Biology, ecology and status of Iberian ibex *Capra pyrenaica*: a critical review and research prospectus

Pelayo Acevedo & Jorge Cassinello

1 Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain

2 Central Science Laboratory, Sand Hutton, York, YO41 1LZ, United Kingdom

*Corresponding author: Jorge Cassinello E-mail: jorge.cassinello@uclm.es

Running title: Iberian ibex biology and ecology

Word count: 8452
ABSTRACT

1. The Iberian ibex Capra pyrenaica is endemic to the Iberian Peninsula and of the four subspecies originally recognized, recent extinctions mean that only two now persist. Recent genetic analyses have cast doubt on the generally accepted taxonomy of the species, four subspecies distinguished by coat colour and horn morphology, and propose the distinction of two subspecies based on their mitochondrial DNA sequence polymorphism. These analyses make clear the need for a comprehensive revision that integrates genetic and morphological approaches resulting in a definitive description and differentiation of the subspecies.

2. Studies of ibex behavioural ecology and health status are scarce and generally descriptive. They should be implemented in an integrative way, taking into account ecological requirements of the species, current population status, the presence of other sympatric wild and domestic ungulates, and the type of hunting regime and management attained in their distribution areas.

3. A natural expansion of the species is currently taking place. Ibexes are present and well established in all main mountain ranges of the Spanish Iberian Peninsula, and have recently expanded their range into the north of Portugal. Other authors estimated a total population of more than 50,000 individuals ten years ago, distributed in more than 60,000 km², with an average population density of 2.7 ibex/km². However, these estimates were obtained prior to the species' recovery from recent epizootics of sarcoptic mange and should be updated. Survey methods, mainly direct count-based methods, should be adjusted to suit mountainous conditions, where it is difficult to estimate accurately the surveyed surface.

4. A series of threats to ibex conservation have been identified, such as population overabundance, disease prevalence and potential competition with domestic livestock and
invasive ungulates, along with negative effects of human disturbance through tourism and
hunting.

5. Applied ecological issues focused on the proper management of populations should be
prioritized, along with the identification of current threats based on empirical, ecological
data obtained from populations living in various ecological conditions in different regions.

Keywords: Bovidae, Conservation, Iberian ibex, Iberian Peninsula, Management, Ungulates.
INTRODUCTION

The Iberian ibex *Capra pyrenaica* is endemic to the Iberian Peninsula, and despite its resulting intrinsic value to the European fauna, one of its subspecies *C. p. pyrenaica* became extinct a few years ago (Pérez *et al*., 2002). The remaining subspecies are, in contrast, undergoing expansion and recovery (e.g. Acevedo, Cassinello & Gortázar, 2007a) and recently a population has become established in Portugal (Moço *et al*., 2006). Our knowledge of European wild caprids is quite scant, particularly regarding their conservation status and management, and only a few studies of specific aspects of their ecology and behaviour are available in the literature. Many studies of Iberian ibex have been published in local journals or reports, so that their accessibility to an international readership is compromised. Not much is known of the other European wild ibex, the Alpine ibex *Capra ibex*, (see for recent articles Grignolio *et al*., 2004; Jacobson *et al*., 2004; von Hardenberg *et al*., 2004; Lima & Berryman, 2006). The localized distribution of *Capra* spp. might explain the scarcity of studies devoted to this group, particularly when compared to the research addressing other wild ungulates, such as cervids (e.g. Chapman & Chapman, 1975; Clutton-Brock, Guinness & Albon, 1982) and even *Ovis* spp. (e.g. Muller, 1984; Cassinello, 2003). Here, we offer a critical review of work carried out on the species, identifying knowledge gaps and proposing a new research agenda with a view to improving our understanding of the species, leading to a more effective management and conservation actions. We propose carrying out integrative studies, including aspects such as the identification of relevant ibex populations according to their genetic pool, which would lead to a more comprehensive subspecies definition; current population status should be related to regional management policies, i.e., hunting and population translocation regimes; ibex behavioural and ecological studies should be implemented from a conservation perspective, highlighting its role played on the Mediterranean ecosystem, along with behavioural interactions with other ungulate species, and their effect on ibex population.
dynamics. In sum, ibex research should be relevant to attaining a sensible basis for its management.

Although the term 'Spanish' ibex is commonly used in the literature, we have used 'Iberian' ibex in this review because the species is currently present in both Spain and Portugal (Moço et al., 2006). In reality, the species is endemic to Iberia, as it originally occupied the whole peninsula.

SYSTEMATICS AND TAXONOMY

According to the paleontological studies of Crégut-Bonnoure (1992a, b), two independent migration waves of wild goats took place in Europe. The first one occurred some 300,000 years ago, and led to the origin of the Alpine Ibex, the second took place from the Caucasus around 80,000 years ago leading to the origin of the Iberian ibex. With this scenario, no close relationships would be expected between these European species. However, mtDNA data indicated a much smaller genetic distance between the two European species than between the other existing Capra spp. species (Manceau et al., 1999a). Thus, another scenario has been proposed (Manceau et al., 1999a) whereby only one wave of immigration of Capra spp. came into Europe, followed by a speciation process that originated the two current species. A paleontological description of a Capra spp. specimen found in Germany and dated to around 120,000 years ago (Toepfer, 1934) included characters of both modern taxa, supporting this single wave hypothesis.

Cabrera (1911) originally described four subspecies: C. p. lusitanica, which is now extinct but was formerly located in northern Portugal and southern Galicia (Alados, 1985a); C. p. pyrenaica, in the Pyrenees, recently extinct (Pérez et al., 2002); C. p. hispanica, in the south and east of the Iberian Peninsula; C. p. victoriae, mainly in central areas of Spain, such as the Gredos mountain range (Grubb, 2005). This classification is maintained by the IUCN...
(Shackleton, 1997), but is questionable because it is only based on coat colour and horn morphology (Cabrera, 1911), two characters that show a high between population variability (Couturier, 1962; Clouet, 1979). Other authors, also drawing on morphological variation, recognize only two different subspecies (Schaller, 1977; Nowak, 1991). Manceau et al. (1999b) tested the morphological taxonomy of *C. pyrenaica* with mitochondrial DNA sequence polymorphism. Their genetic study did not support the recognition of the subspecies *C. p. victoriae* and *C. p. hispanica* but was supportive of the distinction between *C. p. pyrenaica* and the former subspecies. Although this study may not be absolutely conclusive, it casts some doubts on the currently accepted taxonomy for the species, which is as follows (Shackleton, 1997):

Species: Capra pyrenaica, Schinz (1838)

Subspecies:

- *C. p. hispanica*, Schimper (1848)
- *C. p. pyrenaica*, Schinz (1838)
- *C. p. lusitanica*, Schlegel (1872)
- *C. p. victoriae*, Cabrera (1911)

Regarding its morphology, data on the European ibex are derived principally from Couturier (1962), Corbet (1966), Hainard (1949), Henrich (1961), Nievergelt (1966), van den Brink (1968) and Walker (1968). They are truly mountainous animals, with large and flexible hooves and short legs, which facilitate them running and leaping on bare rocky, rough and steep slopes (Straus, 1987). Biometric data for the Iberian ibex are scarce and partial (Cabrera, 1914; Rodríguez de la Zubia, 1969; Cabrera, 1985; Escós, 1988; Granados *et al.*, 1997, 2001a). Granados *et al.* (1997, 2001a) studied the basic biometric parameters of ibex from Sierra Nevada and reviewed data from different ibex populations. Data reported by Granados
(1997) was updated in this study including biometric parameters of Iberian ibexes (n=48) from Albacete population and from Las Batuecas (Losa, 1993) (see Table 1). Generally, body size is larger and weight greater in C. p. victoriae than C. p. hispanica (e.g., Gonçales, 1982; Granados et al., 1997).

The Iberian ibex shows remarkable sexual dimorphism, males being greater in size and weight with larger horns than females (Fandos, 1991; Granados et al., 1997). Gállego & Serrano (1998) described the postcranial skeleton of the species and showed sex differences in relation to biometry and the ossification process of bones. The maximum level of sexual dimorphism is observed in horn length and basal horn perimeter (Fandos & Vigal, 1993; Granados et al., 2001a). Iberian ibex horns are unique among wild caprids; they curve out and up and then back, inward, and, depending on subspecies, either up again or down (C. p. victoriae and C. p. hispanica, respectively; Schaller, 1977). Horn shape and fighting technique were studied by Alvarez (1990). Annual horn growth is influenced by the previous year’s horn growth, environmental factors but, principally, by age (Fandos, 1995).

Granados et al. (2001a) studied growth parameters of Iberian ibex in the Sierra Nevada population. These authors identified faster growth among females, although rates were slower than those obtained in other ibex populations (Fandos, Vigal & Fernández, 1989; Fandos, 1991). This is consistent with the findings of Serrano, Gállego & Pérez's (2004), who showed that female ibex exhibit faster ossification than males, finishing bone development two years before males (Serrano et al., 2006).

Despite this information, a proper comparative morphological analysis of traits including body size and horn size and shape, is lacking. It would be timely to undertake a comprehensive analysis that integrates genetic and morphological approaches to arrive at a definitive description of subspecies that supports their differentiation.
In many social ungulates, particularly those species with pronounced sexual size dimorphism, the two sexes live separately for most of the year and differ in their habitat use. Such sexual segregation has been reported in the Iberian ibex (Alados, 1985b). There are three main hypotheses to explain sexual segregation in ungulates: the predation-risk, forage-selection and activity budget hypotheses. Respectively, they relate sexual segregation either to lactating females' selection of safer habitats; to differing forage digestion efficiency in males and females according to their body size such that males may cope better with nutritionally poor habitats; or, to differing activity budgets between males and females, again related to body size dimorphism (Ruckstuhl & Neuhaus, 2002). These hypotheses are not mutually exclusive, and are subject to serious debate (see, e.g., Bon et al., 2001; Ruckstuhl & Neuhaus, 2002; Bonenfant et al., 2004).

Although no study testing these hypotheses has been carried out on the Iberian ibex, the closely related Alpine ibex shows sexual segregation according to all three hypotheses. Thus, males are preferentially found in riskier (Villaret, Bon & Rivet, 1997) and poorer habitats than females, and both sexes spend a differing percentage of time spent grazing (73% higher female activity; Ruckstuhl & Neuhaus, 2002).

Behaviour of animals should be interpreted with reference to the ecological context where it takes place and it seems that local conditions play an important role in Iberian ibex behaviour that has not yet been incorporated into the evaluation of sexual segregation hypotheses. According to studies carried out on Iberian ibex, the sexes are segregated for most of the year when there are male-only groups and mixed groups of females, juveniles and subadults, whereas during the rutting season adult males and females come together (Granados et al., 2001b). However, this pattern may vary. Thus, in locations such as Cazorla, Segura y Las Villas Natural Park, Sierra Nevada Natural Park, and Gredos Regional Park,
Ibex live in mixed groups all year, except for August (Gonçales, 1982; Alados & Escós, 1985, 1996). A better knowledge of the factors determining sexual segregation is needed to interpret this pattern of behaviour, which seems not to be so uncommon in other ungulates (K. Ruckstuhl, E. Cameron, pers. comm.). One hypothesis is that there is a relationship between optimal group size and segregation benefits for males and females in any given ungulate population (K. Ruckstuhl, pers. comm.; J. Cassinello pers. obs.). Thus, if a population is sufficiently small, it may not pay them to split, due to sexual segregation premises, if they benefit from larger group size as an antipredator strategy (see Dehn, 1990). Iberian ibex group size formation, on the other hand, seems to be determined by factors such as population density and type of habitat (Granados et al., 2001b), so that a comparative study of sexual segregation behaviour of ibex populations under different ecological conditions might give light on this intriguing issue.

Vigilance behaviour of Iberian ibex has been studied by Alados (1985c). It was determined that lookout individuals are adults placed in the periphery of the herds. Ibexes use alarm calls to alert from potential danger, i.e., the presence of a potential predator. Escape movements are made in an ordered and coordinated manner, mediated by the markedly social hierarchies that characterize all the relations and interactions between herd mates (Alados, 1986).

Seasonal partial-migrations are frequent in species inhabiting regions with pronounced seasonal landscape variability, as it is the case of the Iberian ibex (Fandos & Martínez, 1988). Ibex altitudinal dispersion occurs according to resources availability, e.g., heading to rich, high altitude areas in summer, which are usually covered by snow in winter (e.g., Gonçales, 1982; Escós, 1988; Travesí, 1990).

As for other behavioural studies, the Iberian ibex activity budget has also been studied by several authors. Thus, higher activity rates were detected at first and last day hours in
Cazorla (Alados & Escós, 1988), although this pattern may vary according to temperature variations (e.g., Fandos, 1988). It has also been reported a seasonal variation of home ranges in this species (Escós & Alados, 1992). Home ranges are smaller during the rutting period than in spring, depending on resources quality and availability, and ibex population density (Escós & Alados, 1992; Alados & Escós, 1996). We miss studies on parental investment and sex ratio patterns.

In general, knowing more in detailed how all these patterns of behaviour vary under different environmental conditions, or under the presence of potential competitors, might help in undertaking more proper management practices to preserve ibex populations.

FEEDING HABITS

The feeding ecology of the Iberian ibex has been described in several locations: Sierra Nevada Natural Park (Martínez, 1988a); Cazorla, Segura y Las Villas Natural Park (García-Gonzalez & Cuartas, 1992; Alados & Escós, 1996); Gredos Regional Park (Martínez & Martínez, 1987); Sierra de Tejeda-Almijara (Martínez, 1988b); Tortosa y Beceite National Game Reserve (Martínez, 1994); and Sierra de Montenegro (Palacios, Ibañez & Escudero, 1978). But all these studies are simply descriptive, and no attempt to compare populations has been made so far.

The Iberian ibex is a mixed feeder (browser and grazer), depending on plant availability. Thus, the percentage of each type of resource consumed may vary altitudinally (Martínez, 1994), geographically (Granados et al., 2001b), and seasonally (García-Gonzalez & Cuartas, 1992), the latter being highly influenced by population density (García-Gonzalez & Cuartas, 1992). Some of the species found in its diet include *Agrostis nevadensis, Festuca iberica, Dactylis glomerata, Quercus ilex, Phillyrea latifolia* and *Juniperus oxycedrus*.
(Garcia-Gonzalez & Cuartas, 1992). Grazing and browsing behaviour vary with location. Thus, grazing predominates in Gredos Regional Park (Martínez, 2001), whereas browsing does in Cazorla, Segura y Las Villas Natural Park, except in spring, when ibex devotes more time to grazing (Martínez et al., 1985). Finally, grazing behaviour has been recorded in Sierra Nevada Natural Park during summer (Martínez, 1990). Unfortunately, none of these works have taken into account resource availability.

Also, the Iberian ibex has been included in a few comparative studies of the diets of wild and domestic ungulates (Garcia-Gonzalez & Cuartas, 1989). Autumn diet comparisons of Iberian ibex, domestic goat *Capra hircus*, mouflon and domestic sheep *Ovis aries* showed that sheep are mainly grazers but goats are mainly browsers (Garcia-Gonzalez & Cuartas, 1989).

In sum, while the Iberian ibex shows high feeding plasticity, depending on many ecological circumstances there is only limited understanding of the factors affecting this variation, or of nutritional requirements of ibex and how these differ according to sex and age. No integrating hypotheses have been put forward, and there is a clear need for research to be carried out on sex differences in feeding behaviour, and how this relates to theories of sexual segregation in ungulates (Ruckstuhl & Neuhaus, 2002), and comparisons of resource use by ibex and other wild ungulates living in sympatry, particularly invasive species, such as the aoudad *Ammotragus lervia* (Acevedo et al., 2007b).

EPIDEMIOLOGY AND HEALTH STATUS

Very few studies on health aspects in the Iberian ibex have attempted to relate disease to population dynamics, with the exception of the impact of sarcoptic mange caused by
Sarcoptes scabiei (Pérez et al., 1997; León-Vizcaíno et al., 1999). Also, trematode, sporozoan, cestode, nematode and arthropod parasites have been analysed in this species. Two good reviews on this subject, mainly in Andalusian ibex populations, have been recently published. One focuses on pathogens associated with the conjunctiva, external ear canal, as well as reproductive and upper respiratory traits (González-Candela et al., 2006) and the other analyses the whole parasite community (Pérez et al., 2006a). Over a hundred species have been reported as parasites of the Iberian ibex, including viruses, bacteria, fungus, arthropods, protozoa, trematodes, cestodes and nematodes. Bacteria are the most important taxa to the Iberian ibex regarding parasites richness (González-Candela et al., 2006; Pérez et al., 2006a).

Nevertheless, an arthropod, Sarcoptes scabiei, is the most relevant parasite in terms of its impact on population dynamics (Pérez et al., 2006a).

Sarcoptic mange epidemiology in ibex is characterized by periodic fluctuations (outbreaks) with cycles ranging from 10 to 30 years, influenced by a variety of hosts, parasites and external factors (Pérez et al., 1997; Rossi et al., 2007). During the last few decades, several sarcoptic mange epizootics have affected ibex populations from in Cazorla, Segura y Las Villas Natural Park (Fandos, 1991; León-Vizcaíno et al., 1999), Sierra Nevada Natural Park (Pérez et al., 1997) and the Sierra Magina range (Palomares & Ruiz-Martínez, 1993). The northern ibex population of Albacete has also recently been reported to be affected by mange (P. Acevedo & C. Gortázar, unpublished data).

When high host densities coincide with limited food availability, high parasite prevalences can be expected due to a loss of fitness and an increase of aggregation at the population level (Acevedo et al., 2005a; Gortázar et al., 2006). This was apparently the case for the sarcoptic mange outbreaks among ibex in Cazorla, Segura y Las Villas Natural Park (León-Vizcaíno et al., 1999) which resulted in mortality of over 95% of the population. Nevertheless, the transmission of scabies from domestic sheep and goats to Iberian ibex...
population has been suggested in the Sierra Nevada population (Pérez et al., 1997), despite there being little evidence. The detrimental effects of population overabundance (Caughley, 1981; Gortázar et al., 2006) can be increased with introductions of exotic and native species, including domestic species (Richardson & Demarais, 1992). These introduced species may have two main effects, an increase in disease prevalence and transmission rates, and the appearance of new diseases (Hofle et al., 2004). A sarcoptic mange episode in free-ranging exotic aoudad in Spain has been recently reported (González-Candela, León-Vizcaíno & Cubero-Pablo, 2004). This exotic species is currently expanding from the south east of the Iberian Peninsula (Cassinello et al., 2004), so that there is a potential risk of it spreading new diseases that could reach the Iberian ibex populations (Acevedo et al. 2007b).

Gastrointestinal and bronchopulmonary nematodes have also been studied in Iberian ibex populations (e.g. Pérez et al., 2003a; Acevedo et al., 2005a). Pérez et al. (2003a) analyzed the content of the abomasum and small intestine of ibex from Sierra Nevada Natural Park, and identified 15 species of trichostrongylid nematodes, four of which were found for the first time in this host. Bronchopulmonary nematodes were recently surveyed in the ibex population of Castile-La Mancha (Acevedo et al., 2005a). The infective larval stages in faeces were analysed (Festa-Bianchet, 1991) and 5 genera of bronchopulmonary nematodes were identified (Acevedo et al. 2005a). This investigation also supported the importance of density-dependent processes in the transmission of these nematodes in the Iberian ibex since prevalence of these parasites correlated positively with Iberian ibex abundance (Acevedo et al. 2005a).

More studies should be undertaken to describe the health status of Iberian ibex populations, especially with regard to viral and bacterial diseases, in order to develop proper population management. Currently, some regional governments are promoting projects on this issue, so that in the near future advances in the epidemiology of ibex diseases are expected.
Finally, haematological parameters were recently reported for the species (Pérez et al., 2003b), and analysed under various stress conditions including the influence of capture methods and captivity (Peinado et al., 1993, 1995), acute haemonchosis (Lavín et al., 1997), infection by *Sarcoptes scabiei* (Pérez et al., 1999) and hunting practises (Pérez et al., 2006b). Blood parameters can provide useful information on health and nutritional status of animals, and are a complementary source of information for monitoring their physiological status (Pérez et al., 2006b).

DISTRIBUTION AND ABUNDANCE

The Iberian ibex used to be widely distributed in all the mountainous regions of the Iberian Peninsula, from the southern coast (Sierra Nevada mountain range) to the Pyrenees. Their populations started to suffer a steady decrease in numbers during the last centuries due to great hunting pressure, together with agricultural development and habitat deterioration, eventually leading to the extinction of two of the four recognized subspecies (Shackleton 1997; Pérez et al., 2002).

The first study of Iberian ibex distribution dates back to 1911 (Cabrera, 1911), but no other work was carried out until several decades later, when a few articles and local reports were published (e.g. de la Peña, 1978; Alados, 1985a, 1997). More recently, status and distribution have been reported by several authors, either in the whole peninsula (Alados, 1997; Granados et al., 2002; Pérez et al., 2002) or in particular geographical areas (Palomares & Ruiz-Martínez, 1993; Pérez, Granados & Soriguer, 1994; Gortázar et al., 2000; Sánchez-Hernández, 2002; Acevedo et al., 2007a). Pérez et al. (2002) established a thorough distribution and population trends for the species, concluding that its distribution was fragmented into 51 stable population nuclei covering a more extensive distribution area in comparison to previous studies (Alados, 1997).
Based on some recent studies (Granados et al., 2002; Pérez et al., 2002; Moço et al., 2006; Acevedo et al., 2007a) and some new data, an updated distribution of the Iberian ibex is shown in Fig. 1. New data were obtained from a regional monitoring scheme promoted by Aragón Government, and whose methodological details can be reviewed in Gortázar et al. (2007) and Williams et al. (2007). The most remarkable differences between this updated distribution and previous reviews are the new localities occupied by the species in Ebro Basin, and its recent colonization and establishment in the north of Portugal, after crossing the Spanish border and settling in Peneda-Gerês National Park (Moço et al., 2006), an area originally inhabited by the extinct C. p. lusitanica (Cabrera, 1914). From these results, it can be estimated that the species is now present in more than 60,000 km² of the Iberian Peninsula. Although there seems to have been an increase in 14,000 km² from the most recent distribution work (Granados et al., 2002), this difference may also reflect a lack of sufficient sampling effort in the areas where ibex have been found only recently.

Ibex distribution is the result of both natural and artificial expansion processes. Most translocations were carried out after 1970, particularly during the 1980s and 90s, the exception is the Maestrazgo area, where ibex were established in 1966 (Pérez et al., 2002, see Fig. 1). Currently, a natural expansion of the populations has been reported both for C. p. victoriae and for C. p. hispanica subspecies (Pérez et al., 2002; Acevedo et al., 2007a). This expansion has been attributed to their recovery from past mange outbreaks, habitat changes, game management translocations (Gortázar et al., 2000), and probably to a decrease in hunting pressure (Garrido, 2004). A progressive expansion of the Iberian ibex domains has been described for Andalusian populations, suggesting an increment around the centre of their distribution area of 1.8 km per year in Cazorla population (Escós, 1988) and 0.7 km per year in Sierra Nevada population (Alados & Escós, 1996). The ibex dispersive capacity is affected
by an increase of densities, lost of traditional agriculture, and habitat improvement (Alados & Escós, 1996).

More than 50,000 Iberian ibexes have been estimated to inhabit the Iberian Peninsula (Pérez et al., 2002), though their status varies among the different nuclei. The average population density was estimated to be 2.7 ibex/km², ranging from 0.4 to more than 15.0 ibex/km², with most records between 1.2 and 4.4 ibex/km² (Pérez et al., 2002; Sánchez-Hernández, 2002; Acevedo et al., 2005a). However, most of this information was recorded before 2000, when sarcoptic mange incidence was quite significant in the study species (Pérez et al., 2002), and given the ibex’s current range expansion, we might expect higher average densities in most population nuclei, as have been recently observed in some localities (Acevedo et al., 2007a, d).

The populations of three population nuclei, in Sierra Nevada Natural Park, Cazorla, Segura y Las Villas Natural Park and Gredos Regional Park, represent more than 45% of the Iberian ibexes (Pérez et al., 2002). This may present serious risks for the species, due to the onset of infectious diseases under conditions of overabundance (Gortázar et al., 2006), or the appearance of stochastic events that might cause population declines. Of the two subspecies, C. p. hispanica and C. p. victoriae the former is more abundant and constitutes more than 80% of the total population (Pérez et al., 2002).

Various methods have been used to estimate the abundance of Iberian ungulates (Alados & Escós, 1996), although their applicability to montane species is limited, since the detectability of individual animals is highly affected by topography. Thus, indirect methods based on searches for signs, such as faeces or tracks, are particularly useful when detection is problematic, as these approaches are cheap, effective and non-invasive (Acevedo et al., 2005a, b, 2007c, in press).
Line transects recording the presence of signs are generally used to derive relative indices of abundance, as they permit comparisons between populations and/or time periods (Acevedo et al., 2005a, 2007c). The detection of signs in plots is also used to estimate relative abundance and population density (Campbell, Swanson & Sales, 2004; Acevedo et al., in press), providing defecation and faecal decay rates are known. Finally, direct count methods have been widely applied in ungulates including montane species (Pérez et al., 2002; Acevedo et al., 2007d). This methodology can be based on linear transects and fixed point counts, and requires the use of specialized software, such as Distance Sampling (Thomas et al., 2006), to estimate population densities.

All these methods require a series of assumptions that in general are not suitable for mountainous habitats, where detectability is often compromised. Some researchers are currently addressing the issue of the application of animal sampling methods in mountainous habitats, particularly as they apply to ungulates (J.M. Pérez, pers. comm.). In our opinion, plot counts should be implemented in Iberian ibex studies, as it is a seasonally independent method that can be easily stratified by habitat type (see Smart et al., 2004; Acevedo et al., in press). Recently, this method has been used satisfactorily in the Iberian red deer in Mediterranean habitats (Acevedo et al., in press). Finally, when sampling in mountainous habitats, one of the factors to be taken into account is the establishment of an accurate measure of the sampled area.

CONSERVATION

Populations of wild Caprinae are particularly vulnerable to extinction because of three main factors: genetic isolation, specialised habitat requirements, and low reproductive rate (Shackleton, 1997). However, there are additional factors that interact with these to complicate conservation further. Shackleton (1997) stated that 71% of the species included in
the subfamily Caprinae are suffering some type of threat, from which 8% are in a critical
situation; 23% threatened; 40% vulnerable; and 28% at lower risk; whereas data from 1% of
the species are deficient.

Particularly through continuous hunting pressure, Iberian ibex populations suffered
decreases in number during the last centuries, leading to the extinction of *C. p. lusitanica*
around 1890 (see Cabrera, 1914). A wild goat conservation program began in 1905 to
preserve the last remaining population of *C. p. victoriae*, through the establishment of the
National Refuge of Sierra de Gredos as well as a few other reserves created to protect caprids
(Cabrera, 1914; Alados, 1997). Although this subspecies eventually recovered, another one
has become extinct very recently, *C. p. pyrenaica*, with no males recorded in the wild since
1994 (García-González & Herrero, 1999), and the last known female dying in January 2000
(Pérez *et al.*, 2002). This extinction is particularly unfortunate, as concern was already
expressed since the late 1980s and a conservation plan put forward (García-González, Escós
& Alados, 1996; García-González & Herrero, 1999), to attempt to recover an already very
diminished population, estimated at as few as 6-14 individuals in 1990 (Hidalgo & García-
González, 1995). It is probable that conservation efforts came too late, and that the population
reached a critical size leading to marked inbreeding depression (Frankham, 1995), as this
subspecies showed a high degree of homozygosity (Jiménez *et al.*, 1999). Other hypotheses
for its extinction have been postulated, such as resource competition with chamois *Rupicapra
pyrenaica* (García-González *et al.*, 1992), infections and diseases caught from domestic
livestock, habitat loss and poaching (Hidalgo & García-González, 1995).

Alados (1997) considered that the future of the Iberian ibex depended on developing
effective conservation programs and consolidating the existing protected areas. Two main
threats to ibex conservation are considered (Alados, 1985a, 1997): increasing presence of
domestic livestock, which might transmit diseases to wild ungulates (see examples in
Gortázar et al., 2006) and compete for resources (Acevedo et al., 2007a) and pressure from tourism, an issue currently under study in Sierra Nevada population (R. Soriguer, personal communication). These dual threats can be overcome by establishing management measures to (1) control the number and health status of livestock, (2) restrict or control tourist presence in areas inhabited by ibex, (3) protect large areas from hunting when the population size does not permit sustainable exploitation, and (4) establish proper monitoring of ibex populations.

The European Community included the subspecies C. p. pyrenaica, as a priority species, in the Annexes II and IV of the Habitats Directive (The Council of the European Communities, 1992), whereas no other subspecies were considered in this Directive. The last report of the World Conservation Union (IUCN, 2004) considers C. pyrenaica to be at Low Risk, but near threatened (LR/nt). However the existing subspecies are categorised differently C. p. victoriae is Vulnerable (VU D2), due to the few and small areas it inhabits (Pérez et al., 2002) and C. p. hispanica is at Low Risk (LC/cd), where its viability depends on current conservation programmes.

IDENTIFYING GAPS AND PROPOSAL OF A NEW RESEARCH AGENDA

The present overview has shown that current knowledge of the Iberian ibex is focused on some basic aspects of its behavioural ecology, feeding habits and diseases, and that descriptive studies that do not integrate approaches predominate. In former sections we have already advanced a series of lines of research that, to our view, should be implemented.

We appreciate that most studies and empirical information on Iberian ibex is currently produced by regional institutions that carry out periodic surveys on the species’ status, mainly in protected areas. It is desirable that this kind of valuable information is not retained in poorly accessible files and local reports, so that promoting contacts between managers, forest rangers and environmental agencies and research institutes should be pursued. This would
allow researchers to centralize all the information currently available and design adequate future research projects.

Concerning new lines of research for the Iberian ibex, it is important to identify which aspects of its biology and ecology may prove most valuable in order to establish current threats and assure the conservation of the species, given its current status. We believe that applied ecological studies should not be overlooked, given that the species, although currently expanding its range, may suffer from competition with other ungulate species (e.g., red deer, fallow deer *Dama dama*, aoudad and livestock) and has a clear hunting interest. Previous sarcoptic mange episodes suffered by the species should also indicate caution about its overabundance in some particular areas. In recently colonized localities, its effects on endemic flora should also be analysed. Finally, a clarification of ibex taxonomy, through a multidisciplinary study, that includes historical, biogeographic and genetic analyses, will help in attaining proper conservation and management steps to preserve their whole genetic pool, as some valuable populations may be under threat (e.g. *C. p. victoriae*).

Population management from both conservation and hunting perspectives should be pursued. Currently Iberian ibex trophies may represent an important economic revenue, and biological features, such as factors affecting horn growth (e.g. body condition, immune system, age), and the determination of the genetic breeding value of large-horned males, will help in achieving sustainable wildlife management, adjusting hunting quotas in such a way that removing 'valuable' males is prevented.

A number of primary studies should be undertaken to improve our knowledge of the species and assure its conservation: sampling methods for reliable estimation of abundances and density in poorly accessible mountainous regions; periodic surveys to identify population trends in range; integrated behavioural ecological studies, including veterinary, ethology and
trophic ecology approaches; monitor of health status; and ecological modelling to determine population trends and risks.

In summary, the available information on the species, although useful, should be centralised and monitored from scientific criteria. It would be useful to promote periodical meetings of specialists to share their views and establish the necessity of a scientific approach in conservation and management practises.

ACKNOWLEDGEMENTS

Our gratitude to R. McDonald and F. Palomares for their useful comments and suggestions on a previous version of our manuscript. We are deeply indebted to all Rural Agents of the Environment Agency of Castilla-La Mancha. C. Cano and A. Alguacil provided us data on Albacete population, and J.E. Granados and R. Soriguer helped us in getting difficult-to-find bibliography. JC is currently enjoying a Ramón y Cajal research contract at the CSIC awarded by the Ministerio de Educación y Ciencia (MEC); he is also supported by the project PBI-05-010 granted by Junta de Comunidades de Castilla-La Mancha. PA is enjoying a postdoc grant from the Junta de Comunidades de Castilla-La Mancha.

REFERENCES

Alados, C.L. (1985c) An analysis of vigilance in the Spanish ibex (*Capra pyrenaica*).
Zeitschrift für Tierpsychologie, 68, 58-64.

Alados, C.L. (1986) Aggressive behaviour, sexual strategies and their relation to age in male

introducción al estudio de sus poblaciones y comportamiento. *Naturalia Hispanica, 28*,
36 pp.

Consideraciones para su gestión*. Monografías del Museo Nacional de Ciencias

Mammalogy, 71*, 608-616.

Bon, R., Rideau, C., Villaret, J.-C. & Joachim, J. (2001) Segregation is not only a matter of

Bonenfant, C., Loe, L.E., Mysterud, A., Langvatn, R., Stenseth, N.C., Gaillard, J.M. & Klein,
from varying breeding phenology at high and low latitude. *Proceedings of the Royal

London*, 963-977.

Figure 1. Current estimated distribution of the Iberian ibex *Capra pyrenaica*. Data come from Granados *et al.*, 2002; Pérez *et al.*, 2002; Moço *et al.*, 2006 and Acevedo *et al.*, 2007a. Present study data are shown in black squares. Dotted lines delimit boundaries of the provinces. Arrows indicate translocations from labelled populations (Pérez *et al.*, 2002). The distribution of the two subspecies is represented by the discontinuous line, *C. p. victoriae* in the north-west, and *C. p. hispanica* in the south and east. Presence data refer to UTM grid cells of 10 x 10 km2.

![Map of Iberian ibex distribution](image-url)
Table 1. Biometric data reported from different ibex populations (updated from Granados et al., 1997). Male - female values are shown. Length is in centimetres and weight in kilograms. “?” indicates the absence of data.

<table>
<thead>
<tr>
<th>Population</th>
<th>Body weight</th>
<th>Cross height</th>
<th>Body length</th>
<th>Horn length</th>
<th>Basal horn perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Albacete</td>
<td>Present study</td>
<td>58.4-35.0</td>
<td>?-?</td>
<td>?-?</td>
<td>55.8-?</td>
</tr>
<tr>
<td>Sierra Nevada</td>
<td>(Granados et al., 1997)</td>
<td>50.4-31.3</td>
<td>79.3-69.0</td>
<td>108.6-96.9</td>
<td>47.5-13.9</td>
</tr>
<tr>
<td></td>
<td>(Cabrera, 1914)</td>
<td>?-?</td>
<td>65.5-?</td>
<td>121.0-?</td>
<td>?-?</td>
</tr>
<tr>
<td></td>
<td>(Cabrera, 1985)</td>
<td>?-?</td>
<td>84.1-?</td>
<td>144.0-?</td>
<td>?-?</td>
</tr>
<tr>
<td></td>
<td>(Escós, 1988)</td>
<td>65.0-?</td>
<td>65.0-?</td>
<td>132.0-116.0</td>
<td>63.8-19.2</td>
</tr>
<tr>
<td>Cazorla</td>
<td>(Escós, 1988)</td>
<td>?-?</td>
<td>67.2-66.2</td>
<td>128.1-118.2</td>
<td>48.8-13.5</td>
</tr>
<tr>
<td></td>
<td>(Fandos, 1991)</td>
<td>54.9-31.5</td>
<td>81.1-69.7</td>
<td>132.1-112.8</td>
<td>76.0-17.1</td>
</tr>
<tr>
<td>Gredos</td>
<td>(Cabrera, 1914)</td>
<td>?-?</td>
<td>70.0-?</td>
<td>135.5-?</td>
<td>73.2-16.5</td>
</tr>
<tr>
<td></td>
<td>(Gonçales, 1982)</td>
<td>90.0-40.0</td>
<td>75.0-65.0</td>
<td>155.0-115.0</td>
<td>?-?</td>
</tr>
<tr>
<td></td>
<td>(Fandos & Vigal, 1988)</td>
<td>61.9-36.8</td>
<td>?-?</td>
<td>?-?</td>
<td>83.7-28.7</td>
</tr>
<tr>
<td>Las Batuecas</td>
<td>(Losa, 1993)</td>
<td>78.0-41.0</td>
<td>89.0-76.0</td>
<td>146.0-130.0</td>
<td>74.0-17.0</td>
</tr>
<tr>
<td>Sierra Morena</td>
<td>(Cabrera, 1914)</td>
<td>?-?</td>
<td>?-?</td>
<td>?-?</td>
<td>85.0-?</td>
</tr>
<tr>
<td>Pirineos Aragón</td>
<td>(Cabrera, 1914)</td>
<td>?-?</td>
<td>75.0-?</td>
<td>148.0-?</td>
<td>91.0-26.8</td>
</tr>
<tr>
<td>C. p. lusitanica</td>
<td>(Cabrera, 1914)</td>
<td>?-?</td>
<td>74.5-?</td>
<td>142.0-?</td>
<td>42.0-18.0</td>
</tr>
<tr>
<td></td>
<td>(França, 1917)</td>
<td>?-?</td>
<td>69.5-?</td>
<td>140.0-?</td>
<td>?-?</td>
</tr>
<tr>
<td>Pirineos-Gredos</td>
<td>(Couturier, 1962)</td>
<td>75.0-37.5</td>
<td>?-?</td>
<td>?-?</td>
<td>?-?</td>
</tr>
</tbody>
</table>