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Understanding demographic and migrational patterns constitutes a great challenge. Millions of
individual decisions, motivated by economic, political, demographic, rational, and/or emotional rea-
sons underlie the high complexity of demographic dynamics. Significant advances in quantitatively
understanding such complexity have been registered in recent years, as those involving the growth
of cities [Bettencourt LMA, Lobo J, Helbing D, Kuehnert C, West GB (2007) Growth,. Innovation,
Scaling, and the Pace of Life in Cities, Proc Natl Acad Sci USA 104 (17) 7301-7306] but many
fundamental issues still defy comprehension. We present here compelling empirical evidence of a
high level of regularity regarding time and spatial correlations in urban sprawl, unraveling patterns
about the inertia in the growth of cities and their interaction with each other. By using one of
the world’s most exhaustive extant demographic data basis —that of the Spanish Government’s
Institute INE, with records covering 111 years and (in 2011) 45 million people, distributed amongst
more than 8000 population nuclei— we show that the inertia of city growth has a characteristic time
of 15 years, and its interaction with the growth of other cities has a characteristic distance of 70 km.
Distance is shown to be the main factor that entangles two cities (a 60% of total correlations). We
present a mathematical model for population flows that i) reproduces all these regularities and ii)
can be used to predict the population-evolution of cities. The power of our current social theories
is thereby enhanced.

I. INTRODUCTION

The quantitative description of social human patterns
is one of the great challenges of this century. Sig-
nificant advances have been achieved in understanding
the complexity of city growth, urban sprawl, electoral
elections, and many other social systems [1–17]. One
finds that the concomitant patterns can be successfully
modelled, involving subjacent universal scaling proper-
ties [10, 14, 18, 19] and fundamental principles —as
the Maximum Entropy [20–24] or the Minimum Fisher
Information [25, 26] ones. Also, the interaction be-
tween cities (as measured by, for instance, the number of
crossed phone calls[27] or human mobility[12]) displays
predictable characteristics. Thus, it is plausible to con-
jecture that some kind of universality underlies collective
human behavior[17, 23].

However, many fundamental issues still defy compre-
hension. Our aim in this work is to answer two question
regarding city growth and human migrations: i) is
the growth of cities inertial? i.e., does the population
growth in the present year depend on the growth of
past years? and ii) does the growth of a city depend
on the growth of neighboring cities? i.e., does the
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migration of people from one city to other exhibit spatial
patterns? Millions of individual decisions, motivated
by economic, political, demographic, rational, and/or
emotional reasons underlies the growth rate of a city.
Accordingly, one may expect some level of randomness
and unpredictability. In this vein, one might think that
i) if some inertia is present, the growth rate of the
present year could be deduced from that in past years,
and
ii) if some correlation with other cities exists, the growth
rate might be predicted from the rates of other cities.
Thus, the observation and detection of regular space-
time patterns in urban-population evolution could
be viewed as constituting an important step towards
understanding collective, human dynamics at the macro-
scale. Indeed, the parameterization of such regularities
could lead to a potential improvement of the present
population-projection tools and analysis [28, 29].

A. Urban growth

The evolution of city population has been described
with great success in the past by recourse to geometri-
cal Brownian walkers obeying a dynamical equation that
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exhibits scale-invariance [6, 7, 13, 19, 21, 23, 24]

Ẋi(t) = vi(t)Xi(t), (1)

where Xi(t) is the population at time t of the i-th city
(of an ensemble of n cities), Ẋi(t) stands for its tempo-
ral change, and vi(t) for the growth-rate. One finds in
the literature that this rate usually displays stochastic
behavior in the form of a Wiener process that complies
with 〈vi(t)vj(t′)〉 = σ2

vδijδ(t − t′), so that we deal with
uncorrelated noise. In spite of its simplicity, this reduc-
tionist model is able to describe many of the observations
reported for city-rank distributions. Indeed, this equa-
tion can be linearized by defining ui(t) = log[Xi(t)] thus
obtaining

u̇i(t) = vi(t), (2)

which allows one to recover all well-known properties
of regular Brownian motion [21]. Indeed, a “thermody-
namics of urban population flows" —with the pertinent
observables— can be derived following the analogy with
physics presented in Ref. [23]. However, uncorrelated
evolution is assumed in [23] for the sake of simplicity,
which entails operating with the equivalent of a scale-free
ideal gas. Such an assumption was sufficient for explain-
ing the main properties of the macroscopic state of an
ensemble of cities, but a higher-level theory that would
provide deeper understanding is desirable. Indeed, some
sort of interaction between cities is of course to be ex-
pected, as well as some kind of inertia. The ensuing
correlations are of great importance to understand the
complex patters of migration and to improve our predic-
tive power with regards to the subjacent dynamics.

II. RESULTS

An exhaustive census data-set is indeed needed, some-
thing not easy to come by. Fortunately, the Spanish Gov-
ernment’s Institute INE [30] provides information about
the population of 8100 municipalities —the smallest ad-
ministrative unit— during 111 years, from 1900 to 2011.
They are distributed on a surface of ∼ 500, 000 km2 in-
habited by more than 45 million people (2011). Fig. 1a
displays the spatial distribution of the Spanish munic-
ipalities, and Fig. 1b their time-evolution. A typical
diffusion pattern is visible. The population’s median and
arithmetic mean are also plotted. The former has grown
with time but the later has diminished, telling us that the
population has descended in a majority of towns, which
reflects on the migration from country-side to large cities,
a common pattern in most of the world. The diffusion
process is readily discernible: one appreciates that the
width of the distribution does grow.

A. Statistical properties of growth rates

In order to analyze in more detail the underlying dy-
namics, we base our considerations on the developments
of Refs. [21, 23, 24]. It is shown there that the dynamical
growth equation for city populations exhibits the general
appearance

Ẋi(t) = vi(t)Xi(t) + wi(t)
√
Xi(t), (3)

where wi(t) is a Wiener coefficient. We face proportional
growth in the first term to which a finite-size contribu-
tion (FSC) is added in the second one. The later be-
comes small for large sizes but is important for small
ones. The second term can be regarded as ’noise’ and
is thus expected to be independent of the proportional
growth. Accordingly, the variance V [Ẋi] can be written
as

V [Ẋi]/Xi = σ2
viXi + σ2

wi, (4)

where σvi and σwi are the associated deviations of vi and
wi, respectively.

Comparison with the data entails appealing to numeri-
cal time derivatives for each Ẋi. We use yearly data from
1996 till 2011 (whenever the appropriate data-sets are
available for each intermediate year) so as to generate the
graph of Fig. 1c, that displays the (Xi, V [Ẋi]/Xi)−pairs
for all the Spanish municipalities computed as

〈Ẋi〉 =
1

T

T∑
t=1

Ẋi(t), (5)

V [Ẋi] = 〈[Ẋi − 〈Ẋi〉]2〉

=
1

T

T∑
t=1

(Ẋi(t)− 〈Ẋi〉)2. (6)

where T = 14 is the total number of data-sets used for
this calculation. The median med(V [Ẋi]/Xi) nicely fits
Eq. (4), with σv = 0.0119 and σw = 0.47, respectively.
Notice that FSC fluctuations are larger than multi-
plicative ones, the later dominating, of course, for large
sizes. The transition between both regimes occurs at
xT = σ2

wi/σ
2
vi = 1500 inhabitants.

B. Empirical observation of inertial growth

To find whether there exists a systematic dependence
between successive yearly growths (or inertia) we con-
sider first the n-cities-average and variance such that

〈ẋ(t)〉 =
1

n

n∑
i=1

ẋi(t), (7)

V [ẋ(t)] =
1

n

n∑
i=1

[ẋi(t)− 〈ẋ(t)〉]2, (8)
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Figure 1. Characteristics of the dataset. a, Spatial distribu-
tion of Spanish Municipalities. Circle’s sizes are proportional
to the population’s logarithm. b, Evolution of all munici-
palities. We give also the population per town (arithmetic
mean in black and geometric mean in red). c, Variance of
the population-change vs. population for each municipality
(dots). The median value (red dot-line) clearly follows Eq.
(4) (black line).

where xi(t) = Xi(t)/N(t) with N(t) the total popula-
tion at time t, excluding in this fashion the effects of the
total population growth. Time correlations have been
obtained via the Pearson product-moment correlation co-
efficient (Corr) between data-sets pertaining to different
years t1 and t2. The mean correlation as a function of
the time interval ∆t = |t1− t2| is obtained as the average

c(∆t) =
1

T

T∑
t=1

Corr[ẋ(t), ẋ(t+ ∆t)]

=
1

T

T∑
t=1

Cov[ẋ(t), ẋ(t+ ∆t)]√
V [ẋ(t)]V [ẋ(t+ ∆t)]

, (9)

where Cov(a, b) is the covariance between variables a − b
and T is now the total number of available data-sets for
each case. We study first such correlations as a function
of the population window, where two different situations
are encountered. Within a standard deviation, no corre-
lations exist for low populations, but they are significa-
tive for large ones, as indicated by Fig. 2a. The transition
between the two ensuing regimes takes place at popula-
tions of ∼ 1000 inhabitants. Thus, for the finite size term
in (4) no time correlations are detected. They do appear,
though, in the proportional growth regime. Accordingly,
we evaluate time-correlations for municipalities with pop-
ulations of more that ten thousand inhabitants during a

period of up to 50 years. We find that correlations decay
as the time interval ∆t = |t1 − t2| between observations
increases (Fig. 2b). The resulting mean value can be
nicely fitted by an exponential function

〈Corr(∆t)〉 = ct exp(−∆t/τ), (10)

with ct = 0.74± 0.02 and τ = 15± 1 years. Accordingly,
the correlation’s mean-time in the demographic flux is of
around 15 years.

C. Empirical observation of spatial correlations.

We pass now to a study of the demographical entangle-
ment between two given cities, as represented by spatial
correlations. The correlation coefficient between the i-th
and j-th city reads

cij = Corr[ẋi, ẋj ] =
Cov[ẋi, ẋj ]√
V [ẋi]V [ẋj ]

, (11)

where the covariances, variances, and means are time-
averages as in Eq. (5). Amongst a host of possible en-
tanglement factors, we choose here to study the simplest
one: distance between cities ∆r. Accordingly, we evalu-
ate correlations between cities versus their pertinent dis-
tance dist(i, j) via the histogram

〈Corr(∆r)〉 =
1

n

n∑
i=1

cijδ(∆r − dist(i, j)). (12)

We find that for towns with more that 10000 inhabitants
–within the proportional growth regime– the mean value
of the spatial correlation does depend upon distance as a
power law, but saturates for short distances. Things can
be nicely fitted by the expression

〈Corr(∆r)〉 =
cr

1 + |∆r/r0|α
, (13)

obtaining cr = 0.33±0.02, r0 = 76±10, and α = 1.8±0.3,
with a coefficient of determination R2 equal to 0.9159.
Instead, fixing for future convenience α = 2, that
yields a Lorentz function, we get cr = 0.33 ± 0.01 and
r0 = 79 ± 8, with R2 = 0.9156. Since the concomitant
two ways of fitting are indistinguishable, we adopt
α = 2 for simplicity. As a consequence, the typical
“demographic distance" turns out to be (in average) of
∼ 80 km, decaying with r−2 at large distances. Thus, we
face long-range correlations (Fig. 2d). The influences
of other factors, though, make these correlations to
vanish at about 500 km. We use our data to compare
i) the width of Corr(∆r) with ii) that expected for a
bivariate normal distribution [31] (see Appendix). The
empiric width is larger than the bivariate one: 0.327 vs.
0.204 (Fig. 2c), indicative of the presence of additional,
distance-independent, correlations. We deduce that the
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separation between towns, that is, their mutual distance,
is the origin of about a 60% of the total correlation
between them.
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Figure 2. Empirical space-time correlations of population
growth. a, Time-correlations versus town-sizes for yearly rel-
ative growths (red curve and red dots). The shaded area
represents the width determined by one standard deviation
(darker hue) and by two of them (lighter hue). Horizontal
dark lines are just visual aids. b, Time correlation for the
relative growth of towns populated by more that 10,000 in-
habitants. Shaded areas represent widths determined by one
(darker hue) and two (lighter hue) standard deviations, re-
spectively. Inset: same representation, but in a log scale.
The exponential fit of Eq. (10) acquires thus more visibil-
ity. c, Comparison of widths: bivariate-normal vs. empiri-
cal correlations-distribution. d, Spatial correlation of Spain’s
municipalities’ relative growth for populations larger than
10,000 inhabitants. In black, the Lorentz shape of Eq. (13)
(for α = 2) compared with the empirical mean (red dots).
Inset: same representation, with a log scale for the distance.

D. Quantitative model for inertial and correlated
urban growth

How to explain and reproduce these remarkable re-
sults? To such an end we advance here a model, compati-
ble with previous descriptions and observations, inspired
by the Langevin equation [32]. Accordingly, it includes
inertia, ‘forces’ Fi(t), and a friction-coefficient γ, whose
values should fit empirical observation. Correlated forces
imply a correlation matrix Qii′ = 〈Fi(t)F ′i (t)〉/Vf , where
Vf is the variance of the forces, to be empirically ad-

justed. Disregarding finite-size noise one is led to

Fi(t) =

n∑
i′=1

Rii′fi′(t), (14)

v̇i(t) = Fi(t)− γvi(t), (15)
u̇i(t) = vi(t), (16)

ẋi(t) = eui(t), (17)

where

• fi(t) are uncorrelated random forces such that
Corr[fi(t), fi′(t

′)] = Vfδii′δ(t− t′) and

• Rii′ are the matrix elements of a correlation-
generating matrix such that

∑
i′j′ Rii′Rjj′ = Qij .

The form of Fi(t) suggests that the force acting on a
city is somewhat the average value of several indepen-
dent ones. Now, an important personal decision is that
of selecting to move to a certain location on the basis of
available information. This information derives from hu-
man contacts of the concomitant individual, whose spa-
tial distribution (SD) has been found to follow a r−2 law
at large distances, saturating for short ones [27]. For
simplicity, we assume a Lorentz shape for this SD

Rij =
Rj(0)

1 + |2∆rij/r0|2
, (18)

where ∆rij is the distance between the i and j-th cities
and the normalization constant is defined as

Rj(0) =

[
n∑
k=1

(1 + |2∆rkj/r0|2)−2

]− 1
2

. (19)

Thus, F becomes a “coarse-grained" force. Let us con-
sider for our derivation of Q the continuous limit xi →
x(r), with r a planar spatial coordinate. x(r) represents
the relative population at r, and the total normalized
population becomes 1 =

∫
S
drx(r), where S is the per-

tinent region’s area. Since we deal now with the coordi-
nates r and r′ instead of the indexes i, j, the R matrix-
elements are a function R(|r − r′|). Sums become inte-
grals obtaining R(0) = 2[2/πr2

0]1/4 and the convolution
(⊗) for the coarse-grained force

F (r, t) = R(r)⊗ f(r, t) =

∫
S

dr′
2[2/πr2

0]1/4f(r′, t)

1 + 4|(r− r′)/r0|2
.

(20)
Since the convolution of two Lorentzians of equal scale
is also a Lorentzian with twice that scale-parameter, we
find for the forces-correlation

Corr[F (r), F (r′)] = Q(|r− r′|)
= R(|r− r′|)⊗R(|r− r′|)

=
1

1 + |(r− r′)/r0|2
. (21)
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Thus we write for the general case

Q(∆rij) =
1

1 + |∆rij/r0|2
. (22)

To obtain the correlation for the growth we solve Eqs.
(14)-(17) for v and x writing

vi(t) = e−γtvi(0) +

∫ t

0

dτe−γ(t−τ)Fi(τ). (23)

xi(t) = exp

[
vi(0)

γ
(1− e−γt)+∫ t

0

dτ

∫ τ

0

dτ ′e−γ(τ−τ ′)Fi(τ
′)

]
. (24)

We have then Cij(∆t) = Corr[ẋi(t), ẋj(t + ∆t)] =
Corr[vi(t), vj(t + ∆t)]. On the basis of that the initial
time is arbitrary, we assume t → ∞ so as to obtain the
v−correlation

Cij(∆t) = Corr[vi(t), vj(t+ ∆t)] =
e−γ∆t

1 + |∆rij/r0|2
(25)

which nicely reproduces empirical data with γ = 1/τ
(from the variance of vi(t) we also obtain Vf/2γ = σ2

v).
Without trying to be exhaustive, we have tested our

equations with a numerical experiment. One simulates a
square (area) of 500×500 km2, and randomly place on it
1000 “virtual" cities (Fig. 3a). Using the empirical val-
ues for r0, γ, and Vf , one makes the system to evolve
during 100 years. All cities possess the same population
at the beginning. The concomitant results are analyzed
by recourse to the methods used above for dealing with
empirical data. Comparisons are made with theoretical
predictions and plotted in Fig. 3b and 3c for time and
spatial correlations, respectively. Expectations are seen
to be fulfilled. It is worth mentioning that we have fol-
lowed a normal-modes description to solve the associated
equations, working with collective, independent modes
(see Appendix). Our virtual municipalities display the
same behavior recorded for actual ones. The main dif-
ference ensues from the presence of (as yet) undefined
correlations in the empirical data.

III. CONCLUSSION

Summing up, by recourse to the geometric walkers-
model of Eqs. (14-17), we have empirically demonstrated
that the relative growth of a city’s population exhibits
both i) inertia and ii) correlation with the relative growth
of neighboring cities, with distance as the main variable
that underlies that town-town interaction. We also
showed that a model inspired by the Langevin equation
is able to reproduce these observations. Indeed, the
model that we present here can be used to improve the
predictive power of present techniques for demographic
projection. However, further improvements are needed
in order to identify the undefined correlations within
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Figure 3. Numerical experiment solving Eqs.(14)-(17). a,
Spatial distribution of “virtual" municipalities. Each side
of the square represents 500 km. b, Time correlation for
the relative growth of virtual towns. Shaded areas represent
widths determined by one (darker hue) and two (lighter hue)
standard deviations, respectively. Inset: same plot in a log
scale. c, Spatial correlation of virtual municipalities’ relative
growth. In black, the theoretical Lorentz shape of Eq. (22),
compared with the empirical mean (red dots).

the actual data whose existence we have discovered.
We expect that these correlations will depend on local
circumstances and also on the particular socio-economic
status of each city.
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Appendix A: Distribution of correlation coefficients

For a bivariate normal distribution, the distribution of
correlation coefficients is given by

P (c, C, T ) =
1√
2π

(T − 2)
Γ(T − 1)

Γ(T − 1/2)
(1− c2)T/2−2 ×[

1− C2
](T−1)/2

[1− Cc]T−3/2 ×
2F1 [1/2, 1/2, T − 1/2, (Cc+ 1)/2] , (A1)

where c stands for the correlation-value that one might
numerically obtain using Eq. (11), C is the actual cor-
relation value and T the number of data-point used to
evaluate c.
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Figure 4. omponents of the first four eigenvectos of the simulated system (from white to red: positive values; from white to
blue: negative values). The surface of each municipality is defined by its Voronoi area.

Appendix B: The normal mode solution for the
correlated Langevin equation

The computational cost of solving Eqs. (14)-(17) can
be reduced via a normal-mode treatment. Indeed, we
have defined a change-of-basis matrix A such that R
(and Q) become diagonal. This generates new variables
u′i(t) =

∑
i′ Aii′ log[xi(t)] whose motion-equations are

u̇′i(t) = v′i(t), (B1)
v̇′i(t) =

√
εif
′
i(t)− γv′i(t), (B2)

with v′i(t) =
∑
ii′ Aii′vi(t), f

′
i(t) =

∑
ii′ Aii′f

′
i(t), and√

εi is the i-th eigenvalue of R (with εi that of Q). One

easily checks that the forces f ′ are statistically equiv-
alent to those indicated by f (i.e., 〈f ′i(t)f ′j(t + ∆t)〉 =
Vfδijδ(∆t) ), so that the simulation involves directly
the random generation of f ′, without having to actu-
ally effect the basis-change. The variables u′i(t) evolve
in independent fashion, representing normal-mode evo-
lution. The presence of

√
εi accounts for different mode-

equilibrations between f ′ and the dumping γ. This fact
might be conceived as originating mass-factors. Figure 4
displays the first four modes for 100 cities distributed
uniformly in a square of 100×100 km using r0 = 30 km,
in such a way that the color at the Municipality i rep-
resents the coefficient Aii′ for the eigenvector i′ =1, 2, 3
and 4 (the surface of each virtual municipality is in this
example the Voronoi area).
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