Nuclear Structure of light Halo Nuclei determined from Scattering on heavy targets at ISAC-II

Olof TENGBLAD
Instituto de Estructura de la Materia, CSIC

On behalf of the E1104 & S1202 Collaborations:
IEM-CSIC Madrid - U. Huelva - U. Sevilla
TIGRESS @ TRIUMF
HALO NUCLEI & REACTIONS

Common “Structural” properties
- Rather inert core plus one or two barely unbound extra neutrons
- Extended neutron distribution, large “radius”. → “halo”
- Very few excited states –if any.

Reaction properties at near-barrier energies:
Is the Optical Model able to describe the scattering of the halo systems?
- Strong absorption in elastic channel
- Large cross section for fragmentation
- They are easily polarizable.

Reaction Mechanisms and Nuclear effects of halo nuclei need to be understood!
Experimental Set up @ ISAC-II TRIUMF

9-11Li on 208Pb

Beam Energy, Target Pb, and Time

<table>
<thead>
<tr>
<th>Beam</th>
<th>Energy (MeV/u)</th>
<th>Target Pb (mg/cm²)</th>
<th>Time (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9Li</td>
<td>2.67 (24.0)</td>
<td>1.45</td>
<td>11.75</td>
</tr>
<tr>
<td></td>
<td>3.27 (29.4)</td>
<td>1.45</td>
<td>7.63</td>
</tr>
<tr>
<td></td>
<td>3.27 (29.4)</td>
<td>1.9</td>
<td>9.95</td>
</tr>
<tr>
<td></td>
<td>3.67 (33.0)</td>
<td>1.9</td>
<td>31.05</td>
</tr>
<tr>
<td>11Li</td>
<td>2.2 (24.2)</td>
<td>1.45</td>
<td>82.2</td>
</tr>
<tr>
<td></td>
<td>2.7 (29.7)</td>
<td>1.45</td>
<td>118.12</td>
</tr>
</tbody>
</table>

Detector Details

<table>
<thead>
<tr>
<th>Detector</th>
<th>Thickness (µm)</th>
<th>Angular Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1: DSSSD+PAD</td>
<td>42 + 500</td>
<td>10° - 40°</td>
</tr>
<tr>
<td>T2: DSSSD+PAD</td>
<td>42 + 500</td>
<td>30° - 60°</td>
</tr>
<tr>
<td>T3: SSSD+DSSSD</td>
<td>20 + 60</td>
<td>50° - 100°</td>
</tr>
<tr>
<td>T4: SSSD+DSSSD</td>
<td>20 + 63</td>
<td>90° - 140°</td>
</tr>
</tbody>
</table>

11Li ions average 4300 pps on target
Which is the mechanism responsible of the 11Li scattering?

What can we learn of the 11Li structure?

Comparison of the experimental data with theoretical calculations.

Semicalssical Calculations for B(E1) and breakup data:

Include Coulomb coupling at first order

Continuum Discretised Coupled Channel (4b-CDCC):

$V[n-n-^{9}$Li$] + V[n-n-^{208}$Pb$] + V[^{9}$Li$ + ^{208}Pb]$ (from 9Li elastic scattering)

Image the direct breakup of the projectile

Includes Coulomb and multipole nuclear couplings.

Continuum up to 5 MeV considering the binning procedure

Based on M. Rodriguez-Carmona, PRC80 (2009) 051601R

Olof TENGBLAD IEM-CSIC, Madrid
Elastic scattering of 9Li used to tune the potential

Tune THEORY i.e. the potential & the EXPERIMENT i.e. set-up

- Elastic scattering of 9Li on 208Pb @ 2.67 MeV/u follows Rutherford.
- The real part of the potential is from double folding Sao Paolo Potential (SPP) and the imaginary part from a Wood Saxon: $V_{SPP} + iW_{WS}$
- It is possible to describe the data with fixed geometry, $r_i = 1.35$ fm, $a_i = 0.51$ fm
- The contribution of 1st excited state in 9Li included in CC calculation
- The OM and CC reproduce similarly well the data.
First determination of Elastic Scattering of ^9Li & ^{11}Li around the Coulomb Barrier

- The ^9Li elastic scattering data follow the OM calculation as any other compact nuclei both below and around the Coulomb Barrier.

- 4body-CDCC calculation uses the OM potential deduced from the ^9Li data for energies above the barrier.

- If no continuum states are included 4body-CDCC is unable to describe the ^{11}Li data.

- The 4b-CDCC calculations fit better the data if a low energy resonance around 0.3 MeV beyond threshold is included.

PRL 109,262701 (2012)

4b-CDCC calculations performed by Manoli Rodriguez-Gallardo
Break-up probabilities

\[P_{bu} = \frac{N_{bu}}{N_{bu} + N_{el}} \]

Assuming

\[\sigma_{el} + \sigma_{bu} \approx \sigma_R \]

Good agreement with 4b-CDCC, when a resonance 0.3 MeV above the threshold is considered.

The dashed line is the Equivalent Phonon Method corresponding to \(B(E1) \) deduced from \(^{11}\text{Li}\) 3-body CDCC.

The point-dashed line is the Equivalent Phonon Method corresponding to the \(B(E1) \) measured by Nakamura et al. [PRL96 (2006) 252502]. This calculation follows the trend by underestimate the breakup probability at low angles.

PRL 110,142701 (2013)
The 1n halo ^{11}Be

Dipole polarizability

- ^{11}Be has a 2-body continuum: Simpler reaction mechanism.
- But more complicated exp.
- $\Delta m < (\text{ejectile vs projectile})$
- Bound excited state

Bound dipole state

- $^{10}\text{Be} + n$: 503 keV
- ^{12}Be: 320 keV
- ^{11}Be: 503 keV

New Compilation for $A = 11$
Kelley et al., NPA880 (2012) 88-195

NS2014 TRIUMF

Olof TENGBLAD

IEM-CSIC, Madrid
Setup adapted to TIGRESS → PCB² – array

Printed Circuit Board Based Charged Particle Array

11Be: ISAC II & TIGRESS @ TRIUMF
July 2012 on 208Pb & June 2013 on 197Au

2012 on 208Pb (1.45mg/cm²)
- 11Be @ 3.6 MeV/u.
- 108Be @ 3.6 MeV/u.
- 11Be @ 3.1 MeV/u.
- 11Be @ 2.9 MeV/u.

2013 on 197Au (1.9mg/cm²):
- 12C @ 5.0 MeV/u.
- 11Be @ 3.5 MeV/u.
- 11Be @ 2.9 MeV/u.

Olof TENGBLAD
IEM-CSIC, Madrid
Detector fine positioning

Used a ^{12}C beam (high statistics) for fine tuning the electronics & to obtain the angular position of each detector-pixel.

Change the position of each detector in X Y Z in relation to the beam-spot

Graphs and data

- **Tot_per_pixel**
- **El_per_pixel**
- **ratio_breakup_per_pixel**
- **ratio_inel_per_pixel**
Charged particles and gamma radiation detection

b) Inelastic scattering at $\theta_{\text{lab}} = 28^\circ$

- ^{11}Be on ^{197}Au @ 2.9MeV/u

- 320 keV
 - $\varepsilon_\gamma = 0.128$

- 501.6 keV

- ^{11}Be on ^{197}Au @ 2.9MeV/u
11Be \rightarrow 197Au @ 31.9 MeV

WELL BELOW THE COULOMB BARRIER @ 40 MeV

Below the break up energy (40 MeV) good separation of 11Be and 10Be
$^{11}\text{Be} \rightarrow ^{197}\text{Au} @ 31.9 \text{ MeV}$

well below the Coulomb barrier @ 40 MeV
11 Be on 197 Au @ 2.9 MeV/u

- Semiclassical calculation includes Coulomb excitation (E1) at first order, EPM

 \[P_{\text{nu}}(\Omega) = \left(\frac{Ze}{a_0 \hbar v} \right)^2 4 \sin^4(\theta/2) \int_{E_B}^{\infty} dB(E1) \frac{df_{E1}}{d\Omega} \]
 [Alder & Winther]

- The CDCC includes both Coulomb and nuclear couplings at all orders.

V\(^{(10}\text{Be}-\text{n})\) from P. Capel et al, PRC70 (2004) 064605

V\(^{(10}\text{Be}-197\text{Au})\) from [10Be-208Pb, J. J. Kolata et al, PRC69 (2004) 047601]

V\(^{(197}\text{Au}-\text{n})\) A. J. Koning & J. P. Delaroche NPA713 (2003) 231

- The XCDCC includes a non-spherical 10 Be with deformation reproducing the B(E2) value.

\[I^{11}\text{Be(gs)}> = a I^{10}\text{Be(gs)}x 2s_{1/2}> + b I^{10}\text{Be}(2^+)x 1d_{5/2}> + c I^{10}\text{Be}(2^+)x 1d_{3/2}> \]

Excited states of 11 Be in the continuum with \(Jp = \frac{1}{2}\pm, 3/2\pm, 5/2\pm\)

Elastic Scattering

Break-up

Inelastic Scattering
\[^{11}\text{Be} \rightarrow ^{197}\text{Au} @ 3.627 \text{ MeV/u} \ (39.9 \text{ MeV})\]

ON THE COULOMB BARRIER = 40 MEV

Good separation of \(^{11}\text{Be} \) and \(^{10}\text{Be}\) up to tel3

Higher energy \(\rightarrow\) fragments more forward \(\rightarrow\) less
Statistics at backward angles
^{11}Be on ^{197}Au @ 3.627 MeV/u

Preliminary

- Standard CDCC
- XCDCC: no continuum
- XCDCC: full

EPM (only E1)
- Standard CDCC
- XCDCC

Olof TENGBLAD IEM-CSIC, Madrid
Summary & Outlook

- Elastic and break-up cross section data for 9Li & 11Li on 208Pb at energies near the Coulomb barrier were obtained for first time.

- The experimental system is able to separate the elastic ejectiles from fragments even at low energy and statistics.

- The 11Li elastic cross section depart strongly from Rutherford behaviour at energies well below the barrier. The behaviour is well described by 4b-CDCC when Coulomb and continuum couplings are taken into account.

- Break-up cross sections are very large, even larger than predicted by CDCC calculations. Direct breakup dominates up to 50°.

- For the breakup at forward angles, the semiclassic and 4b-CDCC calculations indicate that the dissociation of the projectile is mainly due to the dipolar Coulomb interaction.

- The analysis of 11Be on 197Au and 208Pb @ TRIUMF
 The case of 11Be is not only more complex experimentally but also theoretically contributing to continues new developments,
 See Lay et al., PRC85 (2012) 054618:
 R. de Diego et al, PRC submitted, ArXiv: 1312.5684
PhD work:

11Li Break-up

Juan Pablo Fernandez-Garcia U. Sevilla

11Li Elastic

Mario Cubero IEM-CSIC

11Be

Vicente Pesudo IEM-CSIC

Theory

J.A. Lay U. Sevilla

Thank you for your attention!