1 levels. This modulatory capacity of AChE 

depends on its subcellular localization, because the increase in PS1 

levels is further augmented in cells over-expressing AChE with the 

membrane anchoring subunit proline-rich membrane anchor (PRiMA), 

which restricts the localization of the resulting AChE tetramer to the 

outer plasma. Thus, the most significant variable that determines how 

AChE influences PS1 levels is their co-localization outside the plasma 

membrane. The incubation of untransfected cells with pure soluble 

AChE (from Electrophorus electricus, eel-AChE) also triggers an 

increase in endogenous PS1, at both protein and transcript levels. 

However, we have found that AChE-PS1 up-regulation may be linked to 

an inhibitory effect of AChE on γ-secretase activity. The incubation of 

CHO-PS70 cells, which stably overexpress wild-type human PS1 and 
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wild-type APP, with eel-AChE results in a decrease on γ-secretase 

activity, monitored by measuring the accumulation of the APP-CTF 

levels (C-terminus of the amyloid β-protein precursor). This inhibitory 

effect of AChE on γ-secretase activity was also observed by directly 

assessing accumulation of CTF-APP in cell-free membrane preparations 

incubated with eel-AChE. Our data suggest that inhibition of PS1 by 

AChE may initiate a feedback process that leads to up-regulation of 

PS1. 

 

 

These results were published in the manuscript entitled: 

“Acetylcholinesterase modulates Presenilin-1 levels and                  

γ-secretase activity” Journal of Alzheimer’s Disease (In press). 
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Abstract 

The cholinergic enzyme acetylcholinesterase (AChE) and the catalytic 

component of the γ-secretase complex, presenilin-1 (PS1), are known 

to interact.  In this study, we investigate the consequences of AChE-PS1 

interactions, particularly the influence of AChE in PS1 levels and γ-

secretase activity.  PS1 is able to co-immunoprecipitate all AChE 

variants (AChE-R and AChE-T) and molecular forms (tetramers and 

light subunits) present in the human brain.  Over-expression of AChE-R 

or AChE-T, or their respective inactive mutants, all trigger an increase 

in PS1 protein levels.  The AChE specie capable of triggering the biggest 

increase in PS1 levels is a complex of AChE with the membrane 

anchoring subunit proline-rich membrane anchor (PRiMA), which 

restricts the localization of the resulting AChE tetramer to the outer 

plasma membrane.  Incubation of cultured cells with soluble AChE 



86  RESULTS: ARTICLE I 

 

demonstrates that AChE is able to increase PS1 at both the protein and 

transcript levels.  However, the increase of PS1 caused by soluble AChE 

is accompanied by a decrease in γ-secretase activity as shown by the 

reduction of the processing of the β-amyloid precursor protein.  This 

inhibitory effect of AChE on γ-secretase activity was also demonstrated 

by directly assessing accumulation of CTF-APP in cell-free membrane 

preparations incubated with AChE.  Our data suggest that AChE may 

function as an inhibitor of γ-secretase activity. 

 

Introduction  

Acetylcholinesterase (AChE) is a key enzyme in the cholinergic nervous 

system. Due to its physiological role of hydrolyzing acetylcholine and 

supporting neurotransmission, this enzyme has been extensively 

investigated and targeted for pharmacological intervention. In 

Alzheimer’s disease (AD), the loss of forebrain cholinergic neurons is 

accompanied by a progressive decline in acetylcholine [1,2]. Deficits in 

cholinergic function most likely contribute to AD symptoms, affecting 

cognition, behaviour and daily living activities.  Although changes in 

other elements of the cholinergic system [3,4] are also involved in AD, 

current AD therapy is mostly focused on inhibitors of AChE [5,6]. Thus, 

randomized clinical trials have demonstrated the efficacy of AChE 

inhibitors across a wide range of AD severity [7]. 

Many studies suggest that AChE could have alternative functions 

unrelated to cholinergic neurotransmission [8-12], or its catalytic 

activity [13-15]. AChE exists as different variants derived from 

alternative RNA splicing, generating different polypeptide encoding 

transcripts with the same catalytic domain but distinct C-terminal 

peptides, which determine the ability of the molecule to form oligomers 

[16]. These different transcripts may also influence protein-protein 

interactions. In the brain, the major T-transcript encodes subunits 
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which produce monomeric (G1) and tetrameric (G4, the cholinergic 

species) AChE forms; while the R-transcript, that is normally present at 

low levels, encodes monomeric soluble subunits [17]. The particular 

subcellular distribution of each AChE species allows for its interaction 

with specific proteins.  

Brain accumulation of the β-amyloid peptide (Aβ) is a critical feature of 

AD pathogenesis. Aβ is the main component of extracellular amyloid 

plaques and is generated by processing of the larger transmembrane β-

amyloid precursor protein (APP) [18,19], by the successive action of 

two proteolytic enzymes, β-secretase and γ-secretase [20]. We have 

previously identified presenilin-1 (PS1), the active component of the γ-

secretase complex [21], as an interacting protein of AChE [22]. We have 

also shown that genetic modulation of AChE expression influences PS1 

levels [23]. 

In this study, we further explore the consequences of AChE-PS1 

interactions. We investigate which AChE variant and molecular form 

influences PS1 levels and if the AChE enzymatic activity is responsible 

for modulating PS1 expression. Finally we address whether altered 

levels of PS1, triggered by AChE, induce changes in γ-secretase activity. 

 

Material and methods  

Cell Cultures 

Chinese Hamster Ovary (CHO) cells were grown in D-

MEM+GlutaMAX™-I (Dulbecco’s Modified Eagle medium; Gibco®, Life 

technologies Paisley, UK) supplemented with 10% fetal bovine serum 

(FBS, Gibco) and 1% penicillin/streptomycin solution (P/S; 100 U/mL) 

(Gibco).  Cells were seeded at a density of 8×105 cells on 35 mm tissue 

culture dishes and were transfected the following day with plasmid 

cDNA using Lipofectamine™ 2000 (Invitrogen™, Life technologies 
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Paisley, UK) according to the manufacturer's instructions. The plasmids 

employed encoded either human AChE-T (4µg) or AChE-R (1µg) under 

the cytomegalovirus (CMV) promoter-enhancer (a generous gift from 

Dr. H. Soreq, The Institute of Life Sciences, The Hebrew University of 

Jerusalem, Jerusalem, Israel). The PCI “empty” vector (Promega, 

Madison, USA) served as negative control. After 48 hours of 

transfection, cells were washed with phosphate-saline buffer (PBS) and 

resuspended in 120 μL ice-cold extraction buffer: 50 mM Tris-HCl, pH 

7.4 / 150 mM NaCl / 5 mM EDTA / 1% (w/v) Nonidet P-40 / 0.5% 

(w/v) Triton X-100 supplemented with a cocktail of protease 

inhibitors. Cell lysates were then sonicated and centrifuged at 70,000×g 

at 4 ºC for 1 hour. The supernatants were collected and frozen at -80ºC 

until biochemical analysis. Alternatively, AChE-T and AChE-R were 

over-expressed in SH-SY5Y neuroblastoma cells, grown as described 

elsewhere [23]. 

To determine if localization of AChE in the plasma membrane 

influences PS1 levels, CHO cells were seeded at a density of 6×105 cells 

on 35 mm tissue culture dishes and transfected with 2µg of AChE-T 

cDNA, with or without 2µg of PRiMA plasmid cDNA using 

Lipofectamine™ 2000. The cDNA encoding the mouse PRiMA isoform I 

tagged with an HA epitope (YPYDVPDYA) inserted before the stop 

codon at the C-terminus [24], was a generous gift from Dr. K.W.K. Tsim 

(The Hong Kong University of Science and Technology, Hong Kong, 

China). The cells were collected for analysis 48 hours after the 

transfection.  

To estimate the AChE activity at the plasma membrane, CHO cells 

previously transfected with AChE-T cDNA (2µg) with or without 2µg of 

PRiMA plasmid cDNA, were treated with the AChE inhibitor tacrine, 

10µM (Sigma-Aldrich, St. Louis, MO, USA). Forty-eight hours after 

transfection, cells were washed with PBS and intact cultured cells were 
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measured for AChE activity using a modified microassay version of the 

colorimetric Ellman’s method [25]. 

CHO cells stably overexpressing wild-type human PS1 and wild-type 

APP (CHO-PS70, a generous gift from Dr. D. Selkoe, Brigham and 

Women’s Hospital, Boston; see ref. 26), were grown in Opti-MEM® 

(Gibco) containing 10% FBS, 1% P/S and additionally supplemented 

with 200 μg/ml G418 and 2.5 μg/ml Puromycin (Sigma-Aldrich). These 

cells were treated with soluble AChE from Electrophorus electricus (eel-

AChE; Sigma-Aldrich) or vehicle (PBS) for 18 hours, solubilized, and C-

terminal fragments of APP (CTF-APP) quantified by Western blot, and 

PS1 transcript levels by quantitative RT-PCR (qRT-PCR). 

 

Generation of inactive catalytic mutants of AChE 

Catalytically inactive species of AChE-R and AChE-T were generated by 

site-directed mutagenesis using the QuickChangeTM site directed 

mutagenesis Kit (Stratagene, La Jolla, CA, USA) according to the 

manufacturer’s protocol. AChE activity was removed in the plasmid 

cDNA of both active AChE-R and AChE-T by replacing the centre active 

serine200 with valine [27].  

Inactive mutants (imAChE-T or imAChE-R; 3µg of the cDNAs) were 

overexpressed in CHO cells using the Lipofectamine™ 2000 protocol. 

Cells were harvested and solubilized after 48 hours. Protein AChE over-

expression was assessed by Western blot, while the inactive character 

of the mutants was determined by measuring AChE activity levels.  

 

Human brain samples 

Samples of adult brain prefrontal cortex from non-demented subjects 

(three cases, 2 females and 1 male, 58 ±3 years) were obtained from 

the Banco de Tejidos, Fundación CIEN (Madrid, Spain). Tissues stored 
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at -80°C were thawed gradually at 4°C and small pieces of prefrontal 

cortex were homogenized (10% w/v) in ice-cold 50 mM Tris-HCl (pH 

7.4)-500 mM NaCl-5 mM EDTA-1% (w/v) Nonidet P-40-0.5% (w/v) 

Triton X-100 supplemented with a cocktail of protease inhibitors. The 

homogenates were sonicated and centrifuged at 70,000×g at 4°C for 1 

hour; the supernatant was collected, aliquoted and frozen at -80°C until 

use. This study was approved by the local ethics committees and 

carried out in accordance with the Declaration of Helsinki. 

 

AChE enzyme assay and protein determination 

A modified microassay version of the colorimetric Ellman’s method 

was used to measure AChE [25]. One mU of AChE activity was defined 

as the number of nmoles of acetylthiocholine hydrolyzed per minute at 

22°C. Total protein concentrations were determined using the BCA 

Protein Assay Kit (Thermo Scientific, Rockford, IL, USA). 

 

Analysis of AChE molecular forms  

Molecular forms of AChE were separated according to their 

sedimentation coefficients by ultracentrifugation on continuous 5% to 

20% (w/v) sucrose gradients containing 0.5% (w/v) Triton X 100, as 

previously described [25,28]. Enzymes of known sedimentation 

coefficient, bovine liver catalase (11.4S) and calf intestinal alkaline 

phosphatase (6.1S) were used in the gradients to identify individual 

AChE forms (G4 = tetramers; G2 =dimers; G1 =monomers). 

 

Preparation of membrane fractions and γ-secretase activity assay. 

Alternatively, for analysis of γ-secretase activity cell membrane 

preparations were used [29]. CHO-PS70 cells were washed in PBS, 

harvested and homogenized using a mechanical pestle homogenizer in 

buffer containing 10 mM KCl and 10 mM HEPES, pH 7.0, supplemented 
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with a protease inhibitor cocktail. The cell homogenates were 

centrifuged at 1,000×g for 10 min, and the post-nuclear supernatant 

was obtained after centrifugation at 100,000×g for 1 hour. Membrane 

fractions were resuspended in buffer containing 20 mM Hepes pH 7.0, 

150 mM NaCl, 5 mM EDTA and a protease inhibitor cocktail. Protein 

concentration was measured by the BCA Protein Assay Kit (Thermo 

Scientific) and maintained at 3–5 mg/ml. The samples were incubated 

in the absence or presence of eel-AChE (Sigma-Aldrich) or the γ-

secretase inhibitor DAPT, N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-

phenylglycine t-butyl ester (Calbiochem), at 37ºC for 16 hours. γ-

Secretase activity was assessed by measuring the levels of CTF-APP and 

the CTF of another γ-secretase substrate, the apolipoprotein E receptor 

2 or ApoER2 [30] by Western blotting. 

 

Western blot  

Samples from cell lysates or brain extracts (30 to 50 µg of protein, 

equal amount in each lane) were resolved by electrophoresis on 10% 

SDS-polyacrylamide slab gels (SDS-PAGE) under fully reducing 

conditions. Samples were denatured at 50°C for 15 minutes (PS1) or 

98°C for 7 minutes (all the other proteins). For blue-native gel 

electrophoresis, samples were analyzed as previously described [31], 

and NativeMark™ Unstained Protein Standards (Life Technologies) 

were used as molecular weight markers. Following electrophoresis, 

proteins were blotted onto nitrocellulose membranes (Schleider & 

Schuell Bioscience GmbH, Dassel, Germany), and membranes were 

blocked with 5% nonfat milk. The membranes were probed with the 

following primary antibodies: anti-CTF-APP (Sigma-Aldrich), anti-CTF 

apolipoprotein E receptor 2 (ApoER2; Abcam), anti-N-terminal PS1 

(Calbiochem®, Merck KGaA, Darmstadt, Germany), anti- PEN2 
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(presenilin enhancer 2; from Sigma), anti-AChE antibody N-19 (Santa 

Cruz Biotech), an anti-AChE antibody raised to the unique C-terminus 

of human AChE-R (also a generous gift from Dr. H. Soreq), and anti-

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Abcam, 

Cambridge, UK). Western blots for different antibodies were performed 

individually, to avoid re-using blots. The blots were then incubated 

with the corresponding secondary antibody conjugated to horseradish 

peroxidase and the signal was detected using SuperSignal West Femto 

Chemiluminescent Substrate (Thermo Scientific) in a Luminescent 

Image Analyzer LAS-1000 Plus (Fujifilm, Tokyo, Japan). For semi-

quantitative analysis, the intensity of bands was measured by 

densitometry with the Science Lab Image Gauge v4.0 software 

provided by Fujifilm.  Protein levels were normalized to GAPDH. 

PS1 immunoprecipitation  

Brain extracts were pre-cleared by incubation with protein A-

Sepharose (Sigma-Aldrich) for 2 hours at 4°C. Immunoprecipitations 

were performed at 4°C by first incubating 800 μg of protein overnight 

with the N-terminal PS1 antibody 98/1 (a generous gift form J. 

Culvenor, Department of Pathology, The University of Melbourne, 

Australia) previously coupled to protein A-Sepharose by dimethyl 

pimelimidate dihydrochloride (Sigma-Aldrich). Precipitated proteins 

were washed with PBS and eluted with 0.1M glycine buffer at pH 2.5. 

After pH neutralization, supernatants were denatured in Laemmli 

sample buffer at 97ºC for 7 min and subjected to SDS-PAGE/Western 

blotting. Blots were incubated with the anti-AChE antibodies Ab31276 

and anti-AChE-R.  

RNA isolation and analysis of transcripts by qRT-PCR 

Total RNA was isolated from control CHO-PS70 cells or cells treated 

with eel-AChE using TRIzol Reagent in the PureLink™ Micro-to-Midi 

Total RNA Purification System (Invitrogen) according to the 



  RESULTS: ARTICLE I 

 

 

93

manufacturer’s protocol. First-strand cDNAs were obtained by reverse 

transcription of 1 µg of total RNA using the High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems; life technologies 

Paisley, UK), according to the manufacturer’s instructions. Quantitative 

PCR amplification was performed in a StepOne™ Real-Time PCR System 

(Applied Biosystems) with TaqMan GenExpression Assays 

(Hs00997789 for PS1 and Hs03929097 for GAPDH) and TaqMan PCR 

Master Mix. Transcript levels for PS1 were calculated using the relative 

standard curve method normalized to GADPH. 

 

Co-localization of AChE and PS1 

CHO cells were transiently co-transfected with either 500 ng each of 

PS1-GFP (kindly provided by Dr. O. Berezovska; Massachusetts General 

Hospital, MA, USA) and AChE-T plasmids or 300 ng of each of PS1-GFP, 

AChE-T and PRiMA plasmids. Cells were fixed with 4% 

paraformaldehyde after 24 hours and immunostained for AChE using 

anti-AChE followed by an Alexa647-tagged secondary antibody 

(Molecular Probes, Inc, USA). Confocal images were taken with a SP5 

confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany) 

using a 63× objective (4× zoom). Laser power was kept low to avoid 

crossover between the two channels and to avoid pixel saturation. 

Confocal images were taken in multiple z planes (1micron apart). 

Analysis was performed using ImageJ software (v1.46g) [32]. Briefly, 

channels were thresholded to create a binary image and Manders’ co-

efficients [33] were calculated using the JACoP JaCoP ImageJ plugin 

[34]. The Manders’ co-efficient corresponds to the fraction of AChE-

positive pixels that are also positive for PS1. Images showing the pixels 

where the two channels co-localize were generated for the binary 

thresholded images using the Co-localization highlighter ImageJ plugin. 
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Statistical analysis 

Data are expressed as means ± standard error of the mean (SEM). Data 

were analyzed using SigmaStat (Version 2.0; SPSS Inc.) by Student’s t-

test (two tailed) or by one-way analysis of variance (ANOVA), followed 

by Tukey test for pair-wise comparisons. Statistical significance was 

designated as p < 0.05. 

 

Results 

Several AChE variants and isoforms interact with PS1  

We first investigated whether PS1 antibodies were able to co-

precipitate the R and T variants, and G4 and G1 AChE-T species (Fig. 1). 

Human brain cortex samples were immunoprecipitated using an anti-

PS1 antibody, and the bound fraction was analysed by Western blotting 

using different anti-AChE antibodies raised against different C-terminal 

peptides of R and T AChE variants. Western blot analysis of the 

immunoprecipitates demonstrated that both AChE subunits, T and R, 

are potential PS1-interacting proteins (Fig. 1A).  In agreement with our 

previous study (Silveyra et al., 2008), ultracentrifugation in sucrose 

density gradients confirmed that both peaks corresponding to the 

major AChE G4 (tetramers of T subunits) and to the minor light forms 

(monomers of T, and potentially of R subunits) were decreased after 

immunoprecipitation with PS1 antibodies (Fig. 1B). 

 We next examined whether these AChE species influence PS1 

levels (Fig. 2A). Over-expression of AChE-T and AChE-R in CHO cells, as 

monomeric forms, leads to a statistically significant increase in PS1 

levels, compared to untransfected cells (Fig. 2A). The differences 

between AChE-R (67 ±19%) and AChE-T increase (36 ±5%) on PS1 

levels is not statistically significant (p= 0.18). Over-expression of AChE-

T and AChE-R in the neuroblastoma cell line SH-SY5Y yield similar 

increases in PS1 levels (Supplementary Fig. 1). 
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Influence of AChE in PS1 levels is not dependent on its catalytic 

activity 

All the molecular forms and variants of AChE have been demonstrated 

to be virtually equivalent in their catalytic activity [35,36]. We next 

examined whether the suppression of AChE catalytic activity affects its 

ability to modulate PS1 levels. As it has been previously shown that 

mutation of serine200 to valine abolishes detectable AChE activity [27], 

we over-expressed site-directed mutants at serine200 for both AChE-T 

and AChE-R. Over-expression of the inactive mutants, imAChE-T and 

imAChE-R resulted in an increase in AChE protein levels, as assessed 

by Western blotting, with no substantial increase in specific activity 

(Fig. 2B). However, both inactive mutants were able to induce an 

increase in PS1 levels (Fig. 2B), indicating that the modulatory capacity 

of AChE is exerted by a mechanism independent of its catalytic activity.  

 

Influence of AChE in PS1 levels is dependent on its subcellular 

localization 

The proline-rich membrane anchor (PRiMA) subunit is a small 

transmembrane protein that represents a limiting factor for the 

restricted localization of AChE into the plasma membrane.  It 

transforms monomeric AChE-T into a tetrameric AChE (G4)-PRiMA 

complex which anchors to the outer cell surface [37-39]. We examined 

if co-expression of the PRiMA subunit with AChE-T further affects PS1 

levels. A CHO cell line over-expressing AChE-T was co-transfected with 

the PRiMA subunit. As expected, cells over-expressing AChE and PRiMA 

produced significant amounts of G4 AChE in comparison with those 

over-expressing AChE only (Fig. 3A). Greater AChE activity was 

detected on the outer cell surface of intact (non-permeabilized) 

cultured cells over-expressing AChE and PRiMA compared to cells 
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transfected with AChE in the absence of PRiMA (Fig. 3B). 

Immunocytochemistry was also used to compare the distribution of 

PS1 and AChE, expressed as a monomer or as a tetrameric PRiMA-

linked AChE. Immunofluorescence labelling of cells confirmed 

localization of PS1 to both the cytoplasmic region and the periphery 

(plasma membrane) (Fig. 3C, D), a finding consistent with previous 

reports by us and others [22, 40-42]. In the absence of PRiMA, AChE co-

localized with PS1 mainly within the cytoplasmic region (80 ±7% of 

AChE pixels were also positive for PS1; Fig. 3C). In contrast, in the 

presence of PRiMA, AChE was, as expected, targeted to the plasma 

membrane with staining predominantly localized to the cell periphery, 

with minor cytoplasmic co-localization with PS1 (only 50 ±6% of AChE 

pixels were also positive for PS1; p= 0.03 versus AChE without PRiMA; 

Fig. 3D). The levels of PS1 in cells over-expressing AChE with PRiMA is 

higher than in cells over-expressing intracellular AChE alone, while 

over-expression of PRiMA alone fails to trigger noticeable change in 

PS1 levels (Fig. 3E). The PRiMA subunit is an accessory partner for the 

cellular disposition of AChE [39], at the plasma membrane always in 

the presence of AChE. In conclusion, the AChE induced increase in the 

levels of PS1 is further augmented by the presence of PRiMA at the 

plasma membrane. 

 

AChE increases PS1 protein and mRNA levels 

Our results indicate that the ability of AChE to induce an increase in 

PS1 levels is not dependent on its C-terminal (variant), oligomerization 

status (molecular form) or enzymatic activity. The most significant 

variable which determines how AChE influences PS1 levels is co-

localization outside the plasma membrane. We therefore assessed if 

soluble AChE (a G4 species from Electrophorus electricus, eel-AChE) is 

able to modulate endogenous PS1 levels in untransfected CHO cells. 
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After an 18 hour treatment with soluble eel-AChE, the levels of PS1 

were significantly increased from 0.5±1 to 34±1 mU/mL (Fig. 4A).  We 

next determined whether AChE influences the PS1 expression by 

measuring PS1 mRNA levels by qRT-PCR. Levels of the PS1 transcripts 

were significantly increased (44 ±1%, p< 0.001) in eel-AChE treated 

cells compared to vehicle control cells (Fig. 4B). 

 

AChE inhibits γ-secretase activity 

Up-regulation of protein levels as a reaction to inhibition is a 

recognized phenomenon documented for several proteins [43,44], 

including AChE [17, 46,47]. To assess if AChE-mediated PS1 up-

regulation is linked to an inhibitory effect of AChE on γ-secretase 

activity, we treated with eel-AChE CHO-PS70 cells, which stably 

overexpress wild-type human PS1 and wild-type APP and exhibit 

elevated γ-secretase activity [26]. The potential inhibitory effect of 

AChE on γ-secretase activity was monitored by measuring the 

accumulation of APP-CTF levels. Cells were treated for 18 hours with 

increasing amounts of eel-AChE, and levels of APP-CTF were 

determined in cellular extracts by Western blotting using an antibody 

raised against the APP C-terminal. A dose-dependent effect of AChE on 

γ-secretase activity was observed, with increased amount of APP-CTF 

in treated cells (Fig. 5A).  The inhibitory effect of AChE on γ-secretase 

activity was then determined in membrane preparations isolated from 

CHO-PS70 cells obtained as described elsewhere [29]. The presence of 

the γ-secretase complex in these membrane preparations was first 

confirmed by blue native-PAGE (Fig. 5B). A predominant PS1 

immunoreactive band, with a molecular mass of ~450 kDa (closed 

arrowhead), was detected together with other high molecular mass 

bands, corresponding to large γ-secretase complexes [48,49]. These 
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bands were also immunoreactive for the γ-secretase component PEN2 

(presenilin enhancer 2) [50].  To determine the effect of inhibition of γ-

secretase activity on γ-secretase cleavage of APP, cell membranes were 

incubated at 37ºC for 16 hours in the absence or presence of N-[N-(3,5-

difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT), a 

well-known γ-secretase inhibitor that targets PS1 [51]. The efficiency 

of 5 μM DAPT to inhibit γ-secretase activity was monitored by 

measuring the accumulation of APP-CTF in membrane preparations 

(Fig. 5C). Accumulation of APP-CTF was also observed in membrane 

preparations incubated with ~34±1 mU/mL of eel-AChE (Fig. 5C). The 

increased levels in the membrane preparation treated with eel-AChE of 

the CTF of ApoER2, another γ-secretase substrate [30], which was not 

over-expressed in CHO-PS70 cells, served to confirm the decrease in γ-

secretase in presence of AChE (Fig. 5C). These results suggest that 

AChE may act as an inhibitor of γ-secretase activity. 

 

Discussion 

The cholinergic system has been shown to modulate APP metabolism 

[52,53] and AChE inhibitors affect amyloid production [54-56]. In turn, 

different reports have supported the possibility that Aβ may up-

regulate AChE [57-61]. While characterization of the functional cross-

talk between AChE/cholinergic neurotransmission and APP processing 

is of major interest, there is currently no consensus on the mechanisms 

which regulate these reciprocal interactions. Recent evidence 

demonstrates that cholinergic AChE can be down-regulated in neuronal 

cell lines by APP independently of secretase activity [62]. However, 

other studies have reported modulatory effects of AChE inhibitors on 

α-secretase [63,64] and β-secretase [65-67]. Our previous studies have 

also described that AChE inhibitors are able to modulate PS1 levels 

[23].  
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We have previously explored some of the potential consequences of the 

interaction between AChE and PS1, and demonstrated that AChE 

knockdown with siRNA, as well as AChE inhibition, decreased cellular 

PS1 levels; whereas AChE over-expression exerted an opposing effect 

[23]. Our previous data also suggested that AChE does not exert its 

modulatory action on PS1 via a cholinergic mechanism, as the 

cholinergic agonist carbachol had no effect on PS1 [23]. Hence, the 

mechanisms employed by AChE to influence APP processing remained 

unclear. Our present study addresses how AChE influences PS1 

expression by examining changes in PS1, at both protein and 

transcriptional levels, in several conditions where distinct AChE 

variant and molecular forms have been modulated. We first confirmed 

that AChE does not exert its modulatory action on PS1 via a cholinergic 

mechanism since mutant inactive variants also influence PS1 levels.  

Although all the AChE variants (R and T) and molecular forms 

(monomers and tetramers) tested can influence PS1 levels, the AChE 

species that triggered the major increase in PS1 levels was the PRiMA-

linked AChE form. The PRiMA subunit restricts localization of 

cholinergic tetrameric AChE to the outer plasma membrane. PS1 and 

AChE are located in the same intracellular compartments, including 

perinuclear compartments, but interestingly PRiMA has been shown to 

restrict AChE localization to  the membrane of synapses [68-70]. 

Similarly, PS1 is targeted to the cell surface as an active γ-secretase 

complex [71].  However, the subcellular localization of biologically 

active γ-secretase is still a matter of controversy. Our studies 

demonstrate that AChE inhibits APP processing catalyzed by γ-

secretase in both cells and membrane preparations. The possibility that 

AChE inhibits cleavage of APP by γ-secretase has been recently 

suggested [72]. Therefore, we postulated that, under non-pathological 
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conditions, it is the cholinergic species of AChE which likely interacts 

with PS1, within the active γ-secretase complex, but by a mechanism 

independent of its catalytic activity. 

The mechanisms employed by AChE to influence APP processing 

remain unclear.  Besides the involvement of the catalytic activity of 

AChE, a direct effect based on protein-protein interaction also seems 

plausible. Indeed, AChE is much more than a cholinergic enzyme with 

distinct biological functions than merely hydrolysis of acetylcholine. In 

this context, excess of enzymatically inactivated brain AChE by 

transgenic over-expression have demonstrated different biological 

functions [13-15]. Native AChE is also present in non-cholinergic 

tissues and shares high sequence similarity with several neural cell 

adhesion proteins [73]. The presence of a cholinesterase-like domain in 

non-catalytic proteins structurally related to AChE may reflect its 

capacity for protein-protein interactions. This cholinesterase-like 

domain may have adhesive properties [74]. Therefore, AChE may 

inhibit APP processing by blocking access of γ-secretases to APP. We 

have recently demonstrated that γ-secretase is involved in the cleavage 

of PRiMA [75].  Neuroligin-1, a postsynaptic adhesion molecule whose 

extracellular domain is homologous to AChE, is also cleaved by γ-

secretase [76]. In general, the specific requirements for a γ-secretase 

substrate are vague, and do not depend on a specific amino acid 

sequence or on endocytosis [77].  More than 90 type-I integral 

membrane proteins are known to be potentially cleaved by γ-secretase 

[78], but which of those are “common” substrates for γ-secretase in 

physiological conditions remains unclear. We favor the hypothesis that 

AChE acts as an inhibitor of γ-secretase activity by interacting with PS1. 

Nonetheless, we can speculate that some potential substrates of γ-

secretase, such as PRiMA from the AChE cholinergic complex, are not 

“common” substrates and only interact under specific physiological 
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conditions, but which results in low catalytic efficiency. Likewise 

binding of AChE subunits to PS1 may restrict γ-secretase activity, 

similar to a negative feedback by end-product inhibition. Further 

extensive research is needed to determine how AChE blocks or 

interferes with PS1 and γ-secretase activity and which pool of AChE is 

involved in the process. 

In this study we report that an increase in AChE blocks γ-secretase 

activity. Up-regulation in reaction to inhibition is a recognized 

phenomenon documented for several proteins [43,44], including AChE 

[17,45]. Our data suggest that inhibition of PS1 by AChE may initiate a 

feedback process that leads to up-regulation of PS1. Regarding the 

pathological condition, AChE activity (particularly the cholinergic 

specie) is decreased in the AD brain [28, 79-81], therefore impeding its 

ability to modulate γ-secretase activity. Interestingly, therapy with 

inhibitors of AChE demonstrated weak disease-modifying effects in AD-

treated patients, including modulation of APP expression and 

metabolism [63, 82-85]. As previously mentioned, the mechanisms 

employed by AChE inhibitors to influence APP processing remain 

unclear but may involve multiple mechanisms that vary according to 

the type of AChE inhibition. Specifically, how AChE inhibitors trigger a 

decrease in PS1 levels is unclear. However, it is important to note that 

the positive modulation of AChE inhibitors on APP failed to have a long-

term effect in patients [83]. We propose that a limited response to 

AChE inhibitors may be associated with AChE up-regulation in reaction 

to chronic inhibition, a feedback process that leads to accumulation of 

AChE in parallel with the lack of effect on PS1 levels [23]. This 

phenomenon of AChE up-regulation, as a response to anti-AChE 

therapy, has been confirmed in patients under AChE inhibitor therapy 

[46,47,86]. Nonetheless, the subcellular localization of this new pool of 
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AChE, and therefore the potential to interact with PS1, merits further 

investigation. 

In addition, under non-disease conditions AChE occurs as both active 

and inactive subunits [87,88], and the existence of inactive AChE has 

been demonstrated in brain [89]. We have recently shown by Western 

blotting and immunohistochemistry that a prominent pool of 

enzymatically inactive AChE protein existed in the AD brain [90]. The 

physiological significance of non-catalytic AChE in brain and how it is 

affected during pathology and treatment remain unexplored. 

In conclusion, our data concur with other reports suggesting the 

regulation of APP processing by AChE. This modulatory effect may 

involve cholinergic and non-cholinergic mechanisms, independent of 

the catalytic activity of AChE. We demonstrate a modulation of PS1 by 

the AChE species via non-cholinergic mechanisms. We also provide 

evidence that γ-secretase inhibition could result in PS1 up-regulation 

which is of particular importance for AD therapy [91-93]. Elucidation 

of the mechanisms involved in the PS1-AChE interaction and reciprocal 

regulation are important for the optimization of current therapies 

based on AChE pharmacological interventions. 
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Figure 1. PS1 interacts with AChE-T and AChE-R variants. (A) Co-
precipitation of PS1 and AChE. Human brain extracts (frontal cortex 
from three non-demented subjects, mean age 58 ±3 years; one example 
is shown) were immunoprecipitated with anti-PS1 antibody 98/1. PS1-
immunoprecipitated proteins (PS1 IP) were immunoblotted with the 
indicated anti-AChE antibody specific for particular AChE variants (T 
and R). Extracts incubated with protein A-Sepharose, without antibody, 
were analyzed in parallel as negative controls (not shown). (B) The 
non-immunoprecipitated fraction was analyzed for molecular forms of 
AChE by sucrose gradient ultracentrifugation. Approximately 40 
fractions were collected from the bottom of each tube and assayed for 
AChE activity. Representative profiles of AChE molecular forms 
(tetramers: G4; and light dimers and monomers: G1+G2) prior (●) and 
after (○) immunoprecipitation are shown. Experiments were 
performed in triplicate. 
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Figure 2. PS1 levels are regulated by AChE independent of its 

enzymatic activity. (A) Representative molecular profiles of AChE and 
immunodetection of PS1-NTF in CHO cells stably transfected with 
constructs carrying either the AChE-R or AChE-T cDNA. CHO cells 
stably transfected with a PCI vector served fas controls (Control). The 
results were confirmed in three independent experiments. The 
densitometric quantification of PS1-NTF immunoreactivity is 
represented. Protein levels were normalized to glyceraldehyde 3-
phosphate deydrogenase (GADPH).  (B) PS1 immunodetection and 
densitometric quantification in cells transfected with the inactive form 
of AChE-R (imAChE-R) and AChE-T (imAChE-T). Immunoblots with the 
anti-AChE antibody N19 antibody confirmed the expression of equal 
amounts of imAChE-R and imAChE-T in transfected cells. Columns 
represent mean ± SEM from three different experiments (n= 12 for 
each condition). Representative immunoblots are shown.  **p < 0.01 
and *p< 0.05, significant difference from the control group. 
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Figure 3. Regulation of PS1 levels by tetrameric PRiMA-linked 

AChE located in the plasma membrane. (A) Representative profiles 
of AChE in CHO cells stably transfected with AChE-T cDNA without (●; 
AChE-T) and with PRiMA co-expression (●; AChE-T+PRiMA) 
(G4=tetramers; G1+G2=monomers and dimers). The results were 
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confirmed in four independent determinations. (B) AChE activity was 
also assayed directly in plasma membranes from cultured cells 
transfected with AChE-T in presence or absence of PRiMA cDNA. The 
inner dark columns represent AChE activity levels after treatment with 
the AChE inhibitor tacrine (10µM). (C, D) AChE-T is transported from 
the cytoplasm to the cell periphery in the presence of PRiMA. 
Representative images of CHO cells transiently co-expressing PS1 and 
AChE-T (C), or PS1, AChE-T and PRiMA (D). PS1; PS1-GFP (488 nm) 
channel, AChE; Anti-AChE N19 (647 nm) channel. Overlay; overlay of 
488 nm and 647 nm channels. Co-localization; channel overlay with 
pixels positive for both PS1 and AChE, marked in white. M; Mander’s 
co-localization co-efficient. Localization of PS1 and AChE-T in the 
absence of PRiMA is observed mainly in the cytoplasmic region (C). The 
mean number of AChE-T pixels co-localizing with PS1 was 79.5% 
(n=3). Cells expressing AChE-T+PRiMA and PS1 show localization of 
AChE at the cell periphery with only 50.1% of AChE pixels co-localized 
with PS1 (n=3). (E) Immunodection and densitometric quantification of 
PS1-NTF (normalized to GADPH) in CHO cells transfected with AChE-T, 
AChE-T+PRiMA or PRiMA alone. Columns represent mean ± SEM from 
two different experiments (n= 10 for each condition). Significantly 
different (p < 0.05) from cells over-expressing PRiMA alone (*), or from 
the AChE-T cells (†). 
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Figure 4. The presence of exogenous AChE increases PS1 

expression. CHO cells were treated for 18 hours with AChE from 
Electrophorus electricus (eel-AChE; at ~34±1 mU/mL of enzymatic 
activity) or saline (Control). (A) Cell extracts were analyzed by Western 
blot with an anti-N-terminal PS1 antibody. Equivalent amounts of 
protein were loaded in each lane and GAPDH was used as a loading 
control.  An increase in PS1 immunoreactivity was observed in cells 
treated with eel-AChE (B) Messenger RNA levels of the PS1 transcript 
were measured by qRT-PCR from cell extracts. Values were calculated 
using relative standard curves and normalized to GAPDH obtained 
from the same cDNA preparations. mRNA levels were significantly 
increased in cells treated with eel-AChE. Data represent mean ± SEM 
from a minimum of 15 independent determinations from three 
independent experiments. *p < 0.001. 
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Figure 5. Inhibition of PS1/γ-secretase processing of C-terminal 

fragments of APP by AChE. (A) Dose-dependent effect of soluble AChE 
from Electrophorus electricus (eel-AChE) on APP processing. CHO 
cells were treated with 0 (saline; Control), ~9±1 mU/mL (1×), ~17±1 
mU/mL (2×), ~34±1 mU/mL (5×) or ~70±1 mU/mL (10×) of active 
eel-AChE. Cell extracts blotted with a C-terminal anti-APP antibody 
demonstrated APP CTF accumulation in treated cells as a result of the 
inhibition of γ-secretase processing. (B) CHO cells over-expressing PS1 
were homogenized and membranes isolated by sequential 
centrifugation (see Material & Methods). γ-Secretase complexes were 
characterized by blue native-PAGE using an anti-PS1 antibody. 
Complexes of different molecular mass were detected. Similar 
immunoreactive bands (arrowheads) were detected for PEN2, a 
subunit of the γ-secretase complex. (C) γ-Secretase cleavage of 
endogenous APP in membrane preparations of CHO cells was assessed 
in the presence of ~34±1 mU/mL of eel-AChE. γ-secretase activity was 
inhibited in cells treated with 5 μM of the γ-secretase inhibitor DAPT. 
Data represent the percentage relative to control cells. The results 
were confirmed in two independent experiments (n= 8 
determinations). *p < 0.05. 
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SUPPLEMENTARY DATA 

 

To confirm our hypothesis we over-expressed AChE-T and AChE-R in 

neuroblastoma cell line SH-SY5Y. Again, AChE increases PS1 levels. 

 

 

 

 

 

Supplementary Figure. Effect of the AChE over-expression on PS1 

levels in SH-SY5Y cells.  Immunodetection and densitometric 
quantification of PS1-NTF for AChE-R or AChE-T transfected, and 
control cells transfected with a PCI vector. Protein levels were 
normalized to glyceraldehyde 3-phosphate deydrogenase (GADPH).  
Data represent percentage relative to control cells, expressed as means 
± SEM of 10 independent determinations from at two different 
experiments. *p < 0.05. 
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ARTICLE II: 

Acetylcholinesterase protein level is preserved in the 

Alzheimer’s brain 

 

The majority of investigations about AChE on AD progression 

and therapy have been based in the determination of its enzymatic 

activity level, which is depleted in the AD brain. An inactive pool of 

AChE has been demonstrated in brain and CSF and alternative 

functions unrelated with the hydrolysis of acetylcholine are suspected 

for AChE. However, AChE protein levels have not been examined in the 

brain of subjects affected by AD.  We have measured AChE protein 

levels amount in brain cortex of AD and non-demented controls by 

Western blotting using an anti-AChE antibody (N19) raised against a 

peptide that maps the N-terminus of human AChE, common to all 

variants. We have found that the levels of immunoreactive AChE bands 

were not significantly different in AD samples in comparison with non-

demented controls. However, AChE enzymatic activity was decreased 

in AD samples. Therefore, the decrease in AChE enzyme activity was 

not paralleled by changes in AChE protein immunoreactivity.  

Immunohistochemical examination of AD brain yielded similar 

results. The AChE protein-staining pattern was studied in 

hippocampus. Sections from AD and control brain showed similar 

immunoreactivity to the anti-AChE antibody, whereas histochemical 

staining for AChE confirmed the depletion in activity. Moreover, AChE-

positive fibers stained with the N19 antibody seem to be denser around 

the amyloid plaques in AD patients when compared with other regions 

far from plaque or the control case. This lack of correlation between 

catalytic activity and immunostaining may be attributable, at least in 

part, to the presence of a large amount of inactive AChE subunits that 
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may exert a variety of unpredictable effects and induce vulnerability in 

the pathological brain. This result is of potential relevance in the 

context of protein-protein interactions, between AChE and PS1 

(presenilin-1).                                                                                                                          

 

These results were published in the manuscript entitled: 

“Acetylcholinesterase protein level is preserved in the Alzheimer’s 

brain” Journal of Molecular Neuroscience, 2013 Dec 7. doi: 

10.1007/s12031-013-0183-5. 
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ARTICLE III:  

Presenilin-1 influences processing of the 

acetylcholinesterase membrane anchor PRiMA 

 

γ-Secretase processes, in addition to APP and Notch, more than 

90 type I integral membrane proteins after a prior shedding by             

α-secretase or β-secretase. The major acetylcholinesterase (AChE) 

form present in the brain is a tetramer of active monomers anchored to 

the plasma membrane through a non-catalytic subunit, a type I 

transmembrane protein called PRiMA (proline-rich membrane anchor). 

The PRiMA subunit is an accessory partner for the cellular disposition 

of the cholinergic AChE and represents a limiting factor for production 

of the active AChE-PRiMA complex. In the context of a PS1-AChE 

interaction it is interesting to know if γ-secretase is involved in the 

processing of the cholinergic AChE via cleavage of its PRiMA anchor. 

First, we have proved an interaction between PS1 and the AChE forms 

containing the PRiMA subunit. In extracts from CHO cells stably over-

expressing the AChE-T variant and co-transfected with PRiMA (CHO-

AChE/PRiMA), PS1 co-immunoprecipitates PRiMA, resolved as bands 

of ~22 and ~20 kDa, which probably correspond to the mature (fully 

glycosylated) and immature PRiMA. We have also evidenced that 

through its γ-secretase activity, PS1 participates in the processing of 

PRiMA-linked AChE. We showed that CHO-AChE/PRiMA treated with 

DAPT, a well characterized γ-secretase inhibitor, resulted in an 

increased levels of the tetrameric AChE (the form linked to PRiMA), 

with concomitant increases in PRiMA content, suggesting that PS1 can 

cleave PRiMA at the membrane spanning domain.  The cleavage of type 

I transmembrane proteins by γ-secretase, releases C-terminal 

intracellular domains, with possible signaling properties. We have 
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identified, by immunoprecipitation and immunofluorescence labelling, 

a C-terminal PRiMA fragment of ~14 KDa in the nucleus. This finding 

suggests that PRiMA fragment participates in modulation of gene 

transcription, a possibility that deserves more investigation. 

Furthermore, our analysis on the raft composition, in a PS1 conditional 

knockout mouse, revealed that that this is the subcellular location 

where PRiMA processing by γ-secretase could take place. The 

physiological relevance of the proteolytic events described in this study 

is still not well understood but reveals that PS1 may participate in 

AChE processing and subsequent signaling events. 

 

These results were published in the manuscript entitled: 

“Presenilin-1 influences processing of the acetylcholinesterase 

membrane anchor PRiMA” Neurobiology of Aging, 2014 Feb 6. doi: 

10.1016/j.neurobiolaging.2014.01.147. 
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SUPPLEMENTARY DATA 

 

In our CHO cellular model we attempt to co-immunoprecipitate PRiMA 

with Fe65 in cells with and without Fe65 over-expression. However, 

we failed to demonstrate an interaction between Fe65 and PRiMA. 

 

 

 

 

 

Supplementary Figure: co-immunoprecipitation experiments of Fe65, 

APP and HA proteins. CHO PS70 cells (over-expressing wild-type human 
PS1 and APP; see manuscript for details) were transfected with 2 μg of 
PRiMA cDNA and 2 μg of Fe65 cDNA with a C-terminal Myc tag (Lleo et al 
2003). Protein cellular extracts were immunoprecipitated with an anti-Myc 
antibody (Abcam). Precipitated proteins [IP Fe65 (Myc)] were 
immunoblotted with an anti-Fe65 antibody (Millipore) to positively 
demonstrated immunoprecipitation, and with the anti-HA to check whether 
PRiMA co-immunoprecipitate. Precipitated proteins were also 
immunoblotted with the anti-APP antibody to positively check the efficiency 
of Fe65 to co-immunoprecipitate App, a well-known interacting protein (the 
blot shows the pull down of the full-length APP band in Fe65 
immunoprecipitates). Extracts incubated with protein A-Sepharose coupled 
with a non-specific rabbit IgG (IP IgG), were analyzed in parallel as negative 
controls. 
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Although this chapter represents the general discussion of this 

Thesis, I would like to clarify that the intention is not to repeat the 

discussion of each articles presented here and published; although, 

obviously, the discussion of our result will result inevitably reiterative 

in some extension.  Rather, the goal is to give a generic idea of the 

results, underlying the notions or hypotheses that, according to our 

point of view, are consider more relevant.  This discussion is also an 

opportunity to speculate about the interpretation of our results. Even if 

the three different manuscripts contained in this Thesis correspond to 

different and independent objectives, they, altogether, try to explore 

the implication of AChE and PS1 cross-talk in non-disease and AD 

conditions. 

Brains from AD patients show several distinct neuropathological 

features, including extracellular Aβ peptide-containing plaques, 

intracellular NFT of abnormally phosphorylated tau, astrocytic gliosis, 

reactive micoglia, inflammation, as well degeneration of cholinergic 

neurons of the basal forebrain. Interestingly, many results indicate a 

link between cholinergic mechanisms and the pathogenic events that 

characterize AD, notably in relation to Aβ. There are, in fact, several 

interactions between the cholinergic system and Aβ, not only related 

with the well described process of Aβ plaques depositions within the 

basal cholinergic forebrain nuclei (Arendt et al 1985, Arendt et al 

1988). 

Different studies, for instance, show that the soluble forms of Aβ, 

rather than the insoluble, act as negative modulators of ACh synthesis 

and release and interfere with normal signalling mediated by 

muscarinic and nicotinic receptors (Hartley et al 1999, McLean et al 

1999). Indeed, interactions between nicotinic receptors (nAChR) and 

Aβ, where Aβ blocks the nicotinic current, have been physiologically 

confirmed (Pettit et al 2001). Consequently, Aβ influences 
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neurotransmitter release from non-cholinergic neurons that normally 

respond to cholinergic input. These results can in part explain the 

significant hypofunction of the basal forebrain cholinergic system in 

AD. 

Reversely, ACh is known to promote the non-amyloidogenic 

processing of APP (Roberson & Harrell 1997, Rossner et al 1998) and 

reduce tau phosphorylation by reducing the activity of GSK3β (Zhang et 

al 2014). In normal condition most of APP is processing through the 

non-amyloidogenic pathway; thus generation of Aβ by brain cells of 

healthy people remains constitutively low.  

We can presume the existence of a mechanism whereby normal 

cholinergic innervation participates in the regulation of the non-

amyloidogenic processing of APP via the α-secretase pathway, whereas, 

in turn, the amyloidogenic Aβ production depress the activity of 

cholinergic neurons. Thus, a shift between these two activities may be a 

key factor in cholinergic signalling disruption and Aβ accumulation.  

Also in this context, it has been shown that AChE interacts with 

Aβ, rendering Aβ more neurotoxic (Inestrosa et al 1996) and, 

moreover, that AChE it is detectable in the amyloid plaques, where its 

enzymatic properties are altered (Alvarez et al 1998, Geula & Mesulam 

1989, Inestrosa et al 1996). This discovery, together with the evidence 

of an overall decrease of AChE activity in AD brain, may explain the 

high susceptibility of cholinergic neurons to injury by Aβ, but also 

indicate the participation of AChE in the development of the Alzheimer 

pathology by interacting with Aβ. 

In this scenario, our lab, as well as many others research groups, 

have studied and described the alteration of AChE in AD. Alterations in 

the contribution of AChE molecular form levels and glycosylation have 

been identified in CSF and brain from AD cases, as compared with non-

disease subjects (Saez-Valero et al 2000b, Saez-Valero et al 1997, Saez-
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Valero et al 1999). In particular, lighter forms of AChE (G1+G2), with an 

abnormal glycosylation pattern, resulted increased. In the same way, 

treatments with Aβ peptide in vitro were inducing an increase of AChE 

(Hu et al 2003, Melo et al 2003, Saez-Valero et al 2003, Sberna et al 

1997). The same results were confirmed in vivo, in a mouse model 

overexpressing Aβ; ones again the G1 and G2 forms of AChE were 

increased (Sberna et al 1998). Altogether these results suggested the 

importance to consider Aβ as a direct cause of AChE alterations in the 

AD brain, in terms of expression, maturation and glycosylation. In fact, 

glycosylation controls the correct folding and final localization of many 

proteins, including AChE.  

With the goal to continue exploring the cholinergic-amyloid 

interrelationship, our group identified AChE as a PS1-interacting 

protein, the catalytic subunit of the γ-secretase complex responsible for 

Aβ production (Silveyra et al 2008). This interaction, that doesn’t 

depend on the PAS, the AB interacting domain of AChE, take place in 

the adult and in the embryonic brain, as well as in the normal and AD 

brain.  

Following this line of research, in our manuscript published in 

the Journal of Alzheimer’s Disease we further analyzed the interaction 

between AChE and PS1.  

First of all we tested if the interaction with PS1 was mediated by 

a specific variant or molecular form of AChE, in order to better 

understand the mechanism. In fact, AChE possesses a complex 

structural polymorphism. In the brain the major variant is the AChE-T, 

which is mainly presented as tetrameric forms, but also as monomers 

and dimmers. The minor variant AChE-R is expressed as soluble 

monomers. Co-immunoprecipitation, with specific antibodies against 

the AChE-T and –R, and ultracentrifugation analysis, revealed that all 

AChE species interact with PS1 independently of their state of 
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oligomerization. A previous work from our lab has shown that AChE 

exerts a modulatory effect on PS1 levels. In fact, AChE knockdown with 

siRNA decreased cellular PS1 levels; whereas AChE over-expression 

exerted an opposing effect (Silveyra et al 2012). In our study, we also 

demonstrated that over-expression of the different AChE variants, as 

monomers (–T and –R) and tetramers (T+PRiMA), are able to increase 

PS1 level. Interestingly, the modulation of PS1 protein seems to be 

stronger in presence of the subunit PRiMA. PRiMA is the protein that 

induce tetramerization of AChE-T subunits and, moreover, restrict its 

localization at the plasmatic membrane where will exert its catalytic 

activity. Probably PRiMA guiding AChE distribution inside the cell, 

increase the physical disposition of AChE to interact with PS1.  

Even if the domain of interaction of AChE with PS1 is unknown, 

has to be excluded the intermediation of the PAS domain, the C-

terminal (exclusive of each variant) and of the catalytic domain of 

AChE. From our results, it seems that the modulatory capacity of AChE 

is exerted by a mechanism independent of its enzymatic activity. In 

fact, the overexpression of AChE inactive mutants also resulted in a PS1 

protein increase. 

The possibility that AChE/γ-secretase interaction leads to the 

modulation of APP cleavage has been recently suggested  (Niu et al 

2012). In our study we confirmed this possibility. We show that AChE, 

by a mechanism independent of its catalytic activity, interacts with PS1, 

probably within the active γ-secretase complex and prevents its 

catalytic function. Indeed, in both cellular extracts and membrane 

preparations we demonstrate a decrease in the γ-secretase activity, as 

consequence of soluble AChE treatment. The mechanism of interaction 

and inhibition of AChE on PS1 activity is still unclear, but we 

hypothesize that this inhibitory effect could explain the AChE triggered 

increase in PS1 messenger and protein levels. In fact, up-regulation in 
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reaction to inhibition is a recognized phenomenon documented for 

several enzymes, as a mechanism attempting to re-stabilize the deficit 

of activity. An example is the accumulation of AChE in CSF of AD patient 

after exposure to AChE inhibitors (AChE-I) (Garcia-Ayllon et al 2007).  

The role of AChE as “PS1 modulator” is a new way in the 

knowledge of the functional cross-talk between AChE/cholinergic 

system and APP processing.  

Currently, the treatment of AD is largely based on AChE-Is which 

provide a temporary increase of ACh disposition and symptomatic 

relief. AChE-Is are able to modulate and decrease Aβ generation, not 

only interfering with PS1 (Silveyra et al 2012), but also activating the 

non-amyloidogenic pathway or inhibiting the β-secretase activity (Fu 

et al 2008, Racchi et al 2004). However, the positive effects of AChE-Is 

therapy on APP processing decrease after long term inhibition. Again, 

long-term treatment with AChE-Is results in a significant up-regulation 

of AChE protein levels in CSF (Darreh-Shori & Soininen 2010, Garcia-

Ayllon et al 2007). This increased pool of AChE probably interacts with 

Aβ and increases its fibrillation and toxicity. Also, AChE up-regulation 

in response to inhibition is followed by PS1 increase (Silveyra et al 

2012). An increase of AChE may block γ-secretase activity and an 

increase of PS1 levels may result in an enhancement of Aβ generation. 

Interestingly, AChE up-regulation occurs after days/weeks of maintain 

inhibition, but PS1 up-regulation appears rapidly. In this complex 

scenario, Aβ will also induce an increase of AChE (Sberna et al 1998), 

which in turn binds the amyloid core closing an aberrant loop. In this 

way Aβ, PS1 and AChE could establish a toxic triad. 

Moreover, as explain previously in this Thesis, PS1 may have 

other functions inside the cell, independently of its catalytic activity. 

Thus, the possibility that AChE interferes with other roles of PS1 has 

not to be excluded. Enzymatically inactive species of AChE with 
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potential physiological significance have been described (Chatel et al 

1993, Dori et al 2005, Grisaru et al 2006, Sternfeld et al 1998).  

AChE pattern expression, as stated throughout the Thesis, seems 

to be highly regulated spatially and temporally (Drews 1975). 

Furthermore, AChE is express in cholinergic and non-cholinergic 

neurons; as well as in non-neuronal tissues, like meninges (Razon et al 

1984), blood vessel endothelium (Kasa et al 1991) and glia (Keller et al 

2001). To increase the complexity of this enzyme, a number of non-

catalytic proteins share high sequence similarity with AChE. Most of 

these proteins, with cholinesterase-like domains, are structural 

proteins expressed during embryogenesis, before the formation of the 

cholinergic synapses and are also present in non-cholinergic tissues 

(Drews 1975, Krejci et al 1991). In these adhesion proteins the catalytic 

capacity has been lost during evolution, and the physiological 

functionality is carried through protein-protein interactions, exerting 

structural roles. The structural homologies between AChE and these 

adhesion proteins, suggests that AChE can act as a structural protein.  

In the data contained in the manuscript published in the Journal 

of Molecular Neuroscience, we evaluated the level of expression of AChE 

and its activity levels, in frontal cortex extracts from AD and ND cases. 

Accordingly with many previous reports the AChE activity decreases. In 

contrast the general AChE protein content is preserved. These results 

confirm the presence of an inactive pool of AChE. 

The existence of an inactive pool of AChE was firstly 

demonstrated in primary culture of chicken myotubes by Rotundo and 

co-workers  (Rotundo et al 1989). They found that most of the AChE 

polypeptide newly synthesized remains catalytically inactive and is 

rapidly degraded in non-lysosomal compartments. A large AChE 

inactive pool was later proved in chicken brain in vivo (Chatel et al 

1993). Recently, our group also reported the existence of an inactive 
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pool of AChE in the human CSF (Garcia-Ayllon et al 2007). Interestingly, 

this unexpectedly large pool of non-catalytic AChE was unresponsive to 

long-term treatment. Probably it represents a pool unrelated with the 

previously commented phenomenon of feed-back up-regulation. 

To date, contrasted reports indicated changes in expression of 

the active species of AChE in AD. In fact, it has been demonstrated a 

decrease in the major form G4, while the light forms, G1 and G2, are 

relatively preserved or increased (Arendt et al 1992, Atack et al 1983, 

Fishman et al 1986, Saez-Valero et al 1999). Curiously, the G1 form of 

AChE, increased in AD, corresponds to the main pool of AChE normally 

present during development of the embryo brain. During this period, 

AChE acts in many others non-cholinergic functions, improving 

growing and cellular contacts. This non-cholinergic role could be 

conducted by catalytic and non-catalytic subunits.  

Perhaps, the increase of AChE lighter forms in the pathogenic 

brain could indicate a “dedifferentiation” state, where the regression to 

the developmental form of AChE can exert a “neuroprotective” roles  

(Layer 1995).  

In this context, Soreq and co-workers shown, in vitro and in vivo, 

that the minor AChE–R variant exerts an opposite action respect to the 

major AChE–T, decreasing the fibrillation and the toxicity of Aβ during 

plaques formation (Berson et al 2008). To complicate the 

interpretation of this complex scenario, AChE-I also promotes changes 

in the proportion of AChE variants and molecular forms. AChE-Is in 

fact, reverse the AD-induced decrease in AChE protein levels into an 

increase (Darreh-Shori et al 2002, Darreh-Shori et al 2004). In 

particular, using the immunoblot technique, it was found that long-

term tacrine treatment induces an increase of both AChE-T and AChE-R 

in the CSF (Darreh-Shori et al 2004), while rivastigmine treatment 

caused a selective and mild up-regulation of the AChE-R variant 
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(Darreh-Shori et al 2002). This change in AChE-R is related with a 

better cognitive performance, in agreement with previous reports 

where this variant demonstrate to exert neuroprotective effects 

(Sternfeld et al 2000, Darreh-Shori et al 2006).  

To date, are still unclear the levels of the different AChE variants 

in AD brain.  For this reason additional studies are mandatory, in order 

to understand the specific physiological functions and to design more 

effective and specific therapies. 

In the manuscript published in the journal Neurobiology of Aging, 

we have considered PRiMA a possible substrate for PS1/γ-secretase. 

We have been able to demonstrate that PS1/γ-secretase processes 

PRiMA after a previous cleavage of the linked-AChE subunit by α- or β-

secretase. We have also characterized an intracellular PRiMA fragment 

(ICD) of ~14 kDa which translocates into the nucleus. We have failed to 

detect the putative PRiMA fragment in brain extracts, probably due to 

its low content and very short half-life, commonly to other ICDs 

generated by γ-secretase such as APP (Cupers et al 2001). At the 

present, the nuclear function of the PRiMA ICD has not been studied. 

The possibility that PRiMA fragment may trigger biological activities 

such as modulation of gene transcription is not excluded.   

Similarly, whether neuronal activity or ligand-binding regulates 

PS1-mediated AChE processing, and under which biological conditions, 

remain to be determined. As the soluble APPα fragment, AChE release 

is enhanced by muscarinic receptor activation  (Hicks et al 2013) and 

by Ca2+ influx from nicotinic receptors (Hicks et al 2011, Hicks et al 

2013). The findings that Aβ disrupts the muscarinic and nicotinic 

receptors signaling, lead us to consider the possibility that Aβ exert a 

modulation on the cholinergic system changing the cell signalling and 

additionally AChE release. Also in this regard, it has been demonstrated 

that Aβ treatment increases AChE levels in the neuron-like N1E.115 
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neuroblastoma cell by reducing AChE degradation and surface 

shedding (Hu et al 2003). Furthermore, a proteolytic processing of 

neuroligin-1 by secretases has been described  (Suzuki et al 2012). The 

processing of neuroligin-1, a protein with a large extracellular domain 

homolog to AChE, is regulated by synaptic NMDA receptor activation or 

interaction with soluble neurexin ligands. Thus, we can speculate a 

ligand-binding, or activity dependent, control of AChE processing by 

PS1. 

Finally, the localization of AChE into membrane lipid rafts, 

determined by PRiMA (Xie et al 2010), results to be of particular 

interest taking in consideration that lipid rafts are probably the 

subcellular site where amyloidogenic processing predominates. In fact, 

APP, BACE I and γ-secretase/PS1 are present in rafts [for a revision see 

(Hicks et al 2012)]. We have been able to describe the co-localization of 

AChE with PS1 within lipid rafts. This physical co-localization, could be 

the reason of the favoured interaction between AChE G4/PRiMA and 

PS1 (demonstrated in the first article). On the other hand, PS1 co-

precipitates mature PRiMA, fully glycosylated, but also immature 

protein, suggesting that the interaction between the two proteins, 

AChE/PRiMA and PS1, could be also an early event. Thus, PS1 may 

exert a role in AChE/PRiMA maturation such as glycosylation (Silveyra 

et al 2008) and influence trafficking to the plasma membrane. 

Therefore, the increase amount of G4 AChE/PRiMA in membrane rafts 

isolated from the cortex of PS1 cKO mice probably is due to the 

impaired proteolytic events, and the lack of PS1 trafficking regulation. 

In conclusion, our results have the intention to bring some clues 

in the intricate relationship between cholinergic and amyloid 

pathways. Even if we cannot present a more complete picture of the 

molecular cross-talk between AChE and PS1, we try to solve some 

questions and to give new inputs. The desirable outcome is the 
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development of new therapeutic strategies, more adapted to the 

complex pathology of Alzheimer.  
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Due to the results obtained in the presented works, in this 

chapter, I resume some of the mandatory experiments arising from our 

results. 

 

First of all, we consider necessarry a better understanding of the 

complex cholinergic/amyloid crosstalk to optimize the current 

therapies based on AChE pharmacological interventions, as well to 

develop new strategy to inhibit γ-secretase activity. The possibility that 

inhibition of PS1 by AChE may initiate a feedback process that leads to 

PS1 up-regulation, should be take in consideration during therapy 

based on γ-secretase inhibition. Thus, it’s important to clarify the 

mechanism that regulates γ-secretase activity block consequently the 

AChE binding. In this context, it is mandatory to establish which 

domain, inside AChE, is responsible of its interaction with PS1. To date, 

we only know that this domain is present in all variants of AChE and 

that doesn’t depend on the PAS domain or the active gorge. To know 

that, it is also important in order to interfere in this interaction. Of 

course, the importance of the AChE/PS1 cross-talk has to be proved in 

vivo in order to implement this knowledge in a physiological and 

pathological conditions. 

Also, our results show that both soluble and PRiMA-banded form 

of AChE interacts with PS1 and both of them are able to interfere with 

its activity and expression. In turn, we show that PS1 processes PRiMA 

after the initial cleavage mediated by α- or β-secretase. Indeed, remain 

to be elucidated if the soluble AChE, released by the sequential 

cleavages of the α- or β-secretases, blocks or interferes with PS1 and γ-

secretase activity. In the same way, it’s mandatory to establish the role 

or roles of the PRiMA ICD in the nucleus, as well as its specific 

cytoplasm/nucleus trans-acting adaptor protein. The possibility that 

the PRiMA segment, originates after processing by secretases, 
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participates in the regulation of gene transcription, is a possibility that 

deserves thoroughly investigation. 

Another question that arises from our data is whether 

AChE/PRiMA complex is physiologically a “common” substrate for 

secretases, or only regulated under specific physiological conditions. In 

this regards, it is interesting to explore which are the stimuli that 

induce this processing. Therefore, more research is needed in order to 

better characterize the process of AChE shedding in neurons, 

particularly using primary neurons and animal models. 

Finally, the large pool of inactive AChE present in AD brain is 

intriguing and little information is available on its role and distribution 

in normal and pathological conditions. 

Currently, we are complementing our biochemical study of 

human brain AChE variants by blotting the samples with different 

AChE antibodies and studying the levels of the different AChE mRNAs. 

In this work we are analysing the tailed (AChE-T) and read-through 

(AChE-R) variants generated by alternative splicing at the 3’ end and 

the recently characterized N-extended AChE variants generated by the 

5' regulation. To date, very few studies have addressed the levels of 

AChE splicing variants in human brain, since the AChE-T cholinergic 

variant represents the major AChE specie. The significance of an 

increase in the minor AChE species is controversial, as the relative 

increase is compared in absolute terms with the major cholinergic 

form. However, since particular forms or variants may have specific 

functions, a variation in a AChE forms (with little impact on cholinergic 

equilibrium) could have impact at functional level causing biological 

consequences.  

In this context, also is relevant to establish the subcellular 

localization of this new inactive pool of AChE in order to define the 

potencial interaction with PS1.          
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The results discussed in this Thesis are summaries in the following 

points: 

 

1. The AChE protein is able to modulate levels of PS1, the catalytic 

component of γ-secretase, via a non-cholinergic mechanism that 

doesn’t depend of the AChE catalytic activity. In a cellular model, 

the over-expression of the splicing variant AChE-R or AChE-T, or 

of their respective inactive mutants, triggers the increase in PS1 

protein level. 

 

2. The AChE specie capable of triggering the biggest increase in PS1 

level is a complex of AChE with the membrane anchoring subunit 

proline-rich membrane anchor (PRiMA), which restricts the 

localization of the resulting AChE tetramer to the  plasma 

membrane. 

 

3. The possible mechanism by which AChE modulates PS1 

expression level depends on its ability to decrease γ-secretase 

activity. 

 

4. The decrease in AChE activity in human AD brain is not 

paralleled by changes in AChE protein immunoreactivity, 

indicating the existence of a prominent pool of enzymatically 

inactive AChE. 

 

5. We demonstrate that PS1/γ-secretase can participate in the 

processing of the cholinergic AChE, cleaving PRiMA subunit. 

 

6. Cleavage of PRiMA by γ-secretase results in a C-terminal PRiMA 

fragment, which translocates into the nucleus. 
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7. AChE co-localizes with PS1 within the lipid rafts. The preserved 

level of the raft-residing AChE-PRiMA in a PS1 conditional 

knockout mouse maybe is due to the impaired proteolytic events 

caused by PS1 decreased expression.         
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De los resultados presentados en la presente Memoria de Tesis se 

extraen las siguientes conclusiones: 

 

1. AChE es capaz de modular los niveles de PS1, el componente 

catalítico del complejo γ-secretasa, mediante un mecanismo 

independiente de su actividad enzimática. En modelos celulares la 

sobre-expresión de las variantes AChE-R o AChE-T, o de sus 

respectivos mutantes carentes de actividad enzimática, provoca un 

aumento en los niveles de PS1. 

 

2. La forma de AChE capaz de promover el mayor incremento en los 

niveles de PS1 es la forma colinérgica, un tetrámero de subunidades 

catalíticas anclado a la membrana por la subunidad estructural 

PRiMA (del inglés proline-richmembrane anchor), que determina su 

localización en la cara externa de la membrana plasmática. 

 

3. El posible mecanismo por el que AChE modula los niveles de 

expresión de PS1 es dependiente de su capacidad para disminuir o 

inhibir la actividad γ-secretasa.  

 

4. El descenso en la actividad AChE en cerebro humano de sujetos con 

la enfermedad de Alzheimer no se corresponde con cambios en los 

niveles de inmunoreactividad de la proteína AChE, lo que indica que 

en el cerebro patológico existe una prominente cantidad de AChE 

enzimáticamente inactiva. 

 

5. Se demuestra que PS1/γ-secretasa puede participar en el 

procesamiento de la variante colinérgica de AChE mediante el 

procesamiento de la subunidad de anclaje PRiMA. 

 



160  CONCLUSIONES   

 

6. El corte de PRiMA por el complejo γ-secretase produce un fragmento 

C-terminal que se transloca al núcleo. 

 

7. AChE colocaliza con PS1 en las regiones lipídicas de membrana 

denominadas lipid rafts. En ratones silentes condicionales de PS1 

los niveles de AChE-PRiMA en el raft resultan más elevados que en 

los ratones no mutantes, debido probablemente a la afectación de 

los procesos proteolíticos  provocados por el descenso en los niveles 

de PS1. 
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In addition to the articles presented in this Thesis, I would like to 

mention that I am the second and third author of two manuscripts, 

which have been pubblished during my PhD. 

 

The articles are the following: 

 

García-Ayllón MS, Campanari ML, Brinkmalm G, Rábano A, Alom J, 

Saura CA, Andreasen N, Blennow K and Sáez-Valero J. CSF Presenilin-1 

complexes are increased in Alzheimer’s disease. Acta 

Neuropathologica Communications 2013, 1:46. 

 

Bi CWC, Luk WKW, Campanari ML, Liu YH,  Xu L, Lau KM, Xu ML, Choi 

RCY, Sáez-Valero J, Tsim KWK. Quantification of the Transcripts 

Encoding Different Forms of AChE in Various Cell Types: Real-

Time PCR Coupled with Standards in Revealing the Copy Number.  

J Mol Neurosci. 2014 Jan 3. 10.1007/s12031-013-0210-6. 
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“Two things are infinite:  

the universe and human stupidity;  

and I'm not sure about the universe.” 

 

Albert Einstein



 

 




