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1. GLUCOSE METABOLISM IN THE CENTRAL NERVOUS 
SYSTEM 
 

The brain only represents ~2% of the total body weight but it accounts for more 

than a 20% of the body consumption of O2 and glucose (Sokoloff et al. 1950). 

Whilst the adult brain in mammals is highly dependent on glucose as an energetic 

substrate, ketone bodies (3-hydroxybutyrate and acetoacetate) can be considered 

an alternative brain fuel during early postnatal life. Thus, ketone bodies synthesis 

by astrocytes plays an essential role in neuronal survival in pathological conditions 

where glucose delivery to the brain is decreased, (Guzman & Blazquez 2004, 

Blazquez et al. 1999). Despite glucose may be used for oxidative metabolism to 

produce ATP, it is also important as a source of carbons for fatty acid, cholesterol, 

neurotransmitters, aminoacids, glycerol-3-phosphate and, in astrocytes, glycogen 

synthesis (Cataldo & Broadwell 1986). Most part of the energy generated by 

glucose metabolism is thought to be used to fulfill the energetic needs for 

neurotransmission (Attwell & Laughlin 2001, Ames 2000). 

 

A correct glucose brain metabolism is essential for survival, and there have been a 

large number of reports documenting alterations in glucose metabolism in patients 

with neurodegenerative diseases. Decreased cerebral glucose metabolism 

ascribed to diminished glucose transport and reduced glucose phosphorylation has 

been described in patients with Alzheimer’s disease (AD) (Piert et al. 1996). In 

addition, several studies have documented “diabetes like” alterations in AD 

patients, including metabolic alterations associated to insulin resistance that can 

contribute to the development of AD (Mosconi et al. 2008, Cunnane et al. 2011, 

Carvalho et al. 2012, Schioth et al. 2012). Brain hypometabolism has also been 

suggested in the etiology of Huntington´s disease, as glucose consumption is 

reduced in the presymptomatic stages of the disease (Ciarmiello et al. 2006). 

Studies of Parkinson’s disease (PD) patients have also provided evidence for 

alterations similar to those in AD that include abnormal glucose tolerance and 

increased insulin resistance (Aviles-Olmos et al. 2013). 
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1.1. GLUCOSE TRANSPORTERS 
 

Cells take up glucose by transporters located in the plasma membrane. There are 

two different classes of glucose transporters with different kinetic properties: GLUT 

(GLUT1-GLUT12) that are sodium-independent, and SGLT (SGLT1-SGLT6) that 

are sodium-dependent (see Table 1). Cells express different transporters 

depending on their specific metabolic requirements (Shah et al. 2012). The main 

isoforms expressed in brain cells are GLUT1, GLUT3 and GLUT5 (See table 1). 

GLUT3 is present predominantly in neurons and GLUT5 is specific of microglia. 

GLUT1, which is detected in the blood-brain barrier and astrocytes, is the only 

vehicle responsible for the transport of glucose into the brain. A defect in glucose 

transport into the brain, known as GLUT1 deficiency syndrome, leads to 

neurological disorders associated with epilepsy and delays in mental and motor 

development in children (Klepper & Voit 2002). 

 

TRANSPORTER EXPRESSION IN BRAIN SUBSTRATES/TRANSPORTS 

GLUT 1 
Brain endothelial and epithelial-like 

brain barriers, glial cells. 

Glucose, galactose, mannose, 

glucosamine, ascorbic acid 

GLUT 2 Astrocytes 
Mannose, galactose, fructose, 

glucose, glucosamine 

GLUT 3 Neurons, brain endothelial cells 
Glucose, galactose, mannose, 

xylose, dehydroascorbic acid 

GLUT 4 
Hippocampal and cerebellar 

neurons 

Glucose, dehydroascorbic acid, 

glucosamine 

GLUT 5 Brain microglia Fructose, Glucose 

GLUT 6 Brain Glucose 

GLUT 8 Neurons Glucose 

SGLT 1 
Cortical, pyramidal and purkinje 

neuronal cells 
>Glucose, ≥ galactose 

SGLT2 Brain Glucose, galactose 

SGLT3 Brain Glucose, Na+ (H+) 

SGLT4 Brain Glucose, mannose, fructose 

SGLT6 Neurons Myo-inositol, glucose 

 
Table 1: Glucose transporters in brain. Adapted from Shah et al 2012. 
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When glucose enters the cell it is phosphorylated by hexokinase; the resulting 

product, glucose-6-phosphate (G6P), is retained in the cytoplasm to be 

metabolized by the pentose phosphate pathway (PPP), glycolysis (Wamelink et al. 

2008), or be stored as glycogen.  

 
1.2. GLUCOSE METABOLIC PATHWAYS  
 

1.2.1. GLYCOGEN IN THE BRAIN 
 

Astrocytes are the only cells in the nervous system able to storage glycogen under 

non-pathologic conditions (Wiesinger et al. 1997), where it functions as a transient 

glucose reservoir under resting conditions (Watanabe & Passonneau 1973). 

Neurons express the enzyme responsible for glycogen synthesis, glycogen 

synthase, but under normal conditions they keep the machinery for glycogen 

synthesis inactive by maintaining glycogen synthase phosphorylated (inactive). In 

addition, neurons degrade both glycogen synthase and protein targeting glycogen 

(PTG), a regulatory subunit of protein phosphatase 1 that activates, through 

dephosphorylation, glycogen synthase (Vilchez et al. 2007). When glycogen 

synthase is dephosphorylated (thus activated), it leads to glycogen accumulation 

and triggers apoptotic neuronal death, a phenomenon that is characteristic of a 

form of progressive myoclonus epilepsy, Lafora disease  (Vilchez et al. 2007, 

Collins et al. 1968).    

 

Glycogenolysis is induced when there is a deficit of glucose supply to the brain 

(Choi et al. 2003). Actually, astrocyte glycogen is critical for maintaining synaptic 

activity and for neuronal survival during hypoglycemia (Swanson & Choi 1993, Suh 

et al. 2007). Neuronal synaptic activity in normal condition also stimulates glycogen 

degradation by astrocytes (Swanson et al. 1992) and its glycolytically conversion in 

lactate (Dringen et al. 1993). Lactate is then released and transported to neurons 

that can use it as an energetic substrate.  
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1.2.2. GLYCOLYSIS 
 

Glycolysis transforms glucose into pyruvate in 10 enzymatic reactions. Besides 2 

mols of pyruvate, 2 mols of ATP, 2 mols of NADH(H+), 2 H+ and 2 of H2O are 

produced per mol of glucose (Nelson & Cox 2001). Three enzymes are key 

regulatory points in this pathway as they catalyze irreversible reactions that 

generate intermediates arriving from other metabolic pathways (Nelson & Cox 

2001). These three enzymes are hexokinase, 6-phosphofructo-1-kinase (PFK-1) 

and pyruvate kinase (see figure 1). 

 

Hexokinase is expressed under four different isoenzymes (HKI-IV) (Wilson 2003). 

The most abundant isoenzyme in brain is HKI and is physically associated (70-

90%) with the outer mitochondrial membrane.  Release of HKI from mitochondria 

causes a severe decrease in its activity (Rose & Warms 1967) that, in neurons, 

triggers oxidative damage (Saraiva et al. 2010). Besides preventing neuronal 

oxidative damage, mitochondrial-bound HKI is neuroprotective, maintains 

adequate glutathione levels and induces neurite outgrowth (Wang et al. 2008). 

HKII also associates with mitochondria, where it promotes neuronal survival; its 

overexpression is sufficient to protect against rotenone (a mitochondrial complex I 

inhibitor)-induced cell death (Gimenez-Cassina et al. 2009). In astrocytes HKI is 

also associated with mitochondria but inhibition of gap junctions upregulates and 

stimulates the translocation of HKI from mitochondria to microtubules at the same 

time that promotes GLUT1 translocation to the plasma membrane, inducing a 

significant expression of HKII and GLUT3, which are normally not present in 

astrocytes (Sanchez-Alvarez et al. 2004). 

 

Glycolytic rate in neurons is much lower than in astrocytes (Herrero-Mendez et al. 

2009), an observation that is accompanied by a lower rate of the oxidation of 

glucose through the tricarboxylic acid cycle (TCA) in neurons (Garcia-Nogales et 

al. 2003). However glycolytic activity in neurons is essential for fast axonal 

transport of vesicles to nerve terminals, as it provides the ATP necessary for this 

process (Zala et al. 2013). Glucose in astrocytes is predominantly used in the 

glycolytic pathway, which appears to be predominantly “anaerobic” (Leo et al. 

1993) i.e., that converts glucose into lactate, which can be used as a fuel by 

neurons.  
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Figure 1: Schematic representation of the glycolytic pathway. Abbreviations used: G6P: 

Glucose 6 phosphate; PGI: Phosphoglucose isomerase; F6P: Fructose-6-phosphate; 

F1,6P2: Fructose-1,6-bisphosphate; TIM: Triose-phosphate isomerase; DHAP: 

Dihydroxyacetone phosphate; GAP: Glyceraldehyde-3-phosphate; GAPDH: 

Glyceraldehyde-3-phosphate dehydrogenase; F2,6P2: Fructose-2,6-bisphosphate; 1,3-

bPG:1,3-Bisphosphoglycerate; 3-PG: 3-Phosphoglycerate; 2-PG: 2-Phosphoglycerate; 

LDH: Lactate dehydrogenase; PEP: Phosphoenolpyruvate; PFK-1: 6-Phosphofructo-1-

kinase;. Alosteric inhibitors of the enzymes are indicated in red, and alosteric activators in 

green. Stoichiometry has been omitted for clarity.  

 
PFK-1 regulation by fructose-2,6-bisphosphate  
 

6-Phosphofructo-1-kinase (PFK-1) is a master regulator of glycolysis (Hue & Rider 

1987, Van Schaftingen et al. 1982, Uyeda 1979). It is a tetramer that is composed 

of different combinations of 3 different subunits: L-type (liver), M-type (muscle) and 

P-type (platelets), each with different kinetic properties although all of them 

requiring the presence of fructose-2,6-bisphosphate (F2,6P2) for full activity. In the 

brain, the three subunits are expressed, although M-type is the most abundant 

(Dunaway et al. 1988, Almeida et al. 2004). 

 

PFK-1 catalyzes the phosphorylation of fructose-6-phosphate (F6P) into fructose-

1,6-bisphoshate (F1,6P2). PFK-1 is regulated by different negative (ATP and 

citrate) and positive (AMP, ADP and F2,6P2) allosteric effectors;  its main positive 

allosteric effector is  F2,6P2.  

 

Two enzymes are responsible for the synthesis and degradation of F2,6P2, namely 

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) and TP53-

induced glycolysis and apoptosis regulator (TIGAR). In view of the relevance of 

these enzymes in the context of this thesis, we will describe them in separate 

sections. 
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PFKFB  
 

PFKFB is a bifunctional enzyme that presents a kinase domain which synthetizes 

F2,6P2 and a bisphosphatase domain, which dephosphorylates it to obtain 

fructose-6-phosphate (see Figure 2). 

 

PFKFB activity is regulated by citrate and phosphoenol pyruvate (PEP), that are 

potent allosteric inhibitors of the enzyme (Van Schaftingen et al. 1982).Glucagon 

inhibits the kinase activity of the hepatic (PFKFB1) enzyme by activating protein 

kinase A (Payne et al. 2005). On the other hand, phosphate is a cofactor for 

PFKFB and its presence increases the Vmax of the enzyme and decreases the Km 

for F6P (Laloux et al. 1985). 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 2: PFKFB is a bifunctional enzyme. PFKFB kinase domain (red) synthetizes 

fructose-2,6-bisphosphate from fructose-6-phosphate at the expense of 1 ATP molecule. 

PFKFB bisphosphatase domain (blue) dephosphorylates fructose-2,6-bisphosphate and 

produces fructose-6-phosphate. 

 

PFKFB is expressed by 4 different genes yielding 4 different isoforms (PFKFB1-4), 

which have different kinetic properties and tissue-expression pattern according to 

the specific needs. PFKFB1 is expressed in liver and muscle, PFKFB2 in heart, 

kidney and pancreatic islets, PFKFB3 in placenta, cancer cell lines, monocytes  

and Kupffer cells and PFKFB4 in testicles (Bartrons & Caro 2007). PFKFB3 is the 
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most abundant PFKFB isoform in brain  (Okar et al. 2001, Herrero-Mendez et al. 

2009). 

 
There are different alternative splicing variants of PFKFB3 depending on the 

species. In humans, ubiquitous PFK-2 (uPFK-2) is the most abundant isoform in 

the brain, placenta and breast cancer cells, and its ortholog in the rat is the RB2K6 

alternative variant (Watanabe & Furuya 1999). 

 

PFKFB3 presents the highest kinase-to-bisphosphatase activity (~700:1) (Ventura 

et al. 1991). Thus, expression of its full-length cDNA yields a protein that is almost 

a kinase, i.e. F2,6P2-synthetizing, hence glycolytic-promoting enzyme.   

 

PFKFB3 is phosphorylated by PKA and PKC on Ser461 without affecting Km for F6P 

or ATP and neither its bisphosphatase activity (Tominaga et al. 1997). When, 

under hypoxic conditions, the ratio AMP:ATP increases, AMP-activated protein 

kinase (AMPK) is activated and phosphorylates PFKFB3 on Ser461, activating it and 

causing an increase in F2,6P2 levels that stimulates glycolysis and cytosolic ATP 

production (Marsin et al. 2002). PFKFB3 can also be phosphorylated at Ser461 by 

MK2 (MAPK-activated protein Kinase-2), leading to an increase in its activity 

(Novellasdemunt et al. 2013, Bolanos 2013). 

 

PFKFB3 promoter has elements that can be activated upon binding of the hypoxia 

inducible factor 1 (HIF-1). Thus, under hypoxic conditions, PFKFB3 is 

transcriptionally upregulated and this is accompanied by an increase in glycolytic 

flux and ATP levels (Minchenko et al. 2002, Obach et al. 2004).  PFKFB3 promoter 

also presents a serum response element that is activated upon serum response 

factor binding in a p38αMAPK-MK2 pathway-dependent process (Novellasdemunt 

et al. 2013, Bolanos 2013). PFKFB3 expression can also be induced in response 

to progestins (Novellasdemunt et al. 2012) or insulin (Riera et al. 2002) in cancer 

cells and pro-inflammatory molecules such as interleukine-6 (Ando et al. 2010) and 

adenosine (Ruiz-Garcia et al. 2011). 

 

PFKFB3 shows another regulatory mechanism that accounts for the low levels of 

this protein in neurons. PFKFB3 is the only PFKFB isoform that presents a Lys-

Glu-Asn (KEN) box in its sequence. This motif is a recognition site for Cdh1, an 

adaptor protein for the E3 ubiquitin ligase anaphase-promoting complex/cyclosome 
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Figure 3: Superposition of TIGAR 

(yellow) and FBPase-2 (green) 

structures. Obtained from Li et al, 

2009. 

(APC/C) that ubiquitinates target proteins to be degraded by the proteasome (see 

section 2.5.4). Unlike astrocytes, APC/C-Cdh1 is very active in neurons and 

maintains PFKFB3 protein levels very low; this accounts for the differential 

regulation of glycolysis in neurons and astrocytes. Thus, during inhibition of 

mitochondrial respiration, astrocytes maintain their ATP levels, while in neurons 

ATP concentration decreases progressively and is accompanied by a decrease in 

the mitochondrial membrane potential (∆ψm ) that finally triggers apoptotic cell 

death  (Bolanos et al. 1994, Almeida et al. 2001).  The study of the mechanism 

revealed that inhibition of respiration caused an increase in AMP levels in 

astrocytes that lead to AMPK phosphorylation that, in turn, activated PFKFB 

(Almeida et al. 2004). The low levels of PFKFB3 in neurons explains why these 

cells are unable to upregulate glycolysis upon mitochondrial damage (Herrero-

Mendez et al. 2009). In fact, overexpression of PFKFB3 in neurons is sufficient to 

stimulate glycolysis and maintain Δψm during inhibition of mitochondrial respiration 

(Herrero-Mendez et al. 2009). However, this effect is transient, because the 

increase in glycolysis triggered by PFKFB3 overexpression is accompanied by a 

decrease in the utilization of glucose through the PPP. Consequently, decrease in 

the regeneration of reduced glutathione triggers oxidative stress leading to 

neuronal death (Herrero-Mendez et al. 2009) (see Figure 7). 

 

TIGAR  
 

The protein structure of TIGAR (TP53-induced 

glycolysis and apoptosis regulator) is very 

similar to the fructose-2,6-bisphosphatase 

domain of PFKFB (see Figure 3) and, like 

PFKFB, it regulates F2,6P2 levels (Li & Jogl 

2009) by degrading it, thus, inhibiting 

glycolysis and promoting PPP. This causes a 

decrease in intracellular reactive oxygen 

species (ROS) and limits apoptosis and 

autophagy in cancer cells (Bensaad et al. 

2006, 2009). 

 

Besides its function as a bisphosphatase 

TIGAR translocates to the mitochondria 
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under hypoxic conditions by forming a complex with hexokinase-II. This triggers an 

increase in hexokinase activity that leads to increased glycolysis, helping to 

maintain the mitochondrial membrane potential and limiting mitochondrial ROS 

(Cheung et al. 2012). TIGAR also plays a role in regulating cell cycle by mediating 

de-phosphorylation of retinoblastoma and stabilization of RB-E2F1 complex thus 

delaying the entry of cells in S phase of the cell cycle (Madan et al. 2012). 

 

Despite its intriguing and effects over cell cycle and metabolism in cancer cells, to 

our knowledge, nothing is known about TIGAR expression and function in brain.  

 

Metabolism of pyruvate 
 

Pyruvate, the pyruvate kinase (PK) product, is the last metabolite of glycolysis. 

Neurons can obtain most of it from lactate, which, according to the astrocyte-

neuron lactate shuttle hypothesis, would be provided by astrocytes  (Pellerin et al. 

2007). There are three PK isoenzymes, namely class L (liver), class A (adipose 

tissue, kidney) and class M, that is present in muscle and brain (Carbonell et al. 

1973, Farrar & Farrar 1995).  In the cytosol, pyruvate can be reduced to lactate by 

a reaction catalyzed by lactate dehydrogenase (LDH), or transformed into alanine 

in a transamination reaction catalyzed by alanine aminotransferase. In the 

mitochondrial matrix, pyruvate can also be converted into acetyl-CoA or 

oxaloacetate in the reactions catalyzed by the pyruvate dehydrogenase complex or 

pyruvate carboxylase, respectively (see figure 4).  

 

Within the brain, pyruvate carboxylase is exclusively present in astrocytes (Yu et 

al. 1983). Neurons, however, show a pyruvate dehydrogenase (PDH) complex 

activity higher than astrocytes (Halim et al. 2010). This high PDH activity is 

important in cholinergic neurons, which require additional amounts of acetyl-CoA 

for acetylcholine synthesis (Szutowicz et al. 2013).  
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Figure 4: Schematic representation of pyruvate fates in the cell. 

 
1.2.3. PENTOSE-PHOSPHATE PATHWAY 
 

Besides glycolysis, PPP is the main glucose utilization pathway. PPP can be 

divided into an oxidative phase and a non-oxidative phase. In the oxidative phase, 

G6P is oxidized into ribulose-5-phosphate (Ru5P), a process that generates 2 mols 

of NADPH(H+) per mol of G6P (Wamelink et al. 2008). In the non-oxidative phase, 

Ru5P produces ribose-5-phosphate and xylulose-5-phosphate, that can later be 

transformed in the glycolytic intermediates glyceraldehyde-3-phosphate and 

fructose-6-phosphate  (Baquer et al. 1988).  
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Figure 5: Pentose-phosphate pathway. Abbreviations used: G6P: Glucose-6- phosphate; 

G6PD: Glucose- 6- phosphate dehydrogenase; E4P: Erythrose-4-phosphate; F6P: 

Fructose-6-phosphate; GAP: Glyceraldehyde-3-phosphate; PGI: Phosphoglucose 

isomerase; R5P: Ribose-5- phosphate; S7P: Sedoheptulose-7-phosphate; X5P: Xilulose-5-

phosphate.  
 
The rate-limiting enzyme of PPP is glucose-6-phosphate dehydrogenase (G6PD). 

G6PD activity is different between neuronal types, and is essential for generating 

NADPH(H+) (Biagiotti et al. 2003).  PPP activity in resting conditions, as well as the 

increase in its activity that takes place during activation, is higher in astrocytes than 
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in neurons. However, neurons actively metabolize glucose by the PPP, and has 

been shown to be essential for neuronal survival (Delgado-Esteban et al. 2000, 

Herrero-Mendez et al. 2009). Moreover, H2O2 increases PPP activity (Ben-Yoseph 

et al. 1994), and peroxynitrite (ONOO−), a strong oxidant derived from nitric oxide, 

triggers an increase in PPP activity and NADPH(H+) levels in neurons by activating 

G6PD and thus protecting these cells against nitrosative stress (Garcia-Nogales et 

al. 2003).  
 

1.3. LACTATE CONSUMPTION IN NEURONS AND THE 
ASTROCYTE-NEURON LACTATE SHUTTLE HYPOTHESIS.  
 

Glucose has been largely recognized as an essential substrate for brain cells 

(Sokoloff 1992) but, besides the classical view of glucose as the only substrate for 

oxidative metabolism in neurons, in the last few years several evidences have 

shown that lactate can also be oxidized by these cells (Bouzier-Sore et al. 2003, 

Zielke et al. 2007). Indeed, several works have reported that in resting conditions 

lactate is the preferential substrate for neurons (Bouzier-Sore et al. 2003, 

Boumezbeur et al. 2010). This is consistent with the astrocyte-neuron lactate 

shuttle hypothesis (ANLSH). According to this hypothesis, astrocytes would take 

up glucose from the blood circulation, transform it into lactate, and supply the latter 

to neurons through the monocarboxilate transporters (MCTs), thus providing 

neurons a substrate for energy production (Pellerin et al. 2007). 

 

The use of lactate by neurons is supported by the fact that neurons and astrocytes 

express different isoforms of lactate dehydrogenase (LDH), the enzyme 

responsible for the conversion of lactate into pyruvate. Neurons express 

preferentially LDH1, which is associated with a higher pyruvate-producing capacity, 

while astrocytes express the LDH5 isoform, which is associated with tissues that 

do not consume, but produce, high amounts of lactate (Pellerin et al. 1998). 

Moreover, under resting conditions, astrocytes release ~85% of the glucose they 

consume as lactate. In addition, astrocytes and neurons also differ in the 

expression of monocarboxylate transporters (MCTs): astrocytes predominantly 

express MCT1 and MCT4, which are responsible for lactate efflux, whereas 

neurons express MCT2, specialized in lactate influx (Pierre & Pellerin 2005) (see 

figure 6). All these data support the ANLSH, at least in resting conditions; however, 
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how neuronal metabolism is modified during neurotransmission, as well as the 

preferred substrate in these conditions, still remains elusive. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6: Astrocyte-neuron interaction in energy metabolism. Under resting conditions, 

glucose can be actively used through the PPP in neurons due to the low activity of 

PFKFB3, which is continuously degraded by APC/C-Cdh1. Neurons can thus efficiently 

produce NADPH(H+), necessary for antioxidant glutathione regeneration from its disulfide 

form (GSSG). Astrocytes take up glucose, a part of which is transformed into pyruvate and 

used to fuel the TCA cycle, whereas the rest is transformed into lactate, exported to the 

synaptic cleft, and used as an energy fuel by neurons; in this process, the cellular 

distribution of the monocarboxylate carriers (MCT1/MCT4 and MCT2) and lactate 

dehydrogenase (LDH1 and LDH5) isoforms is critical. Accordingly, neurons can meet their 

energy requirements without compromising the redox detoxification system. 
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1.4. REACTIVE OXYGEN SPECIES (ROS) GENERATION AND 
DETOXIFICATION  
 

1.4.1 ROS GENERATION 
 

Reactive oxygen species (ROS) are produced physiologically.  The main source of 

ROS is the mitochondrial electron transport chain. The leading ROS are 

superoxide anion (O2
.-), hydrogen peroxide (H2O2) and hydroxyl radical (.OH). ROS 

can physiologically regulate protein function and gene expression, as well as cell 

proliferation and differentiation (Halliwell 2011, Rebrin & Sohal 2008).  

 

O2
.- is generated by the donation of a single electron to O2 (Murphy 2009),  largely 

at complexes I and III of the mitochondrial respiratory chain. However, it can also 

be generated by the action of enzymes such as xanthine oxidase, NADPH(H+) 

oxidase, cyclooxygenase or lipoxigenase. O2
.- can be transformed into H2O2  in a 

reaction catalyzed by superoxide dismutase (SOD), or reduce Fe3+ to Fe2+ by the 

Haber-Weis reaction. Fe2+ can be re-oxidized to Fe3+ by the Fenton reaction, 

leading to the formation of O2
- from H2O2 (Temple et al. 2005). Apart from the 

reaction catalyzed by SOD, H2O2 can be generated by the action of other 

enzymes, such as monoamine oxidase (MAO) in the catabolism of dopamine. 

Besides ROS, nitrogen oxidative species, such as peroxynitrite (ONOO−), can be 

spontaneously formed by the reaction of O2
.-  with nitric oxide (see figure 7). 
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Figure 7: ROS generation and detoxification systems in the cell. Abbreviations used: SOD: 

superoxide dismutase; GPx: Glutathione peroxidase; GRx: glutathione reductase; GSH: 

Glutathione; GSSG: oxidized glutathione; O2
.-: superoxide anion; ONOO−: peroxynitrite; 

.OH: hydroxyl radical; H2O2: hydrogen peroxide; .NO: nitric oxide.  ROS generation systems 

are indicated in red, and ROS detoxification systems in green. 

 
1.4.2 ROS DETOXIFICATION SYSTEMS  
 

Cells have many antioxidant systems to counteract the actions of ROS. These 

systems include compounds such as ascorbate or vitamin E, which directly trap 

radicals acting as scavengers, and enzymatic systems (see below). Ascorbate is 

especially abundant in the central nervous system (CNS). Its concentration is 

regulated homeostatically between the intracellular and extracellular 

compartments, and is especially abundant in neurons (Shimizu et al. 1960). 

Vitamin E is present in two-fold higher levels in astrocytes when compared with 

neurons, and protects astrocytes against mitochondrial oxidative damage (Heales 
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et al. 1994). SOD converts O2
.- into H2O2 and is expressed under two different 

intracellular isoforms: manganese superoxide dismutase (MnSOD), that detoxifies 

cells from superoxide released into the mitochondrial matrix, and copper/zinc 

superoxide dismutase (Cu/ZnSOD), that detoxifies cytosolic superoxide. There is 

also an extracellular form of SOD (SOD3) that detoxifies extracellular O2
.-.  Another 

form of H2O2-detoxifying system is catalase, which is placed in peroxisomes.  

 

Besides these, there are additional ROS detoxifying systems using thiols as 

cofactors.  Glutathione (γ-L-glutamyl-L-cysteinyl-glycine, GSH) is the most 

abundant small thiol (0.5-10 nmol/l) in animal cells and tissues, and plays an 

essential role in protecting against oxidative and nitrosative stress. It is synthetized 

de novo in the cytosol by two ATP-dependent consecutive reactions, catalyzed by 

glutamate-cysteine ligase and glutathione sinthetase. Most part of GSH synthesis 

in the brain takes place in astrocytes that liberate it to the extracellular space 

(Hirrlinger et al. 2002). GSH is then transformed into cysteinyl-glycine (Cys-gly), 

that is hydrolyzed by aminopeptidase, generating cysteine and glycine that are 

taken up by neurons, which use them as precursors for GSH biosynthesis (Dringen 

et al. 2001). Despite GSH biosynthesis is exclusively cytosolic, GSH enters 

mitochondria through carriers located in the inner mitochondrial membrane, and 

accounts for a 10-15% of the total cellular GSH (Mari et al. 2009). 

 

Glutathione exerts its antioxidant function as an electron donor for peroxides 

detoxification in reactions catalyzed by glutathione peroxidases (GPxs1-4), which 

reduce H2O2 to H2O, hence oxidizing reduced glutathione (GSH) to its disulfide 

(oxidized) form (GSSG). GPx4 is exclusively located in the mitochondria and has 

an importat role in reducing lipid peroxides (Flohe et al. 1971). An important 

system for H2O2 detoxification are peroxiredoxins (Prxs), that are located both in 

mitochondria and cytosol and require reduced thioredoxin to be re-generated. 

Glutatione can also spontaneously react with different free radicals, such as 

superoxide, hydroxyl radical and nitric oxide, also generating GSSG (Dringen 

2000). GSH can be regenerated from GSSG by reducing GSSG in a NADPH(H+)-

dependent reaction catalyzed by glutathione reductases (GRxs), that are present in 

cytosol and mitochondria (Flohe et al. 2011). Thus, as we will discuss below, 

NADPH(H+) generated in the PPP is essential for glutathione regeneration, an 

essential system for neuronal survival (Herrero-Mendez et al. 2009). 
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2. GLUTAMATERGIC NEUROTRANSMISSION 
 
2.1. GLUTAMATE 
 

Glutamate is the major excitatory neurotransmitter in the mammalian brain and is 

implied in information processing and synaptic plasticity. Compared to other 

neurotransmitters, the levels of glutamate are extremely high in the mammalian 

central nervous system, approaching 5–10 mmol/kg (Butcher & Hamberger 1987); 

these levels are ~1000-fold higher than those of many other important 

neurotransmitters, such as dopamine, norepinephrine, and serotonin. Its 

concentration in the synaptic cleft in resting conditions remains low (~0.6 µM). 

However, during synaptic transmission glutamate is released from the presynaptic 

neuron in a short period of time (1-2 ms), reaching concentrations higher than 100 

μM. These concentrations are restored back to normal levels by the high affinity 

glutamate transporters located in pre and post-synaptic neurons, as well as in the 

adjacent glial cells.  

 
2.2. GLUTAMATE RECEPTORS 
 

The excitatory effects of glutamate are exerted via the activation of three major 

types of ionotropic receptors (AMPA, KAINATE and NMDA) and several classes of 

metabotropic receptors linked to G-proteins (Dong et al. 2009). 

 

2.2.1. METABOTROPIC GLUTAMATE RECEPTORS  
 

Metabotropic glutamate receptors are G-protein-coupled receptors. They are 

classified into 8 subtypes (mGLU1 to mGLU8) that are divided into three groups 

based on their G-protein coupling, molecular structure, amino acid sequence 

homology and pharmacological profile. 

 

Group-I includes mGlu1 and mGlu5; they are coupled to phospholipase C (Tanabe 

et al. 1992, Joly et al. 1995). Activation of these receptors generates inositol-1,4,5-

trisphoshate (InsP3) and diacylglycerol (DAG); InsP3 releases Ca2+ from the 

endoplasmic reticulum and together with DAG activates protein kinase C (PKC) 

respectively. In general, mGlu1 and mGlu5 receptors increase neuronal excitability, 
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so they have been studied as targets to prevent glutamate-mediated 

neurodegeneration. (+)-2-Methyl-4-carboxyphenylglycine, a potent and selective 

antagonist of mGlu1, is neuroprotective in models of excitotoxic death (Bruno et al. 

1999). 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), an inhibitor of mGluR5 

receptors, also prevents degeneration in the 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) mouse model of PD, as it prevents the function of these 

receptors in facilitating NMDA receptors activation (Hsieh et al. 2012). 

 

Group-II and Group-III are preferentially localized in the preterminal region of 

axons; they are negatively coupled to adenylate cyclase. Group-II includes mGlu2 

and mGlu3 (Emile et al. 1996); their activation attenuates glutamate release 

(Mateo & Porter 2007, Grueter & Winder 2005). Group III mGluRs (GluR4, GluR6, 

GluR7, GluR8) also function to restrain glutamate or GABA release form axon 

terminals, preventing over activation of postsynaptic NMDA receptors (Vera & 

Tapia 2012). Actually, endogenous glutamate activates these receptors and 

protects against excitotoxicity (Vera & Tapia 2012). Moreover, a specific agonist of 

mGLUR8 has been shown to reverse motor deficits in prolonged models of PD 

(Johnson et al. 2013). 

 
2.2.2. IONOTROPIC GLUTAMATE RECEPTORS 
 

Ionotropic receptors activated by glutamate are the N-methyl-D-aspartic acid 

(NMDA), α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) and kainic 

acid (KA) receptors. 

 

-AMPA and kainate receptors 
 

AMPA receptors (AMPARs) and kainate receptors are tetrameric cationic channels 

permeable to Na+ and Ca2+. AMPARS are composed by GluA1-A4 subunits that 

mediate fast excitatory synaptic transmission in the mammalian central nervous 

system (Heine et al. 2008). Kainate receptors are composed by five different 

subunits GLUK1, GLUK2, GLUK5, GLUK6 and GLUK7, and  they can be 

presynaptically placed, where they modulate glutamate release (Chittajallu et al. 

1996) or postsynaptically, where they can mediate excitatory neurotransmission 

(Vignes & Collingridge 1997). 

-NMDA receptors 
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NMDA receptors (NMDAR) are cationic channels permeable to Na+, K+, and Ca2+ 

that mediate many neuronal functions including plasticity, synapsis consolidation 

during neuronal differentiation, long term potentiation (LTP), regeneration and 

survival  (McDonald & Johnston 1990, Castellano et al. 2001, Cheng & Ip 2003). 

NMDARs need two different agonists bound simultaneously to open the channel 

pore: glutamate and glycine (Paoletti & Neyton 2007). The NMDAR channel pore is 

blocked in a voltage dependent manner by Mg2+. 

 

NMDARs work as a heterotetramer that contains two NR1 subunits that are 

essential for the functionality of the receptor. They contain a glycine-binding site 

and two NR2 (NR2A-NR2D) subunits that contain the glutamate-binding site. The 

most widely expressed NMDARs contain the obligate subunit NR1 plus either 

NR2B or NR2A or a mixture of the two, but NR3 subunits can also substitute NR2 

in the receptors, making Ca2+ permeability to decrease (Matsuda et al. 2003).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8. Schematic representation of NMDAR structure. NR1 and NR1 subunits are 

represented, as well as MAGUKs proteins to which NR2 subunit binds in its intracellular 

domain (PSD-95, SAP-102, PSD-93). NMDAR present a glycine binding site in its NR1 

subunit and a glutamate binding site in NR2. The channel pore is blocked by Mg2+ 
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In synapses, NMDAR is bound to a multiproteic complex with the carboxyl end of 

NR1 and NR2 subunits (Collins et al. 2006). This complex facilitates localization of 

the receptor in specific areas, such as the postsynaptic density, where it allows the 

coupling with a wide variety of signal transduction cytosolic molecules (Waxman & 

Lynch 2005). Carboxyl end of NR2 binds MAGUKs proteins (membrane associated 

guanylate cyclases), such as PSD-95, SAP-102 and PSD-93. These proteins allow 

others to be located nearby the receptors in such a way that they can be more 

efficiently activated by Ca2+, that is the case of nNOS (neuronal nitric oxide 

synthase) (Aarts et al. 2002). 

 

There is a large body of evidence supporting the hypothesis that synaptic NMDARs 

activate neuroprotecive and trophic pathways, whereas the extrasynaptic ones are 

responsible for excitotoxicity (Kaufman et al. 2012, Hardingham et al. 2002, 

Hardingham & Bading 2010, Puddifoot et al. 2012). Synaptic NMDAR activation 

induces CREB  (cAMP response element binding protein) activity and BDNF (brain 

derived neurotrophic factor), triggering anti-apoptotic signals, while activating the 

extrasynaptic ones has the opposite effects (Hardingham et al. 2002). However, 

recent publications have questioned this statement by demonstrating that 

prolonged synaptic NMDAR activation triggers excitotoxic cell death (Wroge et al. 

2012).  

 

Regardless their location, there is much evidence of a differential function of 

NMDAR depending on their subunit composition, as they have different effects on 

cytosolic calcium accumulation, mitochondrial morphology and MAPK signaling, in 

which NR2B would preferentially trigger neuronal death signals (Choo et al. 2012, 

Paul & Connor 2010).    

  

2.3. GLUTAMATE TRANSPORTERS 
 

There is no evidence for extracellular metabolism of glutamate.  This excitatory 

amino acid is cleared from the extracellular space by a family of Na+-dependent 

‘high-affinity’ transporters. Glutamate transporters are termed GLAST (EAAT1), 

GLT I (EAAT2), EAAC (EAAT3), EAAT4, and EAAT5 (Kanai & Hediger 1992, 

Pines et al. 1992). EAAC and EAAT5 are found exclusively in neurons, whereas 

GLAST and GLTI, the major contributors to glutamate uptake, are glia-specific 
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transporters, posing astrocytes responsible for a major part of glutamate uptake 

and metabolism in the brain (Rothstein et al. 1996).   

 

2.4. GLUCOSE METABOLISM IN GLUTAMATERGIC 
NEUROTRANSMISSION 

 

There is increasing evidence pointing out that glutamatergic stimulation has critical 

consequences on neuronal metabolism. As mentioned before, metabolic 

homeostasis is essential for the maintenance of neuronal redox status and 

survival. Thus, metabolic modifications may have great implications in the 

pathophysiology of neurodegenerative diseases, in which excitotoxic mechanisms 

have been described. 

 
2.4.1. GLUTAMATERGIC NEUROTRANSMISSION STIMULATES 
LACTATE RELEASE BY ASTROCYTES  
 

During glutamatergic neurotransmission, astrocytes remove excess glutamate from 

the synaptic cleft (Rothstein et al. 1996). Glutamate is taken up by astrocytes 

through glutamate transporters, which are Na+-dependent. The subsequent 

increase in intracellular Na+ activates the Na+/K+ ATPase activity, hence 

decreasing the ATP:ADP ratio, which promotes astrocytic glycolysis (Pellerin & 

Magistretti 1994). At the same time, glucose transport in astrocytes is enhanced by 

stimulating GLUT1 transporter in a Na+-Ca2+ dependent manner (Loaiza et al. 

2003, Chuquet et al. 2010, Porras et al. 2008). This up regulation of glycolysis is 

traduced in an increase of lactate production by astrocytes and, according to the 

ANLSH, neurons would take it up and transform it into pyruvate for use as an 

energy source (Pellerin & Magistretti 1994).  

 

2.4.2. GLUCOSE UPTAKE BY NEURONS DURING NMDAR ACTIVATION 
 

How glucose uptake by neurons is affected by neurotransmission is yet a 

controversial issue. Real-time confocal microscopy studies tracing 6-[N-(7-

nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-6-deoxyglucose  (6-NBDG), a non 

metabolizable glucose analog fluorescence probe, indicated that glutamate inhibits 

glucose transport in cultured hipoccampal neurons (Porras et al. 2004). In contrast, 

an increased glucose uptake has been observed by tracing 2-deoxy- [1-
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3H]glucose-6-phosphate accumulation in cerebellar neurons in culture subjected to 

NMDAR stimulation (Bak et al. 2009). These results have been reproduced in 

cortical neurons tracing 6-NBDG (Ferreira et al. 2011). Moreover, the increase in 

nitric oxide levels that occur after stimulation of NMDAR in primary cultured cortical 

and hippocampal neurons triggers an increase in GLUT3 surface expression that is 

accompanied by an increase in glucose uptake (Ferreira et al. 2011), confirming 

the importance of rapid GLUT3 externalization in energy metabolism and 

cytoprotection (Cidad et al. 2004). Although it is important to notice that all these 

studies are performed in neurons in culture, where the possible influence of 

astrocytes is neglected, there is in vivo evidence also supporting these findings. 

Thus, by rat whisker stimulation and imaging of 6-NBDG trafficking by two-photon 

microscopy, during activation of the somatosensory cortex there is an increase in 

glucose uptake both in neurons and astrocytes, although the increase observed in 

astrocytes is much higher (Chuquet et al. 2010).  Accordingly, despite there is still 

some controversy, it seems clear that glutamatergic neurotransmission is 

accompanied by an increase in glucose uptake by both neurons and astrocytes; 

however, the metabolic fate of glucose in each cell type, which does not have to be 

necessarily identical remains unclear. 

 
2.4.3. NMDAR STIMULATION ALTERS ENERGY METABOLISM IN 
NEURONS 
 

Another question that still remains elusive is how neuronal metabolism is modified 

during neurotransmission and the preferential substrate used for meeting the ATP 

needs during this process. Two-photon fluorescence imaging of NADH(H+) on 

hippocampal slides showed evidence of a two-phase metabolic response in which 

neurons exert an early increase in oxidative metabolism followed by activation of 

astrocytic glycolysis (Kasischke et al. 2004). Intererstingly, it is known that 

extracellular lactate levels modulate astrocytic glycolysis (Sotelo-Hitschfeld et al. 

2012), suggesting the existence of a negative feedback regulatory mechanism of 

glucose consumption by astrocytes that may be important for glucose re-

distribution to brain areas or cells where it is needed.  

 

Tracing the fate of [1-13C] or [3-13C]glucose and lactate in astrocytic and neuronal 

cultures showed that, in resting conditions, neurons use lactate preferentially over 

glucose for oxidative metabolism, while astrocytes prefer glucose (Bouzier-Sore et 
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al. 2006, Bak et al. 2006). Interestingly, stimulation of NMDAR in glutamatergic 

neurons in primary culture increases glucose oxidative metabolism, as assessed 

by registering the fate of [1,2-13C]acetyl-CoA derived from either [U-13C]glucose or 

[U-13C] lactate, a measure of the TCA cycle activity  (Bak et al. 2006, 2009). 

Furthermore, glucose resulted to be necessary for maintaining neurotransmitter 

homeostasis (Bak et al. 2006). This increase in glucose oxidative metabolism by 

the TCA in neurons was dependent on the increase in intracellular Ca2+ levels that 

takes place after NMDARs stimulation (Bak et al. 2009, 2012), but the molecular 

mechanisms underlying this process still remain elusive. 

 

2.5. EXCITOTOXICITY  
 

Excitotoxicity is a pathologic process that triggers cell death and occurs when 

NMDAR are over activated. It is related with the pathogenesis of many 

neurodegenerative diseases, like Huntington, AD, PD or Amyotrophic Lateral 

Sclerosis. The mechanisms downstream NMDAR over activation are multiple and 

complex and, despite they have been widely investigated, they are not yet fully 

understood. 

 

2.5.1. EXCITOTOXICITY TRIGGERS Ca2+ OVERLOAD AND CALPAINS 
ACTIVATION  
 

The Ca2+ overload that takes place after NMDARs stimulation plays a critical role in 

the excitotoxic process. Choi, by changing the extracellular ionic environment of 

cortical neurons in primary culture and exposing them to glutamate, described a 

Ca2+-dependent component in excitotoxicity, and concluded that at low glutamate 

exposures, Ca2+ plays a critical role in neuronal death (Choi 1987). He also 

suggested the influence of NMDAR over-activation in this process (Choi 1987). 

 

Apart from the initial increase in cytosolic Ca2+ after NMDAR stimulation, there is a 

so called delayed calcium deregulation that persists after glutamate removal, which 

triggers other effects, such as activation of calpains, a family of Ca2+-dependent 

cysteine proteases (Brustovetsky et al. 2010). Calpains process the full-length 

isoform of tropomyosin-related kinase B (TrkB-FL), a receptor for neurotrophins 

like brain-derived neurotrophic factor (BDNF). This leads to the formation of a 

truncated protein that lacks the tyrosine-kinase domain (TrkB-T1) (Vidaurre et al. 
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2012). This TrkB-FL / TrkB-T1 imbalance is associated with a rat model of focal 

cerebral ischemia, which presents high TrkB-T1 levels and reduction of TrkB-FL 

upon NMDARs overstimulation (Vidaurre et al. 2012). Calpains also trigger the 

proteolytic cleavage of the Na+/Ca2+ exchanger (NCX), the major plasma 

membrane Ca2+ extruding system; this impairs calcium homeostasis and leads to 

neuronal death (Bano et al. 2005, Brustovetsky et al. 2010). This effect can be 

enhanced by a reversal of the NCX that takes place during stimulation of AMPAR 

and that leads to an increase in intracellular Ca2+ and activation of calpains (Araujo 

et al. 2007).  

 

2.5.2. MITOCHONDRIAL DYSFUNCTION AND EXCITOTOXICITY 
 

Mitochondria contribute to prevent excessive cytosolic Ca2+ levels by taking up 

cytosolic  Ca2+ through uniporters located in their inner membrane (Gunter & 

Gunter 1994, White & Reynolds 1997, Gunter & Gunter 2001). However, during the 

excitotoxic process, the increase in Ca2+ cause mitochondrial overload and triggers 

an activation of the permeability transition pore (PTP), that leads to inner 

mitochondrial membrane depolarization and inhibition of ATP synthesis (Wang et 

al. 1994, Khodorov et al. 1996). Inhibition of the oxidative phosphorylation and loss 

of the mitochondrial membrane potential finally lead to increased ROS and 

cytochrome c release, playing a key role in glutamatergic excitotoxicity (Urushitani 

et al. 2001, Luetjens et al. 2000). 

 

Excitotoxicity and oxidative stress also alter mitochondrial fission and fusion, 

leading to fragmented mitochondria, an effect that has been observed in many 

neurodegenerative diseases (Knott et al. 2008, Nguyen et al. 2011). Moreover, 

mutations in optic atrophy type 1 (OPA1), a dynamin-related GTPase that is 

essential for mitochondrial fusion, also trigger NMDAR upregulation, leading to the 

excitotoxic process (Nguyen et al. 2011).  
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2.5.3. OXIDATIVE AND NITROSATIVE STRESS 
 

Oxidative and nitrosative stress takes place when ROS and NOS overload the 

antioxidant defenses of the cell. In excitotoxic processes, when increased 

mitochondrial Ca2+ uncouples the mitochondrial electron transport chain and 

collapses the mitochondrial membrane potential, free electrons are accumulated in 

the mitochondria, and can react with molecular oxygen, producing superoxide 

anion (O2
•-). Besides this, nNOS is localized close to NMDAR by an interaction with 

PSD95. Thus, nNOS is more easily activated by Ca2+ entry through NMDAR. 

Excessive production of nitric oxide (•NO) when NMDAR are over-activated is toxic 

and can react with other ROS, such as O2
•- to produce ONOO-.  

 

All these processes lead to oxidative stress that triggers oxidation of proteins 

(particularly aromatic or cysteine residues), nucleic acids and lipids (Poyton et al. , 

Temple et al. 2005), leading to protein malfunction. Mitochondria are the main 

source of ROS in the cell and thus are more sensitive to oxidative damage, such 

as oxidation of Fe-S clusters of proteins, including some respiratory chain 

complexes and aconitase, mitochondrial DNA mutations (Fukui & Moraes 2008, 

Hekimi et al. 2011) or lipid peroxidation. All these modifications and alterations can 

finally trigger a massive damage that activates macro-autophagy and cell death 

processes (Brand 2011). Specifically, peroxidation of cardiolipin, a mitochondria-

specific phospholipid, leads to mitochondrial membrane permeabilization, release 

of pro-apoptotic factors, finally leading to cell death (Samhan-Arias et al. 2011). 

 

2.5.4. EXCITOTOXIC ACTIVATION OF NMDAR TRIGGERS Cdh1 
HYPERPHOSPHORILATION AND APC/C INACTIVATION  
 

The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase 

that regulates cell cycle progression (Thornton & Toczyski 2006) by targeting cell 

cycle proteins for degradation by the proteasome.  To be active, APC/C needs to 

be bound to the co-activator proteins, Cdc20 or Cdh1, which participate in 

substrate recognition (Visintin et al. 1997) by detecting degradation motifs in the 

target proteins, predominantly the destruction (D) box (RxxLxxxxN) and the KEN 

box (KENxxxN) (Barford 2011). During early mitosis APC/C is activated by Cdc20, 

whereas in late mitosis it binds Cdh1 and controls mitotic exit and G1 maintenance. 

Besides cell cycle progression regulation, it has been shown that glutamate over-
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activation of NMDAR triggers Cdh1 phosphorylation leading to its inactivation, by 

Cdk5. Cdk5 is activated when it binds p25, the proteolytic product of p35  (Lee et 

al. 2000). Upon glutamate NMDAR stimulation, as we have mentioned before, 

there is a Ca2+ overload that leads to calpain activation  (Brustovetsky et al. 2010). 

Calpains transform p35 in p25, thus activating Cdk5 (Lee et al. 2000). Cdk5 

phosphorylates Cdh1 and sequesters it in the cytosol, thus inhibiting APC-Cdh1 

activity leading to the accumulation of its substrates (Jaquenoud et al. 2002, 

Maestre et al. 2008) 

 

Inactivation of the APC/C-Cdh1 complex leads to cyclin B1, a well-known substrate 

of this complex, accumulation, which triggers neuronal apoptotic death (Maestre et 

al. 2008). Interestingly, cyclin B1 accumulates in degenerating brain areas in AD 

disease and stroke, that are pathologic conditions that have been widely 

associated with an excitotoxic neuronal death (Vincent et al. 1997, Wen et al. 

2004) 

 
2.5.5. OVERVIEW ON THE RELATIONSHIP BETWEEN 
EXCITOTOXICITY AND NEURODEGENERATIVE DISEASES  
 

Many evidences in animal models and humans suggest the implication of 

excitotoxicity in the development of neurodegenerative diseases. Early alterations 

in the glutamatergic system have been described in Huntington’s disease, 

including decreased glutamate uptake by astrocytes due to decreased levels of 

GLAST and GLT-1 glutamate transporters (Lievens et al. 2001, Estrada-Sanchez 

et al. 2009), increased responses to NMDA and decreased Mg2+ sensitivity 

(Starling et al. 2005), as well as changes in NMDAR subunits composition. The 

dopaminergic neurons that degenerate in PD are also vulnerable to excitotoxicity, 

and group III metabotropic glutamate receptors agonists have been proved to 

improve akinesia in mice models of the disease (Broadstock et al. 2012). 

Amiothropic lateral sclerosis (ALS) is characterized by the degeneration of motor 

neurons; several data from ALS patients and Cu/Zn-SOD mutant mice, that are a 

well-known animal model of the disease, have associated the development of this 

disease with impaired Ca2+ homeostasis, oxidative stress and mitochondrial 

dysfunction (Kruman et al. 1999) as well as defects in glutamate transport due to 

loss in glutamate transporter GLT-1 (Rothstein et al. 1995, Howland et al. 2002). 

AD is characterized by the presence of amyloid β deposits that can enhance 
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NMDA excitotoxicity by impairing glutamate transporters and calcium regulation 

(Mattson et al. 1992). There are several reports indicating that targets against 

different aspects related to the excitotoxic process could be effective in AD 

treatment, like Ca2+ blocking agents (Weiss et al. 1994, Le et al. 1995) and 

glutamate receptors antagonist. Actually, memantine is the only drug proved to be 

effective for clinical treatment of AD so far. It blocks opened channels associated 

with ionotropic glutamate receptors and its off-rate is fast so it does not accumulate 

and interfere with normal glutamatergic transmission (Lipton 2004, Glodzik et al. 

2008). 
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HYPOTHESIS AND OBJECTIVES 
 

1. Hypothesis 
 

In view of the previously described premises, we hypothesize that glucose should be 

preferentially metabolized through the PPP in neurons in order to generate NADPH(H+) 

for regenerating glutathione. However, to date no unambiguous method to address this 

issue is available. Moreover, NMDAR activation leads to APC/C-Cdh1 complex 

inactivation, and we believe that this should trigger stabilization of PFKFB3. Under these 

circumstances, there would be a metabolic change leading to decreased glucose 

oxidation trough the PPP thus contributing to the oxidative stress and neuronal death 

observed in excitotoxicity. Finally, the fructose-2,6-bisphosphatase novel protein TIGAR 

occurrence in neurons –and possible function therein– is unknown, but it might play key 

role(s) in neuronal metabolism and/or survival yet to be characterized. 

 

2. Objectives 
 

With the aim to address the above-mentioned hypotheses, we planned to elucidate the 

following objectives:  

 

1- To design and establish a suitable method to accurately determine the glycolytic and 

PPP fluxes in attached intact neurons in primary culture. 

 

2- To attempt to quantify the relative contributions of glycolysis and PPP to the overall 

glucose metabolism of neurons.  

 

3- To ascertain whether excess neurotransmission, as induced by over-activation of 

glutamate receptors, triggers PFKFB3 stabilization and changes in glucose metabolism, 

redox status or survival in neurons.  

 

4- To investigate whether TIGAR is expressed in brain cells and, and in such a case, 

whether it plays any role in the regulation of neuronal glucose metabolism and/or 

survival.  
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1. PLASMID CONSTRUCTIONS, AMPLIFICATION AND 
PURIFICATION 
 

1.1. pEGFP-C1-TIGAR PLASMID CONSTRUCTION 
 

Human TIGAR full length cDNA (812 bp, NM_020375) was obtained by PCR using, as 

template, a pcDNA 3.1+ plasmid where it was initially cloned (generous gift from Prof. R. 

Bartrons, University of Barcelona) using the oligonucleotides detailed in table 1; these 

were designed targeting the 5’ and 3’ extremes of TIGAR cDNA flanked by the restriction 

sequences of HindIII in 5’-end and of EcoRI in 3’-end. 

 

OLIGONUCLEOTIDE SEQUENCE 5’  3’ Tm 

Forward + HindIII 

restriction site 
5´-CCCAAGTTGGGCCGCTCGCTTCGCTCTGACTGTTGTC-3´ 

 

81.9ºC 

Reverse + EcoRI 

restriction site 
5´-GGAATTCCCTTAGCGAGTTTCAGTCAGTCCATT-3´ 67.2ºC 

 
Table 1: Oligonucleotides employed in the PCR to obtain TIGAR cDNA. An additional sequence 

for HindIII and EcoRI was added in 5’ and 3’ oligonucleotides respectively (blue). 

 

PCR conditions were 10 min at 95 ºC, 35 cycles of 30 seconds at 95 ºC, 30 seconds at 

60 ºC and 1.5 minutes at 72 ºC. Final extension was carried out for 10 min at 72 ºC. 

 

The PCR product and the pEGFP-C1 plasmid (4.7 kb, Clontech) were then digested for 

1 hour with EcoRI and HindIII enzymes in order to generate cohesive extremes that 

would further facilitate ligation and insertion. Digestion products were finally incubated 

with T4 ligase for 30-45 minutes at room temperature, obtaining the vector named 

pEGFP C1-TIGAR shown in figure 1. The success of the ligation was checked by 

restriction analysis and western blot (obtaining a band at 57 KDa, corresponding to GFP 

(25 KDa) plus TIGAR (32 KDa) molecular weights).  
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Figure 1: pEGFP-C1 vector with human TIGAR cDNA (blue) inserted between HindII and EcoRI 

restriction sites in the MCS.  

 

pEGFPC1-TIGAR vector expresses green fluorescent protein (GFP) fused at TIGAR C-

terminus. This allows the identification of transfected cells and subcellular localization by 

fluorescence microscopy and flow cytometry.   

 

1.2. G6PD, PFKFB3 and mutPFKFB3 PLASMID CONSTRUCTIONS  
 

The complete cDNA that codifies for rat G6PD was inserted in the EcoRI site of the 

expression vector peGFP (Clontech) and sequenced (Sequencing service, University of 

Salamanca) to confirm the correct insertion in reading phase with GFP (Garcia-Nogales 

et al. 2003). 

 

Rat PFKFB3 full-length cDNA (splice variant K6; 1563 bp; accession number BAA21754) 

was obtained, by reverse-transcriptase polymerase chain reaction (RT-PCR), previously 

at our laboratory. PFKFB3 cDNA was fused, at its 5’’-terminus, with the full-length cDNA 

encoding GFP in the pEGFPC1 vector. In order to obtain the mutPFKFB3 construction, 

GFP-PFKFB3 cDNA fusion construct was subjected to site-directed mutagenesis of its 
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KEN-box to AAA using the QuikChange XL site-directed mutagenesis kit (Stratagene, La 

Jolla, CA, USA) (Herrero-Mendez et al. 2009). 

 
1.3. BACTERIAL TRANSFORMATION AND PLASMIDS 
PURIFICATION  
 

E. coli competent cells, strain DH-5α, were used for all bacterial transformations. 

Bacteria culture mediums (LB, LB-agar and 2 x YT) were prepared with bactotriptone, 

yeast extract and agar from DIFCO Laboratories (Detroit, Michigan, USA). 

 

Extraction and purification of the plasmids after the amplification in bacteria was 

performed using the Wizard plus Midipreps system (Promega, Madison, Wisconsin, 

USA). To isolate and purify the cDNA from agarose gels, a commercial kit from Gibco 

BRL (Life Technologies Inc., Barcelona, Spain) was used. UV light is mutagenic, thus, to 

avoid UV light exposure of the gel bands, each sample was loaded in duplicate. Only 

one of the bands was exposed to UV in order to detect it and cDNA was purified from the 

other band. 

 

2. “SMALL INTERFERING RNA” (SIRNA) DESIGN 
 

siRNA against PGI was obtained from Dharmacon Research Inc. (Lafayette, Colorado, 

USA).  The oligonucleotides employed were designed according to the rational design 

criteria of Reynolds (2004) and  Ui-Tei (2004), with the software available at 

Dharmacon’s webpage. 

 

Specificity of these sequences was confirmed by BLAST against the complete genome 

of Rattus norvegicus, Mus musculus and Homo sapiens. siRNA sequences used for 

knockdown experiments are detailed in table 2 (only forward oligonucleotides are 

shown). 
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PROTEIN 
ACCESSION 

NUMBER 
SEQUENCE POSITION 

PFKFB3 NM_057135 5’-AAAGCCTCGCATCAACAGC-3’ 1908-1926 

TIGAR NM_177003 5’-GCGCGGAAAGGATTTCTTT-3’ 475-493 

PGI NM_207192 5’-CCTTACCAGACGTAGTGTT-3’ 1248-1266 

Luciferase  5’- CTGACGCGGAATACTTCGA-3’  

 
Table 2. Sequences used for the siRNA knockdown experiments.  

 

Cells were transfected at 3 days in culture and all siRNA were used at 100 nM, with the 

exception of TIGAR siRNA that resulted to be effective at 20 nM. Experiments were 

performed at day 6, i.e. 72 hours post transfection, as this is was the incubation period at 

which the highest knock down efficiency was obtained. 

 
3. ANIMALS.  
 

Albine Wistar rats and C57BL/6J mice were bred and provided by the Animal 

Experimentation Service of the University of Salamanca. We also performed primary 

cultures from TIGAR KO mice (Cheung et al. 2013) from the animal facility of “The 

Beatson Institue for Cancer Research” (Glasgow, UK). The animals were bred in cages 

and a light-dark cycle was maintained for 12 hours. Humidity was between 45% and 65% 

and temperature between 20ºC and 25ºC. Animals were fed ad libitum with a standard 

solid diet (17 % proteins, 3 % lipids, 58.7 % glucidic component, 4.3 % cellulose, 5 % 

minerals and 12 % humidity) and they had free access to the water all the time.  

 

Gestational stage was controlled by limiting the cohabitation of virgin rats with males to 

one night. At 9:00 hours of the following day, rats that had the presence of 

spermatozoids in the vaginal smear accompanied by epithelial cells from the vagina (that 

are characteristic of a fertile day of the estrus) were isolated. Under these conditions, 

gestational period of the rat is assumed to be 21.7 days. 

 

All animal handlings and procedures are in agreement with the current regulation from 

the European commission 18.06.2007 (2007/526/CE) and Spanish legislation (RD 

1201/2005) related to accommodation and experimental animals care. All the protocols 

performed in this Thesis were approved by Bioethics Committee of the University of 

Salamanca. 
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4. CELL CULTURE 
 

4.1. CORTICAL NEURONS IN PRIMARY CULTURE  
 

Cortical neurons in primary culture were prepared from fetal embryos of 16 days (E16) 

rats or mice according to standard procedure (Almeida et al. 1998). In brief, pregnant 

rats or mice were sacrificed in a CO2 atmosphere and the embryos were removed by 

hysterectomy. Embryos were transferred to a laminar flux cabin (TC48, Gelaire Flow 

Laboratories, McLean, Virginia, USA) in order to maintain the sterile conditions of the 

culture.  Cranium and cerebral hemispheres were removed using scissors, forceps and 

70% ethanol-impregnates handkerchiefs. The brain tissue was then placed in a 

polystyrene Petri plate containing the disintegration solution (116 mM NaCl, 5.4 mM KCl, 

1.01 mM NaH2PO4, 1.5 mM MgSO4, 26 mM NaHCO3, 4 mM glucose, 10 mg/ml phenol 

red, 0,3 % w/v albumin and 20 µg/ml DNAse type I pH 7.2) and very smoothly chopped 

with a scalpel. After this, it was placed in a 50 ml tube (BD, Falcon, Bedford, 

Massachussets, USA) and left for 4 minutes for decantation. The pellet was re-

suspended in trypsinization solution (disintegration solution supplemented with 0.025 %, 

w/v, trypsin) and incubated at 37 ºC for 15 minutes in a thermostatic bath. Trypsinization 

was stopped by adding fetal calf serum (FCS; Roche Diagnostics, Heidelberg, Germany) 

at a final concentration of 10 %,  v/v, and the tissue was centrifuged  at  500 x g during 5 

minutes (Beckman Instruments, Palo Alto, California, USA). 

 

The pellet was re-suspended in 12 ml of disintegration solution and triturated with a 

silicon-coated Pasteur pipette for 9 strokes. After letting the cellular solution stand for 4 

minutes, the supernatant containing the dissociated cells was carefully removed and 

placed in a fresh 50 ml tube. This process was repeated once more in order to increase 

yield. The supernatants were then centrifuged at 500 x g for 5 minutes. The cellular 

sediment was re-suspended, first, in 1ml DMEM (Dulbecco’s Modified Eagle Medium; 

Sigma-Aldrich Chemical Co., Barcelona, Spain), followed by another 19 ml DMEM. 10 μl 

of the cellular suspension was diluted four times and mixed with an equal volume of 

trypan blue 0.4 % (Sigma-Aldrich) for alive cellular counting using a Neubauer chamber 

(Zeiss, Oberkochen, Germany) and a phase contrast microscope (CK30 model, 

Olympus, Japan). 

 

The cell suspension was diluted in culture medium (DMEM supplemented with 10% v/v 

FCS plus penicillin (100 U/ml), streptomycin (100 µg/ml) and amphotericin B (0.25 µg/ml, 
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from Sigma- Aldrich) at a final density of 106 cells/ml and seeded at 250.000 cells/cm2 in 

plastic culture plates (Nunc; Roskilde, Denmark), previously coated with poly-D-lysine 

(10 µg/ml; Sigma-Aldrich). Plates were placed in a thermostatized cell-culture incubator 

at 37ºC (Thermo Forma 310, Thermo-Fisher Scientific, Ohio, USA) and 5% CO2 

atmosphere.  

 

After 2 days in culture, medium was removed and replaced by DMEM supplemented with 

5% v/v horse serum (Sigma-Aldrich) and 20 mM glucose (Sigma-Aldrich). At 4 days in 

culture 10 µM cytosine arabinoside (Sigma-Aldrich) was added to prevent non neuronal 

cells proliferation. Cells were used for the experiments at 6-7 days in culture. Under 

these conditions, neuronal cultures showed 97-99 % purity as assessed by 

immunoreaction with the neuronal marker Map-2 (Almeida et al. 2005). 

 

4.2. ASTROCYTES IN PRIMARY CULTURE  
 

Astrocytes in primary culture were obtained from rat pups from 0 to 24 hours of age 

(Almeida et al. 1998). Animals were cleaned with 70% ethanol, decapitated and the 

whole brain was removed under a laminar flux cabin. Cerebellum and olfactory bulb were 

removed using forceps and cerebral hemispheres were cleaned from meninges and 

blood vessels. The tissue was then placed in a Petri dish with the disintegration solution. 

Cellular suspension was obtained as previously described for neurons.  

 

Cellular suspension was seeded at 250,000 cells/cm2 in DMEM supplemented with 10%, 

v/v, FCS in 175 cm2 culture flasks (BD, Falcon). Cells were incubated in a thermostatic 

cell-culture incubator at 37 ºC and 5% CO2 atmosphere. Culture medium was renewed 

twice per week. After 2 weeks, the culture had an approximate purity of 90-95%, as 

assessed by immunoreaction with the antibody against GFAP (Glial Fibrilliary Acidic 

Protein; Sigma-Aldrich). 

 

4.3. HEK-293T  
 

The cell line obtained from human embryo kidney 293T (HEK293T) was maintained in 

DMEM supplemented with 10% v/v FCS. 24 hours before the experiment cells were 

seeded, at 100,000 cells/cm2, in plates previously coated with 10 µg/ml of Poly-D-Lysine 

(Sigma-Aldrich).  

 



                                                                                                                           MATERIALS AND METHODS
                                                      
 

  
43 

5. CELL TREATMENTS  
 

5.1 CELL TRANSFECTIONS 
 

Cell transfections were performed at day 3 in culture with the cationic reagent 

Lipofectamine 2000TM or Lipofectamine LTX with Plus ReagentTM (Invitrogen, Madrid), 

following manufacturer´s instructions. The conditions for transfection optimal efficiency 

were assessed by quantifying the number of GFP+ cells by fluorescence microscopy. 

Lipofectamine LTX with Plus ReagentTM resulted to be more effective than Lipofectamine 

2000; thus, we decided to use the former for transfections.  

 

Transfection of cells with plasmid vectors was carried out using a final concentration of 

1.6 μg/ml of DNA. In some experiments, we used 0.16 μg/ml of DNA to reduce the 

amount of protein synthetized (Almeida et al. 2010). In these cases, the final DNA 

concentration was also 1.6 μg/ml, which was achieved with the empty DNA vector. The 

correct translation of the DNA plasmids was assessed by western blot, 24 hours after 

transfection. 

 

5.2 NMDA RECEPTORS STIMULATION 
 

Neurons at 6 days in vitro were incubated with 100 μM glutamate (plus 10 μM glycine) or 

100 μM NMDA (plus 10 μM glycine) in buffered Hanks’ solution (134.2 mM NaCl, 5.26 

mM KCl, 0.43 mM KH2PO4, 4 mM NaHCO3, 0.33 mM Na2HPO4 2H2O, 20 mM HEPES, 4 

mM CaCl2 2H2O, 5.5 mM glucose, pH 7.4), for 15 min. Where indicated, incubations 

were performed in the presence of 10 μM MK-801 (Sigma), a highly selective non-

competitive NMDA receptor antagonist, which was added 5 minutes before incubation 

with glutamate or NMDA. After 15 minutes, Hank´s media was removed and replaced by 

culture medium (DMEM; 5% v/v HS, 20 mM glucose), and neurons were further 

incubated for the indicated time periods.  
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5.3 INHIBITION OF PPP ACTIVITY AND MITOCHONDRIAL 
PYRUVATE UPTAKE.  
 
To inhibit PPP activity, we used dehydroepiandrosterone (DHEA), a potent 

noncompetitive inhibitor of glucose-6-phosphate dehydrogenase (G6PD), the rate 

limiting enzyme of the PPP. DHEA (Sigma D-5297) was dissolved in ethanol at 1 mM 

and used at a final concentration of 1 μM (Filomeni et al. 2011, Frolova et al. 2011). 

Controls received the same volume of the vehicle. 

 

To inhibit mitochondrial pyruvate uptake, we used α-ciano-3-hydroxycinnamate (HCN) 

(Sigma C-2020), which was dissolved in H2O at 50 mM and used at a final concentration 

of 0.1 mM, a concentration that specifically inhibits mitochondrial -not plasma 

membrane- pyruvate transport (Alvarez et al. 2003). 

 

6. DETERMINATION OF Ca2+ UPTAKE  
 

To estimate the intracellular Ca2+ dependent changes by NMDAR stimulation in cortical 

neurons in primary culture, we used the fluorescent probe Fura-2 (acetoxymethyl-

derivative; Life Technologies, Eugene, OR, USA). Fura-2 is a UV-excitable fluorescent 

calcium indicator. Upon calcium binding with Fura-2, the maximum fluorescence 

excitation shifts from 363 nm (Ca2+-free) to 335 nm (Ca2+-saturated), while the maximum 

fluorescence emission remains unchanged at ~510 nm. 
 

Neurons seeded in 96-well plates (Nunc) were, at 6 days, incubated with Fura-2 (2 mM; 

dissolved in dimethyl sulphoxide (DMSO)) for 40 min in DMEM at 37 ºC. Cells were then 

washed and further incubated with standard buffer (140 mM NaCl, 2.5 mM KCl, 15 mM 

Tris-HCl, 5 mM D-glucose, 1.2 mM Na2HPO4, 1 mM MgSO4 and 1 mM CaCl2, pH 7.4) for 

30 min at 37 ºC. Finally, the standard buffer was removed and experimental buffer (140 

mM NaCl, 2.5 mM KCl, 15 mM Tris-HCl, 5 mM D-glucose, 1.2 mM Na2HPO4 and 2 mM 

CaCl2, pH 7.4), either in the absence or in the presence of MK801 (10 μM), was added.  

 

Fluorescence emissions at 510 nm, after excitations at 335 and 363 nm, respectively, 

were recorded at 1 second intervals in a Varioskan Flash (Thermo Fischer, Vantaa, 

Finland) spectrofluorometer at 32 ºC. After approximately 10 seconds, glutamate (100 

μM) or NMDA (100 μM) (plus 10 μM glycine) was injected, and emissions were further 

recorded for 50 more seconds. Ca2+-dependent fluorescence changes were estimated by 
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representing the ratio of fluorescence emitted at 510 nm obtained after excitation at 335 

nm divided by that at 363 nm (F335/F363). Background subtraction was accomplished 

from emission values obtained in Fura-2-lacking (DMSO-containing) neurons. In 

preliminary experiments, the Ca2+ specificity of the measurements was tested in Ca2+-

free experimental buffer containing 1 mM ethylene glycol tetraacetic acid (EGTA), which 

fully prevented the changes in 510 nm emissions.  

 

7. ELECTROPHORESIS AND PROTEIN IMMUNODETECTION 
(WESTERN BLOT)  
  

To obtain total cell protein extracts, cells were washed with PBS and lysed in RIPA buffer 

(1% sodium dodecylsulphate, 10 mM ethylene diamine tetraacetic acid (EDTA), 1 % v/v 

Triton Tx-100, 150 mM NaCl, 10 mM Na2HPO4, pH 7.0), supplemented with phosphatase 

(1 mM Na3VO4, 50 mM NaF) and protease (100 μM phenylmethylsulfonyl fluoride 

(PMSF), 50 µg/ml aprotinine, 50 µg/ml leupeptine, 50 μg/ml pepstatin, 50 μg/ml anti-

papain, 50 μg/ml amastatin, 50 μg/ml bestatin and 50 μg/ml soybean trypsin inhibitor) 

cocktail inhibitors,  and boiled for 5 min. Extracts were then centrifuged at 13,000 x g for 

10 minutes and the supernatant transferred to a new tube. Protein concentration was 

determined using the commercially available BCA protein assay kit (Pierce, Rockwell, 

Illinois, USA). 

 

Aliquots of the cell extracts and a molecular weight marker (PageRuler TM Plus 

Prestained Proein Ladder, Thermo Scientific) were loaded in a sodium dodecyl sulfate 

(SDS) polyacrylamide gel (acrilamide/bisacrilamide 29/1; BioRad Labortories S.A., 

Alcobendas, Madrid) and subjected to vertical electrophoresis (MiniProtean, Bio-Rad, 

Hercules, CA, USA). Proteins were transferred to nitrocellulose membranes (Hybond®, 

Amersham Biosciences), blocked with 5% w/v low-fat milk in TTBS (20 mM Tris, 500 mM 

NaCl and 0,1 % v/v Tween 20,  pH 7.5) for 1 hour at room temperature, and incubated 

with the desired primary antibody (see table 3) over night at 4 ºC. GAPDH was used as 

loading control.  

 

The following day, membranes were washed 3 times with TTBS and incubated with the 

secondary antibody, conjugated with the horseradish peroxidase (HRP), in 2% w/v 

bobine serum albumin (BSA) in TTBS for 1 hour at room temperature.  
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Signal was detected with the enhanced chemiluminescence kit (Pierce, Thermo 

Scientific, Waltham, MA, USA) by exposing membranes on a Kodak XAR-5 film (Sigma-

Aldrich). For quantification, auto radiographies were scanned and the bands were 

analyzed using image treatment software (NIH Image, Wayne Rasband, National 

Institutes of Health, Bethesda, Maryland, USA). Values were expressed as the target 

protein/ GAPDH band intensities ratio.  

 

PROTEIN PRIMARY ANTIBODY DILUTION 
SECONDARY 

ANTIBODY 
DILUTION 

PFKFB3 
Novus Biologicals 

(H00005209-M08) 
1/1000 

Mouse Anti-IgG Bio-

Rad 
1/10000 

TIGAR 
Lifespan Biosciences         

(LB-B462) 
1/1000 

Rabbit Anti-IgG Bio-

Rad 
1/10000 

PGI 

PGI Santa Cruz 

Biotechnology (sc-

30392) 

1/500 
Goat Anti- IgG Santa 

Cruz Biotechnology 
1/10000 

GAPDH 
Life technologies (Cat# 

4300) 
1/40000 

Mouse Anti-IgG Bio-

Rad 
1/10000 

G6PD Sigma (A9521) 1/500 
Rabbit Anti-IgG Bio-

Rad 
1/10000 

GFP Abcam (ab290) 1/2000 
Rabbit Anti-IgG Bio-

Rad 
1/10000 

Cdh1 Dr. J. Gannon 1/20 
Mouse Anti-IgG Bio-

Rad 
1/10000 

Phospho 

serine 
Invitrogen (61-8100) 1/500 

Rabbit Anti-IgG Bio-

Rad 
1/10000 

 
Table 3. Antibodies used for western blot immunodetection.  

 
8. PROTEIN IMMUNOPRECIPITATION.  
 

To obtain total cell protein extracts, cells were washed with PBS and lysed in RIPA buffer 

(1% sodium dodecylsulphate, 10 mM ethylene diamine tetraacetic acid (EDTA), 1 % v/v 

Triton Tx-100, 150 mM NaCl, 10 mM Na2HPO4, pH 7.0), supplemented with phosphatase 
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(1 mM Na3VO4, 50 mM NaF) and protease (100 μM phenylmethylsulfonyl fluoride 

(PMSF), 50 µg/ml aprotinine, 50 µg/ml leupeptine, 50 μg/ml pepstatin, 50 μg/ml anti-

papain, 50 μg/ml amastatin, 50 μg/ml bestatin and 50 μg/ml soybean trypsin inhibitor) 

cocktail inhibitors,  and boiled for 5 min. Extracts were then centrifuged at 13,000 x g for 

10 minutes and the supernatant transferred to a new tube. Protein concentration was 

determined using the commercially available BCA protein assay kit (Pierce, Rockwell, 

Illinois, USA). 

 

50 μg of proteins were diluted in a final volume of 200 μl RIPA and incubated with anti-

Cdh1 antibody at 1/10 dilution over night at 4 ºC. The following day, 15 μl of sepharose A 

(0.12 g/ml; GE Healthcare) were added to each sample, and incubated for 1 hour at 4 

ºC. The samples were then centrifuged (1 min, 4000 rpm) and washed 3 times with 

RIPA. Pellet was re-suspended in loading buffer and subjected to the same protocol as a 

normal western blot. 

  

9. REVERSE TRANSCRIPTION-PCR (RT-PCR).  
 

Total RNA was purified from neurons using a commercially available kit (Sigma, Saint 

Louis, MO, USA). PFKFB3 mRNA expression was analyzed in a 4.5% agarose 

(Nusieve) gel electrophoresis after RT-PCR using the oligonucleotides detailed in table 

4.  

OLIGONUCLEOTIDE SEQUENCE 5’  3’ Tm 

PFKFB3 forward 5’-CCAGCCTCTTGACCCTGATAAATG-3’ 57.8ºC 

PFKFB3 reverse 5’-TCCACACGCGGAGGTCCTTCAGAT-3’ 64.6ºC 

GAPDH forward 5’-CTGGCGTCTTCACCACCAT-3’ 53.0ºC 

GAPDH reverse 5’-AGGGGCCATCCACAGTCTT-3’ 53.1ºC 

 
Table 4. Oligonucleotides employed in PFKFB3 RT-PCR.   

 

Reverse transcription was performed at 48 ºC for 50 min, and PCR conditions were 10 

min at 95 ºC, 35 cycles of 1 min at 95 ºC, 1 min at 58 ºC and 30 s at 68 ºC. Final 

extension was carried out for 10 min at 72 ºC. In no case was a band detected by PCR 

without reverse transcriptase. 
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10. FLOW CYTOMETRIC ANALYSIS OF APOPTOTIC CELL 
DEATH  
 

Allophycocyanin (APC Ex/Em 650/660 nm) conjugated annexin-V and 7-

aminoactinomycin D (7-AAD) (Becton Dickinson Biosciences, San Jose, CA, USA) were 

used to quantitatively determine the percentage of apoptotic neurons by flow cytometry. 

In apoptotic cells, the membrane phospholipid phosphatidylserine (PS) is translocated 

from the inner to the outer leaflet of the plasma membrane. Annexin V is a protein that 

has a high affinity for PS and binds cells with exposed PS. 7-AAD is a nucleic acid dye 

that is used as an indicator of necrotic cells. 

 

After transfection, cells were carefully detached from the plate with EDTA tetrasodium 1 

mM and incubated with annexin V- APC and 7-AAD in binding buffer (0.1 M Hepes, 1.4 

M NaCl, 25 mM CaCl2) following the manufacturer´s instructions. After 15 minutes of 

incubation, GFP, annexin V-APC and 7-AAD signals were detected in channels FL1, FL4 

and FL3 respectively in a FACScalibur (BD, Bioscences) flux cytometer and analyzed 

using CellQuestTM PRO and Paint-A-Gate TM PRO (BD Bioscences) software. Only 

annexin V-APC-stained cells that were 7-AAD-negative were considered apoptotic. 

 

 

 

 

 
 

 

 

 

 

 

 
 
 

 

 

 

Figure 2: Total cell population 

stained with 7AAD and APC-

annexine acquired in the 

cytometer. Only annexin V-APC-

stained cells that were 7-AAD-

negative were considered apoptotic 

(green). 
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11. DETECTION OF REACTIVE OXYGEN SPECIES (ROS) 
 

ROS detection was performed using MitoSox-RedTM (Invitrogen), a fluorogenic marker 

that selectively binds superoxide anion in live cells mitochondria, exhibiting red 

fluorescence when oxidized. 

 

Neurons were incubated with 2 μM MitoSox-RedTM  in DMEM for 30 min, washed with 

PBS and carefully detached from the plate with 1 mM EDTA tetrasodium. MitoSox-RedTM 

fluorescence was then assessed by flow cytometry in a FACScalibur flux cytometer and 

analyzed using CellQuestTM PRO and Paint-A-Gate TM PRO (BD Bioscences) software. 

 
12. DETERMINATION OF METABOLITES  
 
12.1. D-GLUCOSE  
 

D-Glucose in the buffer used for PPP and glycolytic flux determination was measured 

spectrophotometrically reading the increase in NADPH(H+) absorbance at 340 nm 

produced in two consecutive reactions, catalyzed by hexokinase and glucose-6-

phosphate dehydrogenase (G6PD) (Roche diagnostics Corporation, Mannheim, 

Germany) after 10 minutes incubation (Bergmeyer et al. 1974).  

 

 

 

 

 

 

 

 

Reaction buffer was: 2 U/ml Hexokinase, 1 U/ml G6PD, 0.38 mM ATP, 0.38 mM NADP+, 

3.8 mM MgCl2 and 38.5 mM Tris-HCl pH 8 
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12.2. L-LACTATE  
 

L-Lactate was measured spectrophotometrically according to the method of Gutmann 

and Wahlefeld (1974). The increase in the absorbance of NADH(H+) produced in the 

reaction catalyzed by lactate dehydrogenase (LDH, Roche) was measured in a 

Varioskan Flash (Thermo Fischer, Vantaa, Finland) spectrofluorometer  at 340 nm after 

1 hour incubation. 

 

To assess extracellular lactate concentration, an aliquot of the cell culture or 

experimental buffer was obtained after 1.5 h of incubation with the cells. To assess 

intracellular lactate concentration, neurons were lysed in 0.6 M NaOH and the resulting 

extract de-proteinized with the same volume of 1% w/v ZnSO4. 

 

The reaction buffer was 250 mM glycine, 500 mM hydrazine, 1 mM EDTA, 1 mM NAD+, 

22.5 U/ml LDH (pH 9.5). 

 

 

 

 
 
 
12.3. GLUCOSE-6-PHOSPHATE (G6P)  
 

G6P was measured spectrophotometrically by determining the increase in NADPH(H+)  

absorbance at 340 nm produced in the reaction  catalyzed by G6PD. Neurons were 

lysed in 0.6 M NaOH and the resulting extract de-proteinized with the same volume of 

1% w/v ZnSO4 

 

The reaction buffer consisted of 0.2 M triethanolamine, 5 mM MgCl2, 0.2 mM NADP+, 

0.17 U/ml G6PD, pH 7.6.  
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12.4. GLUTATHIONE  
 

The method is based on GSH oxidation at the expense of DTNB (5,5’-ditio-bis-acid 2-

nitrobenzoic) (Sigma-Aldrich), that is reduced to TNB  (λmax= 405 nm). The just-formed 

GSSG is then re-generated to GSH at the expenses of NADPH(H+) and glutathione 

reductase. This is, therefore, a cyclic reaction which speed is directly dependent on the 

amount of total glutathione (GSx).  

 

Cells were washed with ice-cold PBS, lysed in 1 ml of 1% (w/v) sulfosalicilic acid (SSA, 

Sigma) per 106 cells and centrifuged at 13,000 x g for 5 minutes. The supernatants were 

then placed in a fresh tube in order to determine total glutathione content. An equal 

volume of 0.1 M NaOH was added to the same amount of cells to assess protein 

concentration. The quantification of GSx was made by extrapolating the sample slope 

values to the standard curve (0-50 μM GSSG in 1% w/v SSA). Samples were registered 

for a 10 minutes (20 iterations) period at 405 nm. 

 

 

 

 

 

 

 

 

 

 

 

To determine oxidized glutathione (GSSG), samples or GSSG standards were incubated 

with 2-vinylpiridine plus 0.2 mM Tris for 1h at 4 ºC. This reaction protects the sulfhydryl 

group of GSH by forming a thioether. Thus, GSH does not react in the determination 

assay, and only GSSG is measured in these samples. Absorbance was recorded at 405 

nm for a 10 minutes (20 iterations) period in a Varioskan Flash (Thermo Fischer, Vantaa, 

Finland) spectrofluorometer. The sample slope values were extrapolated to the standard 

curve (0-5 μM GSSG in 1% w/v SSA). Finally, reduced glutathione concentration (GSH) 

was calculated from the formula GSx=GSH+2GSSG, according to Tietze (1969). 
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The reaction buffer consisted of 0.4 mM NADPH(H+) (Sigma-Aldrich), 1 mM EDTA, 0.3 

mM DTNB, 0.1 M sodium phosphate buffer pH 7.5 and 1U/ml glutathione reductase 

(Sigma-Aldrich). 

 
12.5. FRUCTOSE-2,6-BISPHOSPHATE  
 

F2,6P2  concentration was determined spectrophotometrically according to the method 

described by Van Schaftingen (1982). The method consists of measuring the decrease 

of NAD+ absorbance at 340 nm every 10 minutes in four consecutive reactions, the first 

catalyzed by the phosphofructokinase-pyrophosphate (PPi-PFK; Sigma-Aldrich), the 

second catalyzed by aldolase, the third by TIM and the last one catalyzed by glicerol-3-

phosphate dehydrogenase.   

 

 

 

 

 

 

 

 

 

 

 

 

Cells were smoothly detached from the plates with 1 mM EDTA tetra-Na+ and 

centrifuged at 500 x g for 5 minutes. The pellet was then lysate with 0.1 N and 

centrifuged at 4 ºC (20,000 x g, 20 minutes). An aliquot of the homogenate was used for 

protein determination; the rest was heated at 80 ºC during 5 minutes and centrifuged 

again (20,000 x g, 20 minutes). The supernatant was then used for F2,6P2 

determination.  

 

The reaction buffer consisted of: 0.1 M Tris-HCl, 5 mM MgCl2, 2 mM F6P, 0.3 mM 

NADH(H+), 0.45 U/ml aldolase, 5 U/ml TIM, 1.7 U/ml glycerol-3-phosphate 

dehydrogenase, 0.01 U/ml PPi-PFK (pH 8). 

 

 

Glycerol-3-phosphate 
Glycerol-3P-dehydrogenase 

TIM 

Aldolase 
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13. PGI ACTIVITY DETERMINATION 
 

PGI activity was determined spectrophotometrically by determining the increase in 

NADPH(H+) absorbance at 340 nm every 30 seconds for 5 minutes in total. Cells were 

detached with PBS and centrifuged at 500 x g 5min. They were then re-suspended in 

lysis buffer (100 mM Tris-HCl, 7 mM MgCl2; pH 7.6), lysated with 3 cycles of 

freeze/thawing, centrifuged at 12,000 x g for 5 minutes more and the supernatant stored 

at -80 ºC for PGI determination. 

 

The reaction buffer consisted of 100 mM Tris-HCl, 7 mM  MgCl2, 0.8 mM NADP+, 0.5 U 

G6PD, 4 mM F6P.  

 

Before adding F6P, the samples and the rest of the components of the buffer were 

incubated in order to let the G6P present in the sample consume. 

 

 

 
 
 
 
14. PFK-1 ACTIVITY DETERMINATION 
 

PFK-1 activity was determined spectrophotometrically by determining the decrease of 

NADH(H+) absorbance at 340 nm every 10 seconds for at least 3 minutes in four 

consecutive reactions, the first catalyzed by the phosphofructokinase present in the 

sample, the second catalyzed by aldolase, the third by TIM and the last one catalyzed by 

the glicerol-3-phosphate dehydrogenase. 

 

Cells were detached from the plate with PBS and centrifuged at 500 x g 5min. They were 

then re-suspended in storage buffer (20 mM KHPO4, 0.1 mM EDTA 20% glycerol; 10 

mM DTT, 0.1 mM PMSF, pH 7.4), lysed with 3 cycles of freeze/thawing, centrifuged at 

12,000 x g for 5 minutes more and the supernatant stored at -80 ºC for PFK-1 

determination. 
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The reaction buffer consisted of: 0.1 mM fructose-6-phosphate, 50 mM imidazole, 1 mM 

MgCl2, 0.1 mM NADH(H+), 1 mM ATP, 1 μM fructose-2,6-bisphosphate, 0.45 U/ml 

aldolase, 5 U/ml TIM, 1.7 U/ml glycerol-3-phosphate dehydrogenase (pH 7.4).  

 

 
 
 

 

 

 

 

 

 

 

15. GLYCOLYTIC FLUX ASSESMENT 
 

The glycolytic flux was determined in attached cells by determining the production of 
3H2O from D-[3-3H]glucose in the reaction catalyzed by aldolase. To do so, cells were 

seeded at 250,000 cells/cm2 in the bottom of 25 cm2 flasks. At day 6 in culture, medium 

was replaced by a Krebs-Elliott buffer(11 mM Na2HPO4, 122 mM NaCl, 3.1 mM KCl, 0.4 

mM KH2PO4, 1. 2 mM MgSO4, 1.3 mM CaCl2; pH 7.4) supplemented with 5 mM D-

glucose and in the presence of 5 μCi/ml of D-[3-3H]glucose. Before sealing the flask with 

a rubber cap, a 1.5-ml Eppendorf tube containing 1 ml of water (for 3H2O trapping) was 

fixed inside the flask by holding it from the flask tab using a rib (see figure 3). In order to 

ensure an adequate O2 supply throughout incubation period, the atmosphere of the 

flasks was gassed with an O2:CO2 (95:1) mixture for 20 seconds, before the flasks were 

sealed. In preliminary experiments (not shown), we observed that 3H2O release was 

linear with time up to 90 minutes, thus, flasks were incubated in a thermostatic orbital 

shaker for 90 minutes. After the incubation period, reaction was stopped by adding 0.2 

ml of 20% w/v perchloric acid and flasks were incubated for another 96 hours to allow 

equilibration of 3H2O.  Results were expressed as nmol of D-[3-3H]glucose turned into 
3H2O per minute and per mg protein. 

 

Glycerol-3-phosphate 
Glycerol-3P-dehydrogenase 

TIM 

Aldolase 
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The efficiency of 3H2O trapping in the eppendorf tube was determined to be a 28%.  To 

do so, known μCi of 3H2O were added to the experimental buffer in the bottom of the 

flask. Samples were then incubated for 90 minutes and further left stabilizing for 96 

hours after perchloric acid addition. Total μCi in the eppendorf tube where then 

measured for calculating the percentage of 3H2O trapped, which was taken in account for 

the calculations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure3. Schematic representation of the method for PPP and glycolytic flux determination in 

attached cells. Cells were seeded at 250,000/ cm2 on the bottom of the flask. At day 6 in culture 

the medium was removed and replaced by experimental buffer plus D-[3-3H]glucose for glycolytic 

measurements or D-[1-14C]glucose or D-[6-14C] for PPP measurements. Hiamine (PPP) or H2O 

(glycolysis) was added in the central well. The flask was then supplied with a O2:CO2 (95:1) 

mixture and sealed with a rubber stopper. After 90 minutes the reaction was stopped by injecting 

0.2 ml of 20% w/v perchloric acid. 

 

16. PENTOSE-PHOSPHATE PATHWAY (PPP) FLUX 
MEASUREMENTS 
 

The PPP was measured in attached cells by determining the difference of 14 CO2 

produced from D-[1-14C]glucose, metabolized both in the tricarboxylic acid cycle and 6-

phosphogluconate dehydrogenase reaction in the PPP and the 14CO2 produced from D-

[6-14C]glucose, metabolized only in the tricarboxylic acid cycle, in the reactions catalyzed 
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by isocitrate dehydrogenase and α-ketoglutarate dehydrogenase (see figure 4). To do 

so, cells were seeded at 250,000 cells/cm2 in the bottom of 25 cm2 flasks. At day 6 in 

culture, medium was replaced by a Krebs–Elliott buffer(11 mM Na2HPO4, 122 mM NaCl, 

3.1 mM KCl, 0.4 mM KH2PO4, 1. 2 mM MgSO4, 1.3 mM CaCl2; pH 7.4) supplemented 

with 5 mM D-glucose and in the presence of  0.5 μCi/ml of either  D-[1-14C]glucose or D-

[6-14C]glucose. Before sealing the flask with a rubber cap, a 1.5-ml Eppendorf tube 

containing 0.8 ml of benzetonium hidroxyde (Sigma-Aldrich)  for 14 CO2 trappping was 

fixed inside the flask by holding it from the flask tab using a rib (see figure 3).  In order to 

ensure an adequate O2 supply throughout incubation period, the atmosphere of the 

flasks was gassed with an O2:CO2 (95:1) mixture for 20 seconds, before the flasks were 

sealed. In preliminary experiments (not shown), we observed that 14CO2  release was 

linear with time up to 90 minutes, thus, flasks were incubated in a thermostatic orbital 

shaker for 90 minutes. After the incubation period, reaction was stopped by adding 0.2 

ml of 20% w/v perchloric acid and flasks were incubated for another 90 minutes to allow  
14CO2 trapping by the benzetonium hydroxide.  Results were expressed as nmol of 

glucose turned into 14CO2 per minute and per mg protein. 

 

The efficiency of 14CO2 trapping by the benzetonium hydroxide was determined to be a 

75%. To do so, known μCi of NaH14CO3 were added to the experimental buffer in the 

bottom of the flask. Samples were then incubated for 90 minutes and further left 

stabilizing for 90 minutes more after perchloric acid addition. Total μCi in the eppendorf 

tube where then measured for calculating the percentage of 14 CO2 trapped, which was 

taken in account for the calculations. 
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Figure 4. Schematic representations of the fate of the radiolabeled carbons used for the PPP flux 

assessment. D-[1-14C] glucose is decarboxylated in the reaction catalyzed by 6-

phosphogluconate dehydrogenase. D-[6-14C] glucose that enters PPP is transformed back into 

GAP or F6P in the non-oxidative branch of PPP. D-[6-14C] glucose and D-[1-14C] glucose can also 

enter glycolysis. After their transformation in DHAP and GAP they are indistinguishable and will 

be further decarboxylated in the different turns of the TCA in the reactions catalyzed by isocitrate 

dehydrogenase and α-ketoglutarate dehydrogenase.  
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17. IMMUNOCYTOCHEMISTRY  
 
Neurons were grown on glass coverslips. At day 6 in culture they were fixed with 4% 

paraformaldehyde (v/v) in PBS for 20 min and washed with phosphate buffered saline 

(PBS, 136 mM NaCl, 2.7 mM KCl, 7.8 mM Na2HPO4 2H2O, 1.7 mM KH2PO4 pH 7.4). 

They were then incubated in 5% goat serum, 1% BSA PBS-Tx 0.2% for 1h at room 

temperature. Afterwards they were incubated with the TIGAR primary antibody in 2% 

goat serum, 1% BSA, PBS-Tx 0.2% overnight at 4ºC. They following day they were 

washed with PBS-Tx 0.2% and incubated with the secondary antibody (rabbit anti IgG 

(H+L) conjugated with Alexa 488, Molecular Probes, Invitrogen, Ref A11008 at 1/500 

dilution) and the nuclear marker either DAPI (Sigma, Ref D9542, 1/1000) or TOPRO-3 

(Invitrogen, Ref T3605, 1/1000) in 2% goat serum, 1% BSA, PBS-Tx 0.2% for 1 hour at 

room temperature. Glass coverslips were then placed on a glass slide using SlowFade® 

(Molecular Probes, Oregón, USA) in order to avoid fluorescence loss. Confocal 

microscopy images were obtained using a Leica SP5 microscope (DMI-6000B model; 

Leica Microsystems GmbH, Wetzlar, Germany) and processed with photoshop cs5 

software. 

 

 

18. CONFOCAL MICROSCOPY OF TRANSFECTED CELLS. 
 

Neurons were grown on glass coverslips. After transfections and treatments they were 

fixed with 4% paraformaldehyde (v/v) in PBS for 20 min and incubated with DAPI (30 

μM; Sigma) for 10 minutes at room temperature. Glass coverslips were then placed on a 

glass slide using SlowFade® (Molecular Probes, Oregón, USA) in order to avoid 

fluorescence loss. Confocal microscopy images were obtained using a Leica SP5 

microscope (DMI-6000B model; Leica Microsystems GmbH, Wetzlar, Germany) and 

processed with photoshop cs5 software. 

 
19. STATISTICAL ANALYSIS. 
 

Measurements from individual cultures were always carried out in triplicate. The results 

are expressed as mean ± S.E.M. (standard error of the mean) values for three different 

culture preparations. Statistical analysis of the results was performed by one-way 
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analysis of variance (ANOVA), followed by the least significant difference multiple range 

test. In all cases, P<0.05 was considered significant. 
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4. RESULTS  
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1. GLYCOLYTIC FLUX INCREASES BY INHIBITING PENTOSE-
PHOSPHATE PATHWAY (PPP) OR MITOCHONDRIAL PYRUVATE 
UPTAKE IN NEURONS. 
 

In order to ascertain whether glucose metabolism is dynamic in neurons, we first set up a 

new protocol aimed to investigate glucose metabolizing pathways in intact, cultured 

primary neurons. The rate of glucose metabolized through glycolysis was measured by 

determining the rate of 3H2O production from [3-3H]glucose, a process that occurs at 

aldolase, i.e. the glycolytic step that immediately follows the rate-limiting, PFK1-

catalyzed reaction. Using this approach, we estimated that neurons, under resting 

conditions, metabolized glucose through glycolysis at a rate of ~1.2 nmol/min x mg 

protein (Fig. 1). Incubation of neurons with dehydroepiandrosterone (DHEA; 1 μM), a 

well-known inhibitor of G6PD –the rate-limiting step of PPP–, acutely increased ~100% 

the rate of glycolysis (Fig. 1). Incubation of neurons with 4-hydroxy-α-cyanocinnamate 

(HCN; 0.1 mM), a compound that, at the concentration used selectively inhibits 

mitochondrial uptake of pyruvate, also acutely increased ~150% the rate of glycolysis 

(Fig. 1). Thus, the flux of glucose metabolism through glycolysis in neurons is a process 

amenable to regulation. Moreover, these results suggest that a considerable proportion 

(~50%) of glucose entering neurons is metabolized through the PPP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Glycolytic rate is significantly 

increased upon DHEA and HCN treatments. 

Neurons at day 6 in culture were incubated 

in experimental buffer containing 5 μCi/ml of 

D-[3-3H] glucose plus either 1 μM DHEA or 

0.1 mM HCN. Glycolytic rate was assessed 

by the determination of [3-3H] glucose 

incorporation into 3H2O during the 90 

minutes incubation of the experiment. 

*P<0.05 (ANOVA)(n=3). 
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2. THE RATE OF GLUCOSE OXIDIZED THROUGH THE PPP IS 
INHIBITED BY DHEA AND NOT BY HCN. 
 

At the light of the previous results, we next aimed to directly determine the rate of 

glucose oxidized through the PPP in neurons. To do so, intact primary neurons in culture 

were incubated either in the presence of [1-14C]glucose or [6-14C]glucose, and the 14CO2 

released was quantitatively trapped and measured. 14CO2 released from [1-14C]glucose 

reflects 6PG decarboxylation at 6-phosphogluconate dehydrogenase (6PGD) plus 

acetyl-CoA decarboxylation at isocitrate dehydrogenase and α-ketogluratae 

dehydrogenase of the TCA. However, 14CO2 released from [6-14C] glucose exclusively 

reflects acetyl-CoA decarboxylation at isocitrate dehydrogenase and α-ketogluratae 

dehydrogenase of the TCA. Thus, the difference between 14CO2 released from [1-
14C]glucose and that of [6-14C]glucose is often used as an estimation of glucose oxidized 

through the PPP. As shown in Fig. 2a, the rate of glucose oxidized through the PPP was 

estimated to be ~0.2 nmol/min x mg protein; furthermore, incubation of neurons with 

DHEA inhibited by 50% the estimated rate of PPP (Fig. 2a). As expected, the rate of 

PPP was unaffected by HCN (Fig. 2a). When examined 14CO2 collected from [1-
14C]glucose and [6-14C]glucose independently we observed that 14CO2 collected from [1-
14C]glucose was unchanged by either treatment (Fig. 2b), whereas 14CO2 collected from 

[6-14C]glucose dramatically decreased by HCN but was unchanged by DHEA (Fig. 2c). 

These results indicate that 14CO2 collection from [6-14C]glucose is an excellent estimation 

of glucose that, being converted into acetyl-CoA, is oxidized at the TCA. Furthermore, 

the lack of effect of DHEA on 14CO2 released from [1-14C]glucose (Figs. 2b,c) suggests 

that this value may be underestimated. Indeed, according to the results shown in Fig. 1, 

DHEA increased glycolysis by ~1.2 nmol/min x mg protein, whereas it decreased PPP by 

only ~0.1 nm/min x mg protein (Fig. 2a). These results indicate that the extent of PPP 

activity determined in neurons using this approach appears to be largely underestimated. 
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Figure 2. a) PPP rate is significantly decreased upon DHEA treatment. Neurons at day 6 

in culture were incubated in experimental buffer containing 0.5 μCi/ml of either D-[1-
14C]glucose or D-[6-14C] for 90 minutes and PPP rate was assessed by the determination 

of the difference between 14CO2 produced by [1-14C]glucose and that of [6-14C]glucose. 

b) 14CO2 produced by [1-14C]glucose remains unchanged. c) 14CO2 produced by [6-
14C]glucose is almost absent in HCN treated neurons, which accounts for the 
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effectiveness of HCN in pyruvate transport to the mitochondria blockade. *P<0.05 
(ANOVA)(n=3). 

 
3. PHOSPHOGLUCOSE ISOMERASE (PGI) IS A HIGHLY ACTIVE 
ENZYME IN NEURONS. 
 

As an attempt to understand the low 14CO2 collection from [1-14C] glucose in neurons, we 

reasoned that, after decarboxylation of the only radiolabelled carbon of G6P (C1) at 

6PGD, F6P regenerated from the non-oxidative branch of the PPP is non-radioactive. 

Thus, provided that F6P is converted back into G6P at the expense of PGI, the 

radioactive G6P pool would be dramatically reduced. In view that ascertaining the 

specific radioactivity of intracellular G6P in neurons incubated with [1-14C] glucose is, 

technically, rather difficult, we measured the specific activity of PGI. As shown in Fig. 3, 

PGI specific activity was as high as that of PFK-1. However, the flux of F6P through 

PFK-1 is limited in neurons by the synthesis of its positive effector, fructose-2,6-

bisphosphate (F2,6P2), whereas PGI is a near-equilibrium enzyme. Thus, the direction of 

PGI activity exclusively relies on the relative concentrations of G6P and F6P. 

Accordingly, it is feasible that a large proportion of F6P returning from the PPP would be 

converted back into G6P, thus contributing to G6P isotopic dilution resulting in an 

apparently low 14CO2 released from [1-14C] glucose. 

 

 

 

 

 

 

Figure3. PGI presents a similar activity to 

that observed for PFK-1 in neurons. 

Neurons at 6 days in culture were re-

suspended and lysated with 3 cycles of 

freezing/thawing. The extract was then 

used for PGI and PFK-1 activities 

determination.  
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4. KNOCK-DOWN OF PGI INCREASES PPP ACTIVITY 
 

We next aimed to more directly test whether PGI activity, acting on its reversal mode 

(i..e, F6P to G6P), would maintain a high PPP activity in neurons despite not being 

accounted for the low 14CO2 released from [1-14C]glucose. To do so, and in view that 

there is no known selective inhibitor of PGI activity, we implemented a RNA interfering 

(RNAi) strategy to knock-down PGI in primary neurons. At day 3 in vitro, cells were 

transfected with a small interfering RNA (siRNA) targeted against PGI (siPGI), which was 

previously validated as shown in Fig. 4a. Three days later, when PGI protein abundance 

decreased by ~70%, neurons were used to assess the rate of 14CO2 release from either 

[1-14C]glucose and [6-14C]glucose. As observed in Fig. 4b, the rate of PPP, as assessed 

by the difference between the rates of 14CO2 collected from both radiolabelled glucoses, 

increased significantly by siPGI. This result is compatible with the notion that [1-14C]G6P 

specific radioactivity is considerably diluted by the return of “cold” (i.e., non-radioactive) 

F6P into the G6P pool, thus explaining the underestimation of the actual rate of PPP 

activity. Furthermore, it indicates that the PPP in neurons actively uses PGI activity to re-

cycle G6P. It should be mentioned that siPGI caused no net increase in the rate of 14CO2 

released from [1-14C]glucose by siPGI  (Fig. 4c) while 14CO2 released from [6-14C]glucose 

significantly decreased (Fig. 4d) indicating inhibition of G6P flux through glycolysis. In 

fact, due to the near-equilibrium nature of PGI, inhibition of PGI activity by siPGI would 

not only affect F6P conversion into G6P, but also vice-versa. Together, these data 

strongly, suggest that glucose entering neurons is actively oxidized through the PPP at 

the expense of G6P re-cycled from PPP-derived F6P. However, due to isotopic dilution 

of G6P, the actual value of the glucose proportion entering the PPP is, so far, impossible 

to be directly determined, at least using this approach. 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 

 

 
68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure4. a) siRNA against PGI efficiently knocks down PGI in neurons. Neurons at day 3 

in culture were transfected with 100 nM siControl or siPGI, 72 hours later cells were 

lysed in RIPA buffer and subjected to western blot in order to test the efficiency of PGI 

knock down.  b) PPP rate significantly increases upon PGI silencing. Neurons at day 6 in 

culture were incubated in experimental buffer containing 0.5 μCi/ml of either D-[1-
14C]glucose or D-[6-14C] for 90 minutes, and the PPP assessed by the determination of 

the difference between 14CO2 produced by [1-14C]glucose and that of [6-14C]glucose. c) 

PGI silencing does not affect 14CO2 produced by [1-14C]glucose. d) 14CO2 produced by 
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[6-14C]glucose C6 oxidation is significantly decreased upon PGI silencing *P<0.05 
(ANOVA)(n=3). 

 
5. EFFECT OF DHEA AND HCN ON GLUCOSE-6-PHOSPHATE 
CONCENTRATION 
 

To further understand how the PPP is dynamically coupled with glycolysis in neurons, we 

next investigated the effects of inhibition of PPP and mitochondrial pyruvate uptake on 

the concentrations of G6P. As shown in Fig. 5, G6P accumulated by ~3.5-fold upon 

DHEA-mediated inhibition of the PPP rate-limiting enzyme, G6PD. This result strongly 

suggests a highly active flux of G6P into the PPP in neurons. In contrast, HCN-mediated 

inhibition of glucose-derived pyruvate oxidation at the TCA by HCN did not affect G6P 

concentrations (Fig. 5).  

 

 

 

 

 
6. EFFECT OF DHEA AND HCN ON EXTRACELLULAR AND 
INTRACELLULAR LACTATE CONCENTRATIONS 
 

To further understand the impact of PPP inhibition on the intermediary metabolism of 

neurons, we investigated both intracellular and extracellular lactate concentrations. 

Inhibition of PPP activity by the G6PD inhibitor DHEA did not affect lactate 

concentrations, either extracellular (Fig. 6a) or intracellular (Fig. 6b); however, as shown 

Figure 5. G6P is highly accumulated upon 

DHEA-mediated inhibition of G6PD, but is 

unaffected by HCN. Neurons at 6 days in 

culture were incubated with 1 μM DHEA or 0.1 

mM HCN for 90 minutes. Cells were then lysed 

in 0.6M NaOH and the resulting extract de-

proteinized with the same volume of 1% w/v 

ZnSO4 and used for G6P quantification. 

*P<0.05 (ANOVA)(n=3). 
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above, DHEA significantly increased the rate of glycolysis (Fig. 1a) and the rate of [6-
14C]glucose oxidation at the TCA (Fig. 2b), thus indicating that the putative increase in 

pyruvate by PPP inhibition does not accumulate, but is consumed through the TCA 

activity (Fig. 2b) and, possibly, converted into alanine. In fact, inhibition of pyruvate 

uptake into mitochondria by HCN increased the release of lactate (Fig. 6a), thus resulting 

in unchanged intracellular lactate (Fig. 6b). 

 

 
 
 

 

 

 
 
 
 
 
 
 
 
Figure 6. a) Lactate released to the medium is increased upon HCN treatment, indicating 

that part of the pyruvate that cannot enter the mitochondria is being derived to lactate. 

Neurons at 6 days in culture were incubated with 1 μM DHEA or 0.1 mM HCN for 90 

minutes after which an aliquot of the experimental buffer was obtained for extracellular 

lactate measurement. b) Intracellular lactate levels remain constant, what suggests that 

most part of the excess lactate generated upon HCN treatment is being released to the 

medium. Neurons at 6 days in culture were incubated with 1 μM DHEA or 0.1 mM HCN 

for 90 minutes. Neurons were then lysed in 0.6M NaOH and the resulting extract de-

proteinized with the same volume of 1% w/v ZnSO4 for intracellular lactate measurment.  

*P<0.05 (ANOVA)(n=3). 
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7. CORTICAL PRIMARY NEURONS RESPOND TO GLUTAMATE 
RECEPTORS ACTIVATION BY INCREASING INTRACELLULAR 
Ca2+ LEVELS. 
 

Altogether, our results therefore indicate that glucose metabolism in neurons is a highly 

dynamic process that can be easily manipulated and detected in cultured intact primary 

neurons. Moreover, our data also indicate that, besides glycolysis, a considerable 

proportion of glucose entering neurons is oxidized through the PPP. However, the 

current method to directly assess the PPP activity is intrinsically misleading, which leads 

to a strong underestimation of the actual values of the rate of PPP in neurons. 

Nevertheless, in view that at the light of our data glycolysis and PPP are highly dynamic 

in neurons, we next aimed to investigate whether these glucose-metabolizing pathways 

can be endogenously modulated by physiological neurotransmitter-mediated stimuli. 

 

To do so, we focused on glutamate receptor-mediated stimuli, since rat cortical neurons 

in culture are known to be predominantly glutamatergic. To ascertain whether neurons at 

6 days in vitro expressed functional glutamate receptors, the changes in intracellular 

Ca2+ levels using the fluorescent Ca2+-probe, Fura-2, were registered. This method 

determines Fura-2-dependent fluorescence emitted at 510 nm obtained after excitation 

at 335/363 nm (F335/F363 ratio), a signal that is directly proportional to intracellular Ca2+
 

levels. As shown in Fig. 7a, incubation of neurons with glutamate (100 µM) immediately 

increased Fura-2 fluorescence, suggesting Ca2+ entry into neurons through the 

ionotropic glutamate receptors; this effect was maintained for at least 1 minute, although 

we observed that the increased Fura-2 fluorescence was maintained for several hours 

(not shown). The increase in Fura-2 fluorescence was partially prevented by the well-

known N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist, MK-801 (1 µM). 

This indicates that a considerable proportion (~60%) of glutamate-mediated Ca2+ entry 

was due to NMDA receptor activation. As expected, incubation of neurons with 

glutamate in the presence of the Ca2+-free experimental buffer, which contains the Ca2+ 

quelator ethylene glycol tetraacetic acid (1 mM EGTA), abolished the changes in 510 nm 

emissions (Fig. 7a). To further test that these neurons expressed functional NMDAR, 

Fura-2 fluorescence was also registered in the presence of NMDA. As shown in Fig. 7b, 

NMDA triggered an increase in the intracellular Ca2+-mediated signal to a similar level of 

that observed with glutamate. Moreover, this effect was prevented by ~90% with MK-801 

(Fig. 7b), and fully abolished by EGTA (Fig. 7b). Thus, the rat cortical neurons used in 
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this study express functional NMDA subtype of glutamate receptors, therefore being 

suitable to investigate the metabolic effects of this neurotransmitter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure7. Incubation of rat primary cortical neurons at day 6 in culture with glutamate (a) 

or NMDA (b) increased the ratio of Fura-2-dependent fluorescence (at 510 nm) obtained 

after excitation at 335/363 nm (F335/F363), indicating an increase in intracellular Ca2+. 

MK801 (10 μM) partially prevented glutamate-induced changes in F335/F363 ratio and 

most of NMDA-dependent F335/F363 ratio changes. Ca2+-free experimental buffer 

containing 1 mM EGTA, fully prevented the changes in 510 nm emissions both in NMDA 

and glutamate-treated neurons. 
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8. NMDAR STIMULATION PROMOTES PROTEIN STABILIZATION 
OF THE GLYCOLYTIC-PROMOTING ENZYME PFKFB3 IN 
NEURONS. 
 

Previous results from our laboratories demonstrated that NMDAR stimulation activates 

cyclin-dependent kinase 5 (Cdk5) through a Ca2+-calpain-p25-mediated mechanism. In 

turn, Cdk5 hyperphosphorylates Cdh1, the anaphase-promoting complex/cyclosome 

(APC/C) co-activator causing the release of Cdh1 from the complex, thus inhibiting its E3 

ubiquitylating activity. In view that we had also shown that the key glycolytic-promoting 

enzyme, PFKFB3, is an APC/C-Cdh1 substrate, we reasoned that NMDAR stimulation, 

through inhibition of APC/C-Cdh1, should stabilize PFKFB3. To test this hypothesis, we 

incubated neurons with glutamate (100 μM) to stimulate NMDAR for 15 minutes, cells 

were washed and further incubated in culture medium; in these, we analyzed Cdh1 

phosphorylated status and protein levels of PFKFB3 were analyzed at different time 

points by western blotting. To test Cdh1 phosphorylation, Cdh1 was immunoprecipitated 

from neuronal protein lysates 6 h after glutamate treatment, and the immunoprecipitate 

subjected to western blotting against an anti-phosphoserine antibody. As shown in Fig. 

8a, glutamate treatment triggered, as expected, an increase in phosphorylated Cdh1, an 

effect that was fully prevented by MK801. This indicates that under these conditions, 

NMDAR stimulation inhibits APC/C-Cdh1 activity according to our previous observations. 

Analysis of PFKFB3 protein by western blotting revealed that glutamate treatment 

triggered a time-dependent increase in PFKFB3, an effect that was maximal (~2.1-fold 

higher) after 6 h (Fig. 8b). To test whether this effect was mediated by NMDAR, neurons 

were incubated with NMDA (100 μM for 15 min), and PFKFB3 protein levels analyzed 6 

h later. As depicted in Figure 8c, NMDA mimicked glutamate at increasing PFKFB3; 

moreover, incubation of neurons with MK801 prevented glutamate-mediated increase in 

PFKFB3 after 6 hours (Figure 8d). Together, these data indicate that NMDAR stimulation 

inhibits APC/C-Cdh1 activity leading to PFKFB3 protein stabilization in primary neurons. 
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Figure 8. a) Cdh1 is phosphorylated 6 h after glutamate treatment (100 μM/15 min), an 

effect that was prevented by MK801 (10 μM). b) Incubation of neurons with glutamate 

(100 μM/15 min) triggered time-dependent increase in PFKFB3 protein, which was 

maximal after 6 h. c) NMDA (100 μM/15 min) mimicked glutamate at increasing PFKFB3. 

d) NMDA receptor antagonist, MK801 (10 μM), prevented glutamate-mediated increase 

in PFKFB3. 

 

9. NMDAR STIMULATION DOES NOT ALTER THE PFKFB3 mRNA 
LEVELS IN NEURONS. 
 

To elucidate whether the increase in PFKFB3 protein abundance could be due to any 

transcriptional effect, the PFKFB3 mRNA levels were analyzed by reverse transcription-

PCR after 2 and 6 hours of glutamate (100 μM/15 min) treatment of neurons at 6 days in 

culture. As shown in Fig. 9, the PFKFB3 mRNA levels remained unchanged after 

NMDAR stimulation, suggesting that PFKFB3 protein accumulation was not a 

consequence of increased PFKFB3 gene transcription or PFKFB3 mRNA stabilization. 

Rather, our data strongly suggest that the increase in PFKFB protein abundance by 

NMDAR stimulation was due to protein stabilization. 
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Figure 9. Glutamate (100 μM/15 min) did not change PFKFB3 mRNA levels, as revealed 

by the unaltered intensity of the predicted 300 bp band after reverse-transcription of total 

RNA samples, followed by polymerase chain reaction (RT-PCR) using specific 

oligonucleotides for PFKFB3; GAPDH (279 bp band) was used as loading control; the 

black/white inverted images of the agarose gels are shown; w/o RT, RT-PCR for 

PFKFB3 without reverse transcriptase. 

 

10. NMDAR STIMULATION TRIGGERS NUCLEUS-TO-CYTOSOL 
PFKFB3 TRANSLOCATION 
 

In view that our data indicate that PFKFB3 protein is continuously degraded by APC/C-

Cdh1 activity, and that active APC/C-Cdh1 is thought to be confined in the nucleus, we 

next aimed to investigate the intracellular localization of PFKFB3 protein. We first tried to 

ascertain this issue using the endogenous accumulation of PFKFB3 after NMDAR 

stimulation. Unfortunately, the results were not conclusive in view that i) the antibody 

against PFKFB3 is not useful for immunocytochemistry, and ii) the low abundance of 

endogenous PFKFB3 in neurons makes it to be hardly detectable (not shown). To 

circumvent this drawback, we decided to register changes in PFKFB3 localization using 

expressed green fluorescent protein (GFP)-PFKFB3 fusion protein. To do so, we 

designed and constructed two versions of GFP-PFKFB3 fusion cDNAs, namely i) the 

wild type one (PFKFB3), and ii) a mutant form in which the motif responsible for PFKFB3 

destabilization (142Lys-Glu-Asn or KEN box), was replaced by 142Ala-Ala-Ala (AAA) 

(mutPFKFB3). Thus, the mutant form of PFKFB3 would not be expected to be 

recognized by Cdh1 for APC/C-Cdh1 ubiquitylation, hence being constitutively stable.  

 

Neurons were, thus, transfected with low amounts (0.16 μg per well) of either GFP-fusion 

plasmid DNA vectors (PFKFB3 or mutPFKFB3), and the intracellular localization of the 
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expressed proteins analyzed by confocal microscopy. As shown in Fig. 10a, expression 

of wild type PFKFB3 cDNA confined PFKFB3 protein to the nucleus, as judged by the 

co-localization of GFP fluorescence with nuclear staining with DAPI. However, 

expression of the mutant form of PFKFB3 insensitive to APC/C-Cdh1 yielded a spread 

PFKFB3 protein localization, indicating the presence of PFKFB3 protein outside the 

nucleus (Fig. 10a). Quantification of these observations revealed the preferential nuclear 

localization of wild type PFKFB3 protein, and the preferential cytoplasmic expression of 

mutPFKFB3 (Fig, 10b). Treatment of neurons with glutamate (100 µM / 15 min) led 

PFKFB3, after 6 h, to spread throughout the cytoplasm (Fig. 10a, b); interestingly, this 

spread localization of PFKFB3 was prevented by Cdh1 over-expression (Fig. 10a,b), 

confining PFKFB3 to the nucleus. Together, these results indicate that PFKFB3 protein 

is localized in the nucleus, where is it targeted for degradation by APC/C-Cdh1; however, 

glutamate treatment, by inhibiting APC/C-Cdh1 activity, stabilizes PFKFB3, which leaves 

the nucleus. Whether these changes in PFKFB3 stability and subcellular localization are 

able to alter the flux of glucose through glycolysis, were our next objective. 
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Figure 10. a) Confocal microscopy images of neurons transfected with GFP-PFKFB3 

reveals its nuclear localization. Glutamate promotes PFKFB3 accumulation, as revealed 

by its spread (nuclear plus cytosolic) localization; Cdh1 overexpression prevented this 

effect. GFP-PFKFB3, mutated on its KEN box (KEN-AAA; mut-PFKFB3) showed the 

spread-like localization, regardless of glutamate treatment. b) Percentage of neurons 

showing nuclear or spread GFP-PFKFB3 localization; these data were obtained by 

analyzing ~30 neurons per condition per neuronal preparation (n=4). *P<0.05 versus the 

corresponding (nuclear or cytoplasmic) PFKFB3-none condition (ANOVA). 

 

11. NMDAR STIMULATION INCREASES THE RATE OF 
GLYCOLYSIS AND DECREASES THE RATE OF PPP THROUGH 
PFKFB3. 
 

PFKFB3 activity, by synthesizing F26BP, is known to promote glycolysis in neurons. In 

view that NMDAR triggered PFKFB3 protein stabilization, we next aimed to elucidate 

whether this effect exerted functional consequences. To do so, the rate of glycolysis was 

determined in neurons 6 h after NMDAR stimulation using the conversion of [3-
3H]glucose into 3H2O. As shown in Fig. 11a, NMDAR stimulation led neurons to an 

increase in the rate of glycolysis; furthermore, to ensure that this effect was due to 

PFKFB3 stabilization, we designed a siRNA targeted against PFKFB3 (siPFKFB3), 

which efficiency was first tested by western blotting. To do so, the GFP-PFKFB3 

construct was expressed in neurons, which resulted in PFKFB3 accumulation as judged 

by the band intensity using an anti-GFP antibody (Fig 11b); however, transfection of 

neurons with the siPFKFB3 decreased PFKFB3 abundance (Fig. 11b). Furthermore, 

glutamate treatment triggered an increase in the GFP-PFKFB3 band intensity, 

suggesting PFKFB3 stabilization, an effect that was also prevented by siPFKFB3 (Fig 

11b). These results indicate the efficacy of the siPFKFB3 strategy. As shown in Fig. 11a, 

the increase in the rate of glycolysis triggered by glutamate was prevented in neurons 

previously transfected with the siPFKFB3, indicating that PFKFB3 stabilization was 

responsible for the increase in the rate of glycolysis. Furthermore, in view that our 

previous results showed that glycolysis and PPP are dynamically coupled in neurons 

(see Figs. 1 and 2), we also investigated whether NMDAR-mediated increase in the rate 

of glycolysis affected the rate of PPP. As shown in Fig. 11c, neurons treated with 

glutamate (100 µM / 15 min) showed, 6 h later, a significant reduction in the rate of 

glucose oxidation through the PPP, an effect that was wholly prevented by siPFKFB3. 



                      RESULTS
                                              
 

  
79 

Thus, our results indicate that NMDAR stimulation in neurons triggers a Ca2+-mediated 

inhibition of APC/C-Cdh1 activity leading to PFKFB3 stabilization in the cytosol leading to 

a shift of glucose metabolism consisting of glycolysis activation and PPP inhibition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. a) Incubation of neurons with glutamate (100 μM/15 min) increased, after 6 h, 

the rate of glycolysis, as assessed by the determination of [3-3H]glucose incorporation 

into 3H2O; this effect was abolished by preventing PFKFB3 accumulation in neurons 
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previously transfected with siPFKFB3. b) Incubation of GFP-PFKFB3-expressing 

neurons with glutamate (100 μM/15 min) induced, 6 h after treatment, PFKFB3 

accumulation in siRNAControl  (100nM) treated neurons, as revealed by an anti-GFP 

(Flag) antibody; transfection of neurons with an siPFKFB3 (100nM) efficiently reduced 

PFKFB3 protein and prevented glutamate-induced PFKFB3 accumulation. c) Glutamate 

treatment decreased, after 6 h, the rate of the PPP, as assessed by the determination of 

the difference between 14CO2 produced by [1-14C]glucose and that of [6-14C]glucose; this 

effect was abolished by siPFKFB3. *P<0.05 (ANOVA)(n=3). 

 
12. NMDAR STIMULATION LEADS TO IMPAIRMENT OF 
GLUTATHIONE REGENERATION THAT IS MEDIATED BY 
PFKFB3 STABILIZATION.  
 

Glucose oxidation through the PPP regenerates NADPH(H+), a cofactor of several 

important enzymes including glutathione reductase. Glutathione reductase requires 

continuous supply of NADPH(H+) to regenerate glutathione (GSH) from its oxidized form, 

glutathione disulfide (GSSG). Accordingly, in view that NMDAR stimulation led to an 

increase in glycolysis leading to reduced PPP activity, we reasoned whether the 

decreased PPP activity would result in the impairment in the ability of neurons to 

regenerate GSG from GSSG. To do so, we analyzed total (GSx) and oxidized (GSSG) 

glutathione in neurons 6 h after NMDAR stimulation. As shown in Fig. 12, glutamate 

treatment did not alter total glutathione concentration, but significantly increased its 

oxidized form; this caused an increase in the oxidized versus total oxidized glutathione 

(GSSG/GSx) ratio, a well-known index of the oxidized glutathione redox status. All these 

changes were partially prevented by siPFKFB3, indicating that they were, at least in part, 

caused by PFKFB3 stabilization after NMDAR stimulation. 
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Figure 12. Glutamate treatment did not change GSx (left panel), but it increased GSSG 

(middle panel) and the oxidized glutathione redox status (GSSG/GSx; right panel); these 

effects were partially prevented by siPFKFB3.Neurons at day 3 in culture were 

transfected either with siControl or siPFKFB3 (100 nM). At day 6 they were treated with 

glutamate (100 μM/15 min) and the cell extracts used for glutathione determination. 

*P<0.05 (ANOVA)(n=3). 

 

13. THE PPP TO GLYCOLYSIS SHIFT CAUSED BY NMDAR 
STIMULATION TRIGGERS OXIDATIVE STRESS 
 

In view that reduced glutathione is known to be essential in the detoxification of 

mitochondrial reactive oxygen species (ROS), we reasoned that the NMDAR-mediated 

increase in oxidized glutathione would result in oxidative stress. To assess this issue, we 

analyzed the abundance of mitochondrial ROS using the specific probe, MitoSox, which 

determines mitochondrial superoxide anion abundance (O2
•–). As shown in Fig. 13a, 

treatment of neurons with glutamate (100 µM / 15 min) triggered, after 16 h, a significant 

increase in mitochondrial superoxide, suggesting oxidative stress. Furthermore, this 

effect was mostly prevented by knocking down PGI with siPGI (Fig. 13a), a treatment 

that, on our hands, was able to increase the rate of PPP as shown in Fig. 4b. 

Furthermore, to test if this effect was a consequence of increased glycolysis, we knocked 

down PFKFB3 and, thereafter, treated neurons with glutamate. As shown in Fig, 13a, 
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siPFKFB3 mostly prevented the increase in mitochondrial superoxide. To further support 

the notion that NMDAR-mediated oxidative stress was, at least in part, a consequence of 

the inhibition of PPP activity, we next aimed to investigate if this effect was counteracted 

by overexpressing G6PD, i.e. the rate-limiting enzyme of the PPP. As shown in Fig. 13b, 

expression of the full-length cDNA coding G6PD led to a significant increase in G6PD 

protein, and this effect was sufficient to fully rescue the increase in mitochondrial 

superoxide caused by NMDAR (Fig. 13a). Finally, we tested that the observed effect on 

mitochondrial superoxide was a wholly consequence of NMDAR stimulation, as judged 

by the full protection triggered by the NMDA antagonist, MK801 (Fig. 13b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. (a Glutamate treatment (100 μM/15 min) increased mitochondrial superoxide 

levels in neurons, as assessed by flow cytometry measurement of MitoSox fluorescence; 

this effect was prevented by knocking down PGI (siPGI) or PFKFB3 (siPFKFB3), 
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overexpressing G6PD, or blocking NMDAR with MK801 (10 μM). b) Transfection of 

neurons with the full-length DNA encoding G6PD (1.6 μg/ml) efficiently increased G6PD 

protein abundance. *P<0.05. (ANOVA)(n=3). 

 

14. NMDAR ACTIVATION TRIGGERS APOPTOTIC DEATH BY 
SWITCHING PPP TO GLYCOLYSIS. 
 

Given that NMDAR stimulation led to oxidative stress as a consequence of PPP shift to 

glycolysis, and that oxidative stress is known to cause neuronal death, we next aimed to 

investigate if the metabolic switch by NMDAR targeted neurons to apoptotic death. To do 

so, neurons treated with glutamate (100 µM / 15 min) were incubated, 16 h later, with 

anti-annexin V and 7AAD, to assess neurons targeted to apoptosis by flow cytometry. As 

shown in Fig. 14, the proportion of annexin V+/7AAD- neurons increased significantly by 

glutamate treatment, an effect that was partially prevented by PGI or PFKFB3 knock 

down, as well as by overexpressing G6PD or blocking NMDAR with MK801. Thus, 

NMDAR stimulation promotes apoptotic death of neurons as a consequence of the shift 

of PPP to glycolysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Glutamate treatment 

increased apoptotic neuronal 

death, as assessed by 

determining annexin V+/7AAD-
  

neurons fluorescence by flow 

cytometry; this effect was 

prevented by silencing PGI 

(siPGI, 100nM) or PFKFB3 

(siPFKFB3, 100nM), 

overexpressing G6PD (1.6 

μg/ml) or blocking NMDAR with 

MK801 (10 μM). *P<0.05. 

(ANOVA)(n=3). 
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15. EXPRESSION OF A MUTANT FORM OF PFKFB3 INSENSITIVE 
TO APC/C-Cdh1 MIMICS NMDAR AT CAUSING OXIDATIVE 
STRESS AND NEURONAL DEATH. 
 

To further support the notion that PFKFB3 stabilization after APC/C-Cdh1 inhibition is 

responsible for the metabolic shift, oxidative stress and apoptosis, we next aimed to 

investigate whether this phenotype could be mimicked by expressing the mutant form of 

PFKFB3 insensitive to APC/C-Cdh1. As shown in Fig. 15a, incubation of PFKFB3-

expressing neurons with glutamate (100 µM / 15 min) increased mitochondrial 

superoxide abundance. Interestingly, expression of the APC/C-Cdh1-insensitive form of 

PFKFB3 (mutPFKFB3) yielded neurons with a similar level of mitochondrial superoxide, 

an effect that was not further increased by glutamate (Fig, 15a). Analysis of apoptotic 

neurons under these conditions yielded identical results (Fig. 15b). Together, these 

results indicate that, after NMDAR stimulation leading to APC/C-Cdh1 inhibition, 

PFKFB3 is stabilized causing increased glycolysis and reduced PPP activity, which 

triggers glutathione oxidation and apoptotic death. Thus, PFKFB3 should be considered 

as an interesting therapeutic target in the treatment of disorders of the central nervous 

system in which excessive glutamatergic neurotransmission (excitotoxicity) has been 

documented, such as stroke. 
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Figure 15. a) Glutamate treatment (100 μM/15 min) increased mitochondrial superoxide 

levels in neurons transfected with low levels of wild-type PFKFB3 cDNA (0.16 μg/ml); 

transfection of neurons with identical cDNA amounts of the KEN box-mut-PFKFB3 

increased superoxide to similar levels to those triggered by glutamate; glutamate did not 

further enhance superoxide in neurons expressing mut-PFKFB3. b) Glutamate increased 

apoptotic death of neurons transfected with low levels of PFKFB3 cDNA; transfection of 

neurons with identical cDNA amounts of mut-PFKFB3 increased apoptotic death to 

similar levels to those triggered by glutamate; glutamate did not further enhance 

apoptotic death in neurons expressing mut-PFKFB3. *P<0.05 (ANOVA)(n=3). 

 

16.  THE FRUCTOSE-2,6-BISPHOSPHATASE TIGAR PROTEIN 
IS EXPRESSED IN NEURONS 
 

Recently, it was discovered a Tp53-inducible glycolysis and apoptotic regulator (TIGAR) 

that has fructose-2,6-bisphosphatase activity. In view that TIGAR would exert the 

opposite metabolic effect to PFKFB3, we wondered whether the regulation of glycolysis 

in neurons would be a function of both TIGAR and PFKFB3. To the best of our 

knowledge, the expression of TIGAR in brain cells has not been reported. Accordingly, 

we first aimed to investigate its protein expression in rat cortical neurons and astrocytes 

in primary culture, by western blotting. As observed in Fig. 16, TIGAR protein is 

expressed in both cell types, being slightly higher in neurons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. TIGAR is present in both 

neurons and astrocytes and neurons 

express higher levels of the protein. 

Neurons at 6 days in culture and 

astrocytes at day 15 were lysed in RIPA 

buffer and subjected to western blot 

analysis of the levels of TIGAR.  
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17.  ASSESSMENT OF APOPTOSIS AND SUPEROXIDE LEVELS 
IN PRIMARY NEURONS FROM TIGAR KNOCKOUT MICE 
 

Since TIGAR exerts the opposite metabolic effect of PFKFB3, and we previously 

observed that PFKFB3 over-expression triggers oxidative stress and apoptotic death, we 

next aimed to investigate whether the lack of TIGAR mimicked PFKFB3 over-expression. 

To do so, we first used the knockout approach in view that TIGAR knockout mice were 

available at the Dr. Karen Vousden´s group (Beatson Institute for Cancer Research, 

Glasgow, UK). Thus, cortical primary neurons from TIGAR knockout mice were 

performed and superoxide and apoptotic death were investigated. As observed in Fig. 

17a and b, neither mitochondrial superoxide abundance nor apoptotic death was 

significantly increased in TIGAR knockout neurons. However, we reasoned the 

possibility that glucose metabolism in the TIGAR knockout mice might be compensated 

thus avoiding the observation of a strong phenotype. Accordingly, we next aimed to 

modulate TIGAR expression acutely using both over-expression and a knockdown 

approaches. 

 

 

 

 

 
 

 

Figure 17. Mitochondrial superoxide levels detection and apoptotic neuronal death in 

TIGAR WT vs KO mice neurons at 6 days in culture. a) TIGAR KO mice exhibit 

superoxide levels similar to the WT, as assessed by flow cytometric analysis of MitoSox-

RedTM fluorescence. b) TIGAR KO neurons don´t show significant increase in apoptosis 

levels, as assessed by annexin V+/7AAD-
 fluorescence by flow cytometry. (ANOVA). 
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18.  OVER-EXPRESSION OF THE FULL-LENGTH TIGAR cDNA 
DECREASES FRUCTOSE-2,6-BISPHOSPHATE 
CONCENTRATION 
 

We first obtained the full-length cDNA coding for TIGAR, which was generously donated 

by Prof. R. Bartrons (University of Barcelona) and inserted it into peGFP-C1 plasmid 

vector, which express the GFP-TIGAR fusion protein under the control of the 

cytomegalovirus promoter. Expression of this plasmid in human embryonic kidney cells 

(HEK293T) caused a significant decrease in the concentrations of fructose-2,6-

bisphosphate when compared with cells transfected with the empty vector (control) (Fig 

18). Thus, the peGFP-C1 TIGAR construct is functional. 

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

Figure 18. peGFP-C1 TIGAR 

expression in HEK293T successfully 

decreases fructose-2,6-bisphosphate 

levels. HEK293T cells were 

transfected with either peGFP-C1 

TIGAR plasmid construction or 

empty vector (1.6 μg/ml) and 

fructose 2,6 bisphosphate 

concentrations were measured 24 

hours post-transfection.  *P<0.05 

(ANOVA)(n=3). 
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19. TIGAR PREVENTS PFKFB3-INDUCED INCREASE IN 
MITOCHONDRIAL SUPEROXIDE AND NEURONAL DEATH 
 

We next decided to investigate whether the TIGAR-PFKFB3 axis, by their ability to 

inversely regulate glycolysis, controls superoxide abundance and neuronal survival. To 

do so, the APC/C-Cdh1-insensitive form of PFKFB3 (mutPFKFB3) was expressed, at a 

very low concentrations (0.16 µg/ml) in rat cortical primary neurons, which –as previously 

shown– triggered significant increases in mitochondrial superoxide and apoptotic 

neuronal death (Figs. 19a,b), as assessed by flow cytometry. Interestingly, co-

expression of TIGAR at high concentration (1.6 µg/ml) fully rescued these effects (Figs. 

19a,b). Thus, oxidative stress and apoptotic neuronal death appears to be controlled by 

the TIGAR-PFKFB3 axis, at least at the light of over-expression experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 a) Transfection of neurons with low levels of mutPFKFB3 (0.16 μg/ml) 

increases mitochondrial superoxide when compared with the same levels of PFKFB3, as 

assessed by flow cytometric analysis of MitoSox-RedTM fluorescence. The increase in 

mitochondrial superoxide is prevented by overexpressing TIGAR (1.6 μg/ml). b) 

Transfection of neurons with low levels of mutPFKFB3 leads to apoptotic cell death that 

is prevented by overexpressing TIGAR, as assessed by annexin V+/7AAD-
 fluorescence 

by flow cytometry. *P<0.05 (ANOVA)(n=3). 
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20. KNOCKDOWN OF TIGAR IS NOT SUFFICIENT TO INCREASE 
THE RATE OF GLYCOLYSIS IN PRIMARY NEURONS 
 

In view that we were unable to show more vulnerable neurons to oxidative stress and 

apoptotic death in TIGAR knockout mice, we decided to acutely knockdown it in mice 

primary neurons. To do so, we designed a small interfering RNA (siRNA) sequence 

targeted against Mus musculus TIGAR (siTIGAR). Transfection of primary neurons with 

siTIGAR resulted in a considerable –albeit not full– decrease in TIGAR protein after 3 

days (Fig. 20a). However, we were unable to detect any statistically significant increase 

in the rate of glycolysis in siTIGAR-transfected neurons when compared with siControl-

transfected cells (Fig. 20b). 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 20. a) TIGAR siRNA efficiently knocks down protein levels in neurons 3 days after 

transfection. Neurons at day 3 in culture were transfected either with siControl or 

siTIGAR (20 nM). At day 6 in culture cells were lysed and the protein levels analyzed by 

western blot.. b) Glycolytic rate does not significantly increase upon TIGAR silencing in 

neurons. Neurons at day 3 in culture were transfected either with siControl or siTIGAR 

(20 nM) at day 6 in culture glycolytic rate was assessed by by the determination of [3-
3H]glucose incorporation into 3H2O.(ANOVA)(n=3). 
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21. KNOCKDOWN OF TIGAR INCREASES APOPTOTIC 
NEURONAL DEATH WITHOUT INCREASING SUPEROXIDE 
 

In view that the results on superoxide and survival obtained by over-expressing TIGAR 

(Fig. 19) were apparently inconsistent with those on glycolysis obtained by knocking 

down TIGAR (Fig. 20), we decided to investigate superoxide and neuronal survival in 

TIGAR knockdown neurons. Thus, mice primary neurons were transfected with siTIGAR 

to knockdown it, followed by incubation in the absence or presence of glutamate (100 µM 

/ 15 min) to stimulate the NMDAR. As shown in Fig. 21a, siTIGAR did not increase 

mitochondrial superoxide abundance. However, glutamate treatment did increase 

superoxide, although this was not potentiated by siTIGAR (Fig. 21a). Interestingly, 

siTIGAR, as did glutamate, increased apoptotic neuronal death (Fig. 21b); furthermore, 

siTIGAR potentiated glutamate-induced neuronal death (Fig. 21b). Altogether, our data 

suggest that, besides its possible control on fructose-2,6-bisphosphate concentrations 

and glycolysis, TIGAR may play a yet not deciphered role on neuronal survival that is 

independent on the glycolytic-PPP shift that PFKFB3 exerts. 
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Figure 21. a) Mitochondrial superoxide detection increases by glutamate treatment, but 

not by siRNA TIGAR, as assessed by flow cytometric analysis of MitoSox-RedTM 

fluorescence. b) Apoptotic neuronal death increases by siTIGAR in neurons, as 

assessed by annexin V+/7AAD-
 fluorescence by flow cytometry. *P<0.05 (ANOVA)(n=3). 

 

22. CONFOCAL ANALYSIS REVEALS NUCLEAR LOCALIZATION 
OF TIGAR IN NEURONS, BUT NOT IN ASTROCYTES 
 

As an attempt to obtain any clue to explain the metabolic-independent control of 

neuronal survival by TIGAR, we decided to investigate its subcellular localization. To do 

so, we performed primary cultures of neurons and mixed neurons-astrocytes from the 

E16 mice brain cortex. Endogenous TIGAR was then analyzed by immunofluorescence 

is a confocal microscope. As shown in Fig. 22, endogenous TIGAR expression was 

spread in neurons, including in the nucleus as judged by its co-localization with the 

nuclear-specific marker TOPRO-3. In contrast, we observed that TIGAR was exclusively 

present in the cytosol, not in the nucleus, of astrocytes (Fig. 22). These results suggest 

that, at least in neurons, TIGAR might exert a yet unknown cytoprotective function in the 

nucleus that remains to be elucidated. 
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Figure 22. Immunofluorescense analysis of endogenous TIGAR shows a nuclear plus 

cytoplasmic localization of the protein in neurons, but an exclusive cytoplasmic 

localization in astrocytes. Cells were grown on glass coverslips and after the 

immunostaining, images were obtained in a confocal Leica SP5 microscope. Scale bar: 

20 μm. 
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1. GLYCOLYSIS AND PPP ARE DYNAMIC PROCESSES IN 
INTACT NEURONS 
 

The differential regulation of the activity of enzymes of glucose metabolism, as well as 

the complex interplay between cellular metabolic pathways, makes difficult the issue of 

accurately determining specific glucose-metabolizing fluxes. A common methodology to 

address this issue consists of determining the metabolites enrichments in 13C, 14C, 1H or 
3H after incubating cells with appropriately labeled glucoses. The use of 1H- and 13C-

glucose reveals the labeling pattern of intermediary metabolites after magnetic 

resonance spectroscopy (MRS) or mass spectrometry (MS) analyses, which provides 

indexes of cellular metabolic activity (Bouzier-Sore et al. 2006, Bak et al. 2006, Brekke et 

al. 2012). However, due to rapid equilibration of substrates through the different 

pathways, it is hard to discriminate the origin of the metabolic route and its flux. 

 

We have previously used a method suitable to determine the glycolytic and PPP fluxes in 

detached neurons (Herrero-Mendez et al. 2009). To determine the glycolytic flux, we 

measured the rate of [3-3H]glucose incorporation into 3H2O, that is produced in the 

reaction catalyzed by aldolase, thus specifically assessing the flux of glucose through 

PFK1-catalyzed reaction. [3-3H]Glucose conversion into 3H2O gives a more accurate 

index of the glycolytic flux than that of [5-3H]glucose, a method chosen for other authors, 

since in the latter, 3H2O is produced at enolase, i.e. a reaction that operates after 

glyceraldehyde-3-phosphate that can be generated through the PPP; this would easily 

lead to an overestimation of the glycolytic flux, as has been previously described 

(Goodwin et al. 2001). We therefore used, in this work, the rate of conversion of [3-
3H]glucose into 3H2O. Moreover, to overcome the possible drawback of using detached 

cells, we developed a technique to determine the rate of glycolysis in intact, attached 

neurons, thus maintaining the integrity of axons and dendrites. Using this method, we 

report that the rate of the glycolytic flux in rat cortical neurons is ~1.2 nmol/min x mg 

protein; this value is slightly lower than that previously reported by our group in detached 

neurons (~2 nmol/min x mg protein). Possibly, detaching neurons from the plate might 

have caused some undetermined type of stress that affected glucose metabolism. 

 

In view that glycolysis and PPP are interconnected pathways, we aimed to measure the 

rate of glucose oxidation through the PPP. We decided to use the method that calculates 

the difference of 14CO2 produced from [1-14C]glucose and that produced from [6-
14C]glucose. The former is produced at 6-phosphogluconate dehydrogenase (6PGD)-
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catalyzed reaction in the PPP and at the tricarboxylic acid (TCA) cycle; however, the 

latter is produced only at the TCA cycle. Using this approach, we report that attached, 

intact cortical primary neurons oxidize glucose through the PPP at a rate of ~0.2 

nmol/min x mg protein, a value that is lower than that obtained in our own previous 

determinations in detached neurons (~0.7 nmol/min x mg protein). As for glycolysis, we 

therefore admit that detaching neurons might induce stress affecting glucose 

metabolism. Accordingly, the attached intact system that we herein set up is 

advantageous. 

 

Assuming that most glucose consumption in neurons takes place through glycolysis and 

PPP, we therefore estimate that approximately 14% of glucose consumption in neurons 

is oxidized at the PPP. This value contrasts with the reported by other groups who 

estimated PPP values of ~6% of glucose consumption (Brekke et al. 2012). However, 

activation of glycolysis by over-expressing PFKFB3 dramatically reduces the rate of PPP 

(Herrero-Mendez et al. 2009) leading to oxidative stress and neuronal death, as did 

specific inhibition of G6PD with DHEA (Vaughn & Deshmukh 2008). Thus, the fraction of 

glucose entering the PPP appears to be highly relevant for neuronal survival, which 

questions that it would be wholly accounted by such a low proportion (6-14%) of glucose 

metabolized. We therefore hypothesized that the actual rate values of PPP obtained are 

underestimated. 

 

To indirectly assess the fraction of glucose entering PPP, we first incubated neurons with 

DHEA to inhibit G6PD, the rate-limiting enzyme of the PPP, and measured the rate of 

glycolysis. We observed that the rate of glucose oxidized trough the glycolytic flux 

increased by ~100% in the presence of DHEA; this result suggests that at least ~50% of 

glucose entering neurons is metabolized through the PPP. As expected, DHEA triggered 

a large increase in G6P concentrations; however, the flux through PPP was only 

inhibited by ~50%. Thus, the increase of glycolysis caused by DHEA (from 1.2 to 2.4 

nmol/min x mg) was produced at the expense of a reduction in PPP from 0.2 to 0.1 

nmol/min x mg. Together, these results indicate that the flux of glucose through PPP is 

largely underestimated in neurons. Furthermore, according to the extent in the increase 

in glycolysis, and the degree of inhibition in PPP caused by DHEA (approximately a 

50%), we estimate that the actual rate of PPP in neurons is around 2.4 nmol/min x mg, 

i.e. about double than the rate of glycolysis. Unfortunately, this value could not be 

directly demonstrated. 
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Since the rates of PPP are underestimated, we sought to find an explanation. We 

noticed that F6P derived from the non-oxidative branch of the PPP can be converted 

back to G6P, a fact that is usually ignored when estimating metabolic fluxes (Brekke et 

al. 2012). This reaction is catalyzed by phosphoglucose isomerase (PGI), which is a 

near-equilibrium enzyme therefore allowing the F6P-to-G6P reaction. This issue is 

critically important in the context of PPP activity determinations, because the 

decarboxylation of C-1 of [1-14C]glucose yields unlabeled PPP end-point intermediates, 

F6P and GAP. Unlabeled F6P, by converting back into G6P, would reduce the specific 

radioactivity of intracellular [1-14C]G6P that would result in an underestimation of 14CO2 

collected. To assess this possibility, we measured PGI activity in primary neurons, which 

was as high as PFK1. Since PGI is a near-equilibrium enzyme and, therefore, its activity 

depends on the relative concentrations of F6P and G6P, whereas PFK1 activity in 

neurons is highly dependent on F2,6P2 levels that are very low in neurons (Herrero-

Mendez et al. 2009), it is not unlikely that a large fraction of F6P would indeed be 

converted into G6P. To test this hypothesis more directly, we next knocked-down PGI in 

neurons, and determined the rate of PPP. We found that PGI knockdown had a ~90% 

higher flux through PPP, which strongly supports the notion of the [1-14C]G6P isotopic 

dilution as a determinant factor in the underestimation of the actual value of the rate of 

PPP in these cells. 

 

Besides the above-mentioned methodological limitation, both approaches to assess the 

glycolytic and PPP fluxes appear to be specific, as demonstrated by the consistent 

results obtained by, not only DHEA, but also HCN. Thus, HCN treatment triggered a 

~150% increase in glycolytic rate, indicating that metabolism of glucose through 

glycolysis is tightly controlled in neurons. The increase of glycolytic rate observed by 

HCN is possibly due to an attempt to compensate for the lack of pyruvate oxidation for 

TCA cycle and oxidative phosphorylation. It should be mentioned that the inhibition of 

ATP synthesis would increase the AMP:ATP ratio that, in turn, activates AMPK to 

phosphorylate –and activate– PFKFB3  (Almeida et al. 2004, Marsin et al. 2002), as well 

as to promote GLUT3 translocation to the plasma membrane (Cidad et al. 2004, 

Weisova et al. 2009). In view that the observed increase in glycolysis is not accompanied 

by a concomitant decrease in PPP, our results also suggest that HCN triggered an 

increase in glucose uptake in neurons. 

 

Altogether, our results therefore indicate that glucose metabolism in neurons is a highly 

dynamic process that can be easily manipulated and detected in cultured intact primary 

neurons. Moreover, our data also indicate that, besides glycolysis, a considerable 
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proportion of glucose entering neurons is oxidized through the PPP. In view that 

glycolysis and PPP are highly dynamic in neurons, we next aimed to investigate whether 

these glucose-metabolizing pathways can be endogenously modulated by physiological 

neurotransmitter-mediated stimuli. 

 

2. GLYCOLYSIS AND PPP CAN BE MODULATED BY 
ENDOGENOUS STIMULI WITH PATHOPHYSIOLOGICAL 
CONSEQUENCES 
 

We have previously shown that, in contrast to astrocytes, neurons continuously degrade 

the glycolytic-promoting enzyme PFKFB3 (Herrero-Mendez et al. 2009). This occurs by 

APCCdh1-mediated PFKFB3 ubiquitylation followed by proteasomal degradation, and is 

responsible for keeping glucose oxidized through the PPP (Herrero-Mendez et al. 2009). 

Here, now we show that short-term activation of glutamate receptors triggers a delayed, 

time-dependent accumulation of PFKFB3 protein. This effect depends on NMDAR, which 

are known to promote a cascade of events leading to APCCdh1 inhibition (Maestre et al. 

2008). Thus, through a Ca2+-calpain dependent mechanism, NMDAR promotes p35 

cleavage to p25 leading to cyclin-dependent kinase 5 (Cdk5) activation; in turn, active 

Cdk5 phosphorylates Cdh1, which is released from the APC complex leading to APCCdh1 

inhibition (Maestre et al. 2008). Accordingly, we hypothesized that the stabilization of 

PFKFB3 that we observed could be a consequence of the known NMDAR-mediated 

APCCdh1
 inhibition. As expected, Cdh1 was phosphorylated by glutamate treatment, thus 

under our conditions, APCCdh1 resulted inhibited. Furthermore, in agreement with the 

presence of a nuclear-targeting motif in PFKFB3 (Yalcin et al. 2009), we found that 

PFKFB3 was localized in the nucleus, where neurons actively degraded it. Thus, we 

hypothesized that, upon glutamate stimulation, PFKFB3 would spread from the nucleus 

to the cytosol. In fact, we found that such a spread took place in a Cdh1-inhibitable 

process, since the PFKFB3 mutant form lacking the Cdh1-recognizing KEN motif 

spontaneously accumulated in the cytosol. Together, these results indicate that PFKFB3 

nuclear stabilization followed by cytosolic spread is the consequence of APCCdh1 

inhibition. The mechanism whereby PFKFB3 is released from the nucleus remains 

unclear, although it seems to be specifically dependent on Cdh1. These results are likely 

of physiological significance in view of the cytoplasmic localization of the PFKFB3 target, 

PFK1. In fact, we found that NMDAR-mediated PFKFB3 protein stabilization and 

translocation to the cytosol led to increased glycolytic rate in neurons. 
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It should be noted that PFKFB3 stabilization takes place several hours (~6 h) after 

glutamate treatment, thus explaining the absence of measurable short-term glycolytic 

stimulation in cortical neurons in a previous study (Almeida & Bolanos 2001).  

Accordingly, the delayed increase in glycolysis that we observe does not appear to be a 

neuronal attempt to rapidly compensate for the mitochondrial energy dysfunction, which 

occurs immediately after NMDAR stimulation (Dugan et al. 1995).  Instead, the delayed 

glycolysis activation reflects a long-term metabolic adaptation of neurons by an 

excitotoxic insult, which is in agreement with previous findings indicating that, to be fully 

active, calpains must be activated by relatively high cytosolic Ca2+ concentrations (Baki 

et al. 1996, Tompa et al. 1996, Brustovetsky et al. 2010). Such an adaptation concurs 

with concomitant decrease in the rate of glucose oxidation through the PPP. Importantly, 

this shift (the increase in glycolysis and the decrease in PPP) could be fully abolished by 

siPFKFB3, indicating that both metabolic pathways are highly dependent on PFKFB3 

activity.  

 

Furthermore, the metabolic PPP to glycolysis shift triggered by NMDAR stimulation was 

accompanied by oxidative stress, as revealed both by an increase in the oxidized 

glutathione redox status and the increased mitochondrial superoxide detection, as well 

as apoptotic neuronal death. Either silencing PFKFB3 or G6PD overexpression 

prevented such a metabolic shift and the concomitant ROS production by NMDAR 

stimulation. Moreover, silencing PGI, which is able to both inhibit glycolysis (Herrero-

Mendez et al. 2009) and stimulate PPP (this work), was also sufficient to prevent 

NMDAR-mediated increase in ROS production. In conclusion, our results show that 

following PFKFB3 stabilization by NMDAR stimulation, neurons undergo oxidative stress 

and apoptotic cell death, highlighting the essential role of PPP at regulating neuronal 

apoptosis (Vaughn & Deshmukh 2008). Furthermore, we show that the loss of PPP 

activity by APCCdh1 inhibition should be considered a novel and important player in 

excitotoxicity, hence suggesting that selective inhibition of PFKFB3 in neurons might be 

considered as a novel therapeutic target against neurodegeneration. 

 

3. TIGAR: A NEW PLAYER IN NEURONAL GLUCOSE 
METABOLISM AND BEYOND 
 

In view that, at the light of our results, the levels of the PFKFB3 product, F2,6P2, control 

glucose metabolism and survival of neurons, we next aimed to elucidate whether TIGAR, 

a recently uncovered fructose-2,6-bisphosphatase enzyme (Bensaad et al. 2006), takes 
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a role in this function. First, we identified TIGAR protein in neurons and in astrocytes in 

primary culture, which has not been reported so far. Since TIGAR exerts the opposite 

metabolic effect of PFKFB3 (Bensaad et al. 2006, 2009), we next aimed to elucidate 

whether the lack of TIGAR mimicked PFKFB3 over-expression at modulating ROS and 

apoptosis. To do so, we first used TIGAR knockout mice, available at Prof. Karen 

Vousden´s group (Beatson Institute for Cancer Research, Glasgow, UK). Surprisingly, 

neither mitochondrial superoxide abundance nor apoptotic death was significantly 

increased in TIGAR knockout neurons. This is not unexpected in view that this knockout 

mice is not inducible, which might have up-regulated compensatory mechanisms. 

Accordingly, we next aimed to investigate the role of TIGAR by either over-expressing it, 

or knocking it down, both in rat and in mice neurons in primary culture. 

 

Interestingly, co-expression of TIGAR with the mutant form of PFKFB3 that is insensitive 

to APCCdh1 –hence stable in neurons– (mutPFKFB3), fully rescued the mutPFKFB3-

mediated increase in mitochondrial superoxide and apoptotic death. Next, we designed a 

siRNA against mouse TIGAR; knocking TIGAR down (siTIGAR) did not induce an 

increase in the glycolytic rate in neurons, which is not unexpected in view that neurons 

already express very low F2,6P2 levels (Almeida et al. 2004). However, siTIGAR was 

accompanied by an increase in apoptotic cell death that was independent of increased 

superoxide anion. In this context, it should be noticed that, besides its function as a 

bisphosphatase, very recently it has been reported that TIGAR can be present in 

mitochondria, where it links hexokinase-II to the outer membrane (Cheung et al. 2012). 

Moreover, it has also been shown that TIGAR can be present in the nucleus, where it 

may control cell cycle progression (Madan et al. 2012). We therefore hypothesized that 

the increase in apoptosis by siTIGAR under our conditions may be due to an alternative 

function of TIGAR besides its glycolysis regulatory ability. In fact, the 

immunofluorescence images of endogenous TIGAR in neurons and in astrocytes reveal 

its presence both in the nucleus and cytosol in neurons, but not in astrocytes where 

TIGAR could only be found in cytosol. Together, these results suggest that TIGAR may 

play a yet unknown function that requires its presence in the nucleus of neurons. 

Whether this is linked to neuronal differentiation and survival remains to be elucidated. 
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6. CONCLUSIONS 

AND FUTURE 

PERSPECTIVES 



 

 

 
102 



                                                            CONCLUSIONS AND FUTURE PERSPECTIVES                                              
 

  
103 

1. CONCLUSIONS 
 

At the light of the results presented in this work, we have obtained the following 

conclusions:  

 

1- The radiometric assays based on [3-3H]glucose incorporation into 3H2O, and on the 

difference in [1-14C] glucose and [6-14C ]glucose incorporations into 14CO2, are specific 

for determining the rates of glycolysis and PPP, respectively, in attached, intact primary 

neurons. However, phosphoglucose isomerase in neurons works at near-equilibrium, 

causing [14C] glucose isotopic dilution due to the return of [14C]-free fructose-6-phosphate 

into glucose-6-phosphate. Thus, the rates of PPP activity reported values are largely 

underestimated. 

 

2- Neurons metabolize, approximately, double of glucose-6-phosphate through the PPP 

and the rest trough glycolysis in resting conditions; however, this ratio is amenable to 

regulation to adapt neurons to a wild range of different stress conditions. 

 

3- Over-stimulation of glutamate receptors, mainly of the NMDA-subtypes, is sufficient to 

cause PFKFB3 protein stabilization leading to a PPP to glycolysis metabolic shift. 

Consequently, the redox status of glutathione changes leading to oxidative stress and 

apoptotic neuronal death. These results identify PFKFB3 as a novel therapeutic target 

against excitotoxicity. 

 

4- The recently discovered fructose-2,6-bisphosphatase enzyme, TIGAR, is expressed in 

neurons, where it contributes to the regulation of neuronal glycolysis. Thus, 

overexpression of TIGAR prevents PFKFB3-induced, superoxide-dependent apoptotic 

neuronal death. In contrast, TIGAR knockdown increases apoptotic neuronal death 

through a superoxide-independent manner. This, together with the intriguing nuclear 

localization of TIGAR in neurons, suggests a distinct, yet to be defined, function of this 

protein. 
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2. FUTURE PRESPECTIVES 
 

Here, we developed a sensitive and specific method for the determination of glucose 

metabolizing fluxes through pentose-phosphate pathway and glycolysis in neurons. A 

key feature of this novel method is that glucose metabolism can be studied in the 

attached neurons, i.e. still maintaining intact their axons and dendrites. This differs with 

previous protocols in which these studies were performed in detached, suspended 

neurons hence lacking these important processes. Accordingly, this method will be 

useful to assess how these metabolic pathways are finely tuned during 

neurotransmission upon different kinds of physiological stimuli. 

 

Our results also highlight that the unbalance in glucose metabolism has profound 

implications in neuronal redox status and survival. Thus, here we identified a novel 

molecular mechanism that can account for neuronal death during excitotoxicity, i.e. 

during excessive and long term activation of glutamate receptors. Excitotoxicity is a well-

known phenomenon associated with several neurodegenerative diseases and stroke. 

Accordingly, our work will open a new research opportunity to investigate different 

therapeutic approaches to those already in use. For instance, the development of potent 

specific inhibitors of PFKFB3 –which is responsible for the metabolic shift leading to 

neuronal death in excitotoxicity– is an interesting idea worth to pursue in the future. 

 

Finally, we have shown that the recently discovered protein TIGAR is expressed in 

neurons and in astrocytes. Furthermore, according to our data, in neurons TIGAR plays 

a key role in neuronal survival, although this might be associated to its nuclear 

localization, rather than to its metabolic effect at degrading fructose-2,6-bisphosphate 

and, hence, glycolysis. Studying the yet unknown regulatory mechanisms of TIGAR in 

neuronal survival and/or differentiation appears to be an attractive field worth to 

investigate in the near future. 
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INTRODUCCIÓN 
 

1. Metabolismo glucídico en el cerebro. 
 

A pesar de que el cerebro únicamente representa un 2% del peso total corporal, es 

responsable de más del 20% del consumo total de O2 y glucosa (Sokoloff 1992). 

Defectos en el metabolismo cerebral de glucosa se han relacionado con la aparición de 

enfermedades neurodegenerativas, como la enfermedad de Alzheimer  (Piert et al. 

1996), PD  (Aviles-Olmos et al. 2013) o Huntington  (Ciarmiello et al. 2006).  

 

Las principales vías de metabolización de glucosa son la glucolisis y la vía de las 

pentosas fosfato, a pesar de que los astrocitos también son capaces de almacenar 

glucógeno  (Wiesinger et al. 1997) y constituyen un reservorio importante de glucosa en 

condiciones en las que existe un déficit en el aporte de glucosa al cerebro  (Choi et al. 

2003). De hecho, el glucógeno almacenado por los astrocitos es fundamental para 

mantener la actividad sináptica y para la supervivencia neuronal en hipoglucemia 

(Swanson & Choi 1993, Suh et al. 2007). La actividad glucolítica es mucho más baja 

(aproximadamente 4 veces menor) en neuronas que en astrocitos  (Herrero-Mendez et 

al. 2009), una observación que va acompañada por una menor oxidación de la glucosa 

en el ciclo de los ácidos tricarboxílicos en neuronas (Garcia-Nogales et al. 2003). En 

astrocitos, en cambio, la glucosa se utiliza predominantemente por vía glucolítica y en 

concreto, transforman una gran parte de la glucosa en lactato  (Leo et al. 1993). De 

acuerdo con la hipótesis de la lanzadera de lactato astrocitos-neuronas, el lactato 

producido por los astrocitos se utiliza como fuente de energía por las neuronas (Bouzier-

Sore et al. 2003, Zielke et al. 2007,  Boumezbeur et al. 2010, Pellerin et al. 2007). 

 

La causa de la baja actividad glucolítica en neuronas es que presentan, a diferencia de 

los astrocitos, niveles muy bajos de fosfofructo-2-kinasa/fructosa-2,6-bisfosfatasa 

(PFKFB), en concreto, de la isoforma 3 (PFKFB3), que es la más abundante en cerebro 

(Herrero-Mendez et al. 2009). La PFKFB3 es una enzima bifuncional que presenta un 

dominio kinasa, que sintetiza fructosa-2,6-bisfosfato (F2,6P2), y un dominio bisfosfatasa, 

que desfosforila  F2,6P2  para obtener fructosa-6-fosfato. 

 

PFKFB3 en concreto, es la isoforma que presenta la relación kinasa/bisfosfatasa más 

alta (~700:1) (Ventura et al. 1991), de manera que su función es prácticamente kinasa, 

por tanto sintetiza F2,6P2. La F2,6P2 es el principal efector alostérico positivo de la 6-
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fosfofructo-1-kinasa (PFK1), una enzima clave en la regulación de la glucolisis, de modo 

que PFKFB3 se puede considerar una enzima pro-glucolítica. 

 

Los bajos niveles de PFKFB3 en neuronas se deben a que esta isoforma es la única 

que presenta una secuencia Lys-Glu-Asn (KEN), que es un motivo de reconocimiento 

por Cdh1, una proteína adaptadora de la E3 ubiquitina ligasa APC/C (anaphase-

promoting complex/cyclosome), que ubiquitina proteínas diana, marcándolas para su 

degradación por el proteasoma. A diferencia de los actrocitos, APC/C-Cdh1 es muy 

activo en neuronas y es el responsable de los bajos niveles de PFKFB3 en estas 

células. Este estricto control de los niveles de PFKFB3 es esencial para la supervivencia 

neuronal, puesto que de este modo las neuronas metabolizan parte de la glucosa por la 

vía de las pentosas-fosfato, que es esencial para generar NADPH(H+) y por tanto para la 

regeneración de glutatión, su principal sistema antioxidante (Herrero-Mendez et al. 

2009). 

 

Recientemente, se ha descubierto otra proteína que regula los niveles de F2,6P2 en la 

célula. TIGAR (TP53-induced glycolysis and apoptosis regulator), es una fructosa-2,6-

bisfosfatasa que en células tumorales promueve la defensa frente a estrés oxidativo 

promoviendo la actividad de la vía de las pentosas-fosfato (Bensaad et al. 2006, 2009). 

Además de sus funciones como bisfosfatasa, TIGAR puede translocarse a la 

mitocondria formando un complejo con la hexokinasa II, aumentando su actividad 

(Cheung et al. 2012) y también tiene efectos en regulación del ciclo celular en el núcleo 

(Madan et al. 2012). Hasta el momento no se conoce nada relacionado con la expresión 

o funciones de TIGAR en cerebro. 
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2. Neurotransmisión glutamatérgica y excitotoxicidad 
 

 

El glutamato es el principal neurotransmisor excitador en el sistema nervioso central 

(Butcher & Hamberger 1987), y está relacionado con el procesamiento de información y 

la plasticidad sináptica. Este neurotransmisor activa tres tipos principales de receptores 

ionotrópicos, acoplados a canales iónicos (AMPA, KAINATO y NMDA), y varios tipos de 

receptores metabotropicos, que están acoplados a proteínas-G (mGLU1 - mGLU8) 

(Dong et al. 2009). 

 

En concreto, los receptores NMDA (N-metil-D-Aspartato), son canales permeables a 

Na+, K+, y Ca2+. Cuando estos receptores son sobre-activados, tiene lugar un proceso 

patológico conocido como excitotoxicidad que está relacionado con el desarrollo de 

múltiples enfermedades neurodegenerativas, como la de Huntington  (Lievens et al. 

2001, Estrada-Sanchez et al. 2009), PD (Broadstock et al. 2012), Esclerosis Lateral 

Amiotrófica  (Kruman et al. 1999, Rothstein et al. 1995, Howland et al.  2002) o 

Alzheimer  (Mattson et al. 1992). 

 

La sobre-estimulación de receptores NMDA provoca una entrada masiva de Ca2+ en la 

célula que produce, entre otros efectos, disfunción mitocondrial que conlleva una bajada 

en los niveles de ATP,  estrés oxidativo (Wang et al. 1994, Khodorov et al. 1996), 

liberación de citocromo c (Urushitani et al. 2001, Luetjens et al. 2000) o activación de 

calpaínas, una familia de cisteína proteasas dependientes de Ca2+ (Brustovetsky et al. 

2010). Entre otros efectos, las calpaínas transforman p35 en p25. Cuando Cdk5 se une 

a p25 se activa (Lee et al. 2000) y a su vez fosforila Cdh1, inactivándolo y por tanto 

inhibiendo la actividad de APC/C-Cdh1, promoviendo la acumulación de sus sustratos 

(Jaquenoud et al. 2002, Maestre et al. 2008).  
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HIPÓTESIS Y OBJETIVOS 
 

1. Hipótesis 
 

En vista de los antecedentes descritos, nuestra hipótesis es que el metabolismo 

glucídico en neuronas en condiciones normales está dirigido principalmente hacia la 

PPP con el fin de generar poder reductor en forma de NADPH(H+). Cuando se produce 

un exceso de activación de receptores NMDA, la inactivación del complejo APC/C-Cdh1 

podría conllevar una estabilización de PFKFB3. En estas circunstancias podría tener 

lugar una modificación en el metabolismo neuronal que disminuyera la utilización de 

glucosa por la PPP y que por tanto pudiera contribuir al estrés oxidativo y a la muerte 

neuronal en excitotoxicidad. Además, TIGAR, cuya expresión y función en neuronas se 

desconoce, podría jugar un papel importante en este eje de regulación del metabolismo 

y la supervivencia neuronal debido a su actividad como fructosa-2,6-bisfosfatasa. 

 

 

2. Objetivos 
 

Con el fin de demostrar si estas hipótesis son ciertas, nos planteamos los siguientes 

objetivos: 

 

1- Establecer un método sensible y específico para la determinación del flujo glucolítico 

y de la actividad de la PPP en neuronas en cultivo adheridas a la placa. 

 

2- Cuantificar la actividad glucolítica y de PPP que presentan las neuronas en cultivo en 

condiciones basales. 

 

3- Determinar si la activación de receptores NMDA por glutamato conlleva una 

estabilización de PFKFB3 en neuronas, así como sus posibles consecuencias sobre el 

estado redox y la supervivencia neuronal. 

 

4- Analizar si TIGAR está presente en neuronas y, en ese caso, su implicación en la 

regulación del metabolismo y sus efectos sobre la supervivencia neuronal. 
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RESULTADOS Y DISCUSIÓN 
 

1. La actividad glucolítica en neuronas aumenta tanto al inhibir 
la vía de las pentosas fosfato como la captación mitocondrial de 
piruvato.  
 

Con el fin de estudiar el metabolismo glucídico en neuronas, pusimos a punto un nuevo 

protocolo para determinar la actividad glucolítica y de la vía de las pentosas fosfato en 

neuronas adheridas a la placa. El flujo de glucosa metabolizada por vía glucolítica se 

determinó como la velocidad de producción de  3H2O a partir de [3-3H] glucosa, un 

proceso que tiene lugar en la reacción catalizada por la aldolasa. De este modo, 

pudimos determinar que las neuronas en condiciones basales tienen una actividad 

glucolítica aproximada de 1.2 nmol/min x mg de proteína (Fig. 1). Las neuronas 

incubadas con dehidroepiandrosterona (DHEA; 1 μM), un inhibidor de la G6PD, la 

enzima limitante del flujo a través de la PPP, incrementaron su actividad glucolítica al 

doble de su actividad basal (Fig. 1),  lo que nos sugiere que una proporción considerable 

de glucosa (aproximadamente el 50%) se está metabolizando en la PPP. El tratamiento 

con 4-hidroxi-α-cianocinamato (HCN), un compuesto que a la concentración utilizada 

inhibe selectivamente la captación de piruvato por la mitocondria, incrementó ~125% la 

actividad glucolítica, lo que podría deberse a un intento por parte de las neuronas de 

compensar la falta de piruvato que entra en la mitocondria y por tanto la posible bajada 

en los niveles de ATP. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1. La actividad glucolítica se 

incrementa significativamente con DHEA e 

HCN. Neuronas a 6 días de cultivo fueron 

incubadas en el medio de experimentación 

que contenía 5 μCi/ml de D-[3-3H] glucosa 

más DHEA 1μM o  HCN 0.1mM. La 

velocidad glucolítica fue determinada 

mediante la medida de la incorporación de  

[3-3H] glucosa en 3H2O durante los 90 

minutos de incubación del experimento.  

*P<0.05 (ANOVA)(n=3). 
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2. La velocidad de oxidación de glucosa por la PPP se inhibe 
con DHEA.  
 

En vista de los resultados obtenidos previamente, decidimos determinar la actividad de 

la PPP en neuronas. Para ello, las neuronas se incubaron en presencia de [1-14C] 

glucosa o de [6-14C]glucosa y se midió el  14CO2 liberado. La  [1-14C]glucosa se 

descarboxila en la reacción catalizada por la 6-fosfogluconato deshidrogenasa y en la 

descarboxilación de la acetil-CoA en las reacciones catalizadas por la isocitrato 

deshidrogenasa y la α-cetoglutarato deshidrogenasa en el ciclo de los ácidos 

tricarboxílicos. En cambio, la [6-14C]glucosa únicamente se descarboxila en el TCA. De 

este modo, la diferencia entre el 14CO2 liberado a partir de la [1-14C]glucosa y el liberado 

a partir de la [6-14C]glucosa se utiliza como una estimación de la glucosa metabolizada 

por la PPP. Como se muestra en la figura 2, la velocidad de oxidación de la glucosa en 

la PPP fue de aproximadamente 0.2 nmol/min x mg proteína y la incubación con DHEA 

disminuyó un 50% la actividad de la vía.  De acuerdo con estos resultados, el 

tratamiento con DHEA incrementó la actividad glucolítica 1.2 nmol/min x mg proteína 

pero únicamente disminuyo la de la PPP 0.1 nmol/min x mg proteína, lo que nos indica 

que la determinación de la actividad de la PPP utilizando esta metodología podría estar 

altamente infraestimada.  

 

  

 

 

 

 

 

 

 
 
 
 

 

 

 

Figura 2. La velocidad de la PPP disminuye 

significativamente en las neuronas tratadas 

con DHEA. Neuronas a 6 días de cultivo 

fueron incubadas en medio de 

experimentación que contenía 0.5 μCi/ml de 

D-[1-14C]glucosa o D-[6-14C]glucosa durante 

90 minutos y la velocidad de la PPP fue 

determinada como la diferencia entre el 
14CO2 proveniente de la descarboxilación de 

[1-14C]glucosa y el proveniente de la 

descarboxilación de [6-14C]glucosa. *P<0.05 
(ANOVA)(n=3). 
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3. La fosfoglucosa isomerasa (PGI) presenta una actividad 
elevada en neuronas.  

 
En vista de los bajos niveles de 14CO2 provenientes de la [1-14C] glucosa detectados, 

nos planteamos la posibilidad de que la F6P regenerada a partir de la fase no oxidativa 

de la PPP, que ya no es radiactiva, pudiera estar siendo convertida de nuevo en G6P 

por la PGI. En este caso, la radiactividad de la reserva de G6P podría verse altamente 

disminuida, pudiendo ser la causa de la infraestimación de la actividad de la PPP 

observada. Con el objeto de esclarecer si esta podría ser la causa, medimos la actividad 

específica de la PGI. Como se muestra en la figura 3, la actividad de la PGI resultó ser 

tan alta como la de la PFK1. Sin embargo, el flujo de F6P a través de la PFK1 está 

limitado en neuronas como consecuencia de la baja síntesis de su efector alostérico 

positivo, la fructosa-2,6-bisfosfato, mientras que la PGI es una enzima cercana al 

equilibrio y la dirección de la actividad de esta enzima depende exclusivamente de las 

concentraciones relativas de F6P y G6P. Debido a esto, es posible que una gran 

proporción de F6P proveniente de la PPP se esté reconvirtiendo en G6P y por tanto 

contribuyendo a la dilución isotópica de la G6P, resultando en una aparentemente baja 

liberación de 14CO2 a partir de [1-14C] glucosa. 

 

 

 

 

 

 

Figura3. La PGI presenta una actividad 

similar a la PFK-1 en neuronas. Neuronas a 

6 días de cultivo fueron lisadas con 3 ciclos 

de congelación/descongelación. El extracto 

así obtenido se utilizó para medir la 

actividad de la PGI y PFK-1. 
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4. El silenciamiento de la PGI conlleva un incremento en la 
actividad de la PPP. 
 

Seguidamente, nos propusimos comprobar de manera más directa nuestra hipótesis. 

Para ello, diseñamos un siRNA dirigido contra la PGI (siPGI). A los 3 días de cultivo, las 

neuronas primarias se transfectaron con siPGI, que como se muestra en la figura 4a 

disminuyó con éxito los niveles de proteína (~70%) después de 72 horas, y se utilizaron 

para determinar la actividad de la PPP. Como se observa en la figura 4b, la actividad de 

la PPP detectada se incrementó significativamente en las neuronas transfectadas con 

siPGI. Este resultado es compatible con que la radiactividad específica de la [1-14C] G6P 

se vea diluida por la entrada de G6P no radiactiva proveniente de F6P, es más, indica 

que la PGI en neuronas recicla G6P activamente. 

 

En conjunto, estos datos sugieren que la glucosa que entra en las neuronas se oxida 

activamente por la PPP junto con G6P reciclada a partir de F6P proveniente de la fase 

no oxidativa de la PPP. Sin embargo, debido a la dilución isotópica de la G6P, el valor 

real de la proporción de glucosa que se incorpora a la PPP no se puede determinar, al 

menos utilizando esta metodología. 
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Figura 4. a) El siRNA dirigido contra la PGI silencia eficazmente la proteína en 

neuronas. Neuronas a 3 días de cultivo se transfectaron con siControl o siPGI 100 nM. 

72 horas después las células se lisaron en RIPA y se sometieron a una transferencia de 

western blot para comprobar el silenciamiento de la PGI.  b) La velocidad de la PPP se 

incrementa significativamente al silenciar la PGI. Neuronas a 6 días de cultivo se 

incubaron en tampón de experimentación que contenía 0.5 μCi/ml de  D-[1-14C] glucosa 

o D-[6-14C] glucosa durante 90 minutos y la velocidad de la vía se determinó calculando 

la diferencia entre el  14CO2 producido por [1-14C] glucosa y el producido por [6-14C] 

glucosa. *P<0.05 (ANOVA)(n=3). 

 

5. Efecto de DHEA e HCN sobre la concentración de G6P  
 

Finalmente, para ver cómo la PPP está dinámicamente acoplada con la glucolisis en 

neuronas, investigamos los efectos de la inhibición de la PPP y de la capación de 

piruvato por la mitocondria sobre las concentraciones de G6P. Como se muestra en la 

figura 5, la G6P se acumuló en las neuronas tratadas con DHEA. Este resultado sugiere 

de manera convincente que existe un alto flujo de G6P hacia la PPP en neuronas. En 

cambio, el tratamiento con HCN no afectó a la concentración de G6P.  

 

 

 

 

 
 

 

 

Figura 5. La G6P se acumula en las neuronas 

tratadas con DHEA, pero no se ve afectada por 

HCN. Neuronas a 6 días de cultivo se incubaron 

con DHEA 1 μM DHEA o HCN 0.1 mM durante 90 

minutos. Posteriormente las células se lisaron en 

NaOH 0.6 M. El extracto resultante se 

desproteinizó con el mismo volumen de ZnSO4  al 

1% w/v y se utilizó para determinar la 

concentración de G6P. *P<0.05 (ANOVA)(n=3). 
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6. Las neuronas corticales en cultivo primario responden a la 
activación de los receptores de glutamato incrementando los 
niveles de Ca2+ intracelular. 
 

Seguidamente, en vista de que nuestros datos indican que tanto la glucolisis como la 

PPP son procesos altamente dinámicos en neuronas, nos propusimos investigar si estas 

vías de metabolización de glucosa se pueden modular de manera endógena por 

estímulos fisiológicos de neurotransmisión. En primer lugar quisimos determinar si las 

neuronas a 6 días de cultivos expresan receptores funcionales de glutamato. Para ello, 

medimos los cambios en los niveles de Ca2+ intracelular utilizando Fura-2, una sonda 

que emite fluorescencia a 510 nm, pero cuya longitud de onda de excitación varía de 

363 nm (libre) a 335 nm (unida a Ca2+). De este modo, la relación F335/F363 es 

directamente proporcional a los niveles de Ca2+ intracelular. Como se muestra en la 

figura 6a, la incubación de neuronas con glutamato (100 μM, 15 min) incrementó 

inmediatamente la fluorescencia de Fura-2, lo que sugiere una entrada de Ca2+ en las 

neuronas por medio de receptores ionotrópicos de glutamato. Este incremento en la 

entrada de Ca2+ se previno parcialmente con MK801 (1 µM), un inhibidor selectivo de los 

receptores NMDA, indicando que una proporción elevada (~60%) del Ca2+ que entraba 

en la célula estaba mediada por la activación de estos receptores. Es más, la incubación 

de neuronas con NMDA incrementó los niveles de Ca2+ intracelular de manera similar al 

glutamato y una vez más este efecto se previno con MK801 (~90%). Como era de 

esperar, la incubación de neuronas con NMDA o glutamato en la presencia de un 

tampón al que se le añadió EGTA, un quelante de calcio, no produjo ningún cambio en 

la emisión a 510 nm.  

 

En conclusión, las neuronas corticales de rata a 6 días de cultivo expresan receptores 

NMDA funcionales, lo que nos permite investigar los efectos metabólicos de este 

neurotransmisor.  
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Figura 6. La incubación de neuronas corticales de rata a 6 días de cultivo con glutamato 

(panel izquierdo) o NMDA (panel derecho), incrementaron la relación  F335/F363 de 

Fura-2, indicando un incremento en los niveles intracelulares de Ca2+. La incubación con 

MK801 (10 μM) previno parcialmente tanto el efecto del glutamato como el del NMDA. 

La utilización de un tampón libre de Ca2+, conteniendo EGTA 1 mM, previno 

completamente los cambios de emisión a 510 nm en ambas condiciones.  

 
7. La activación de receptores NMDA promueve la estabilización 
de la enzima pro-glucolítica PFKFB3 en neuronas.   
 

Resultados previos en nuestro laboratorio demostraron que la estimulación de 

receptores NMDA activa la ciclina dependiente de kinasa 5 (Cdk5) por un mecanismo 

dependiente de Ca2+ y calpaina (Herrero-Mendez et al. 2009). A su vez, Cdk5 

hiperfosforila Cdh1, que es un co-activador del complejo promotor de la 

anafase/ciclosoma (APC/C). Cdh1 hiperfosforilado, se separa del complejo, por tanto 

inhibiendo su actividad como E3 ubiquitina-ligasa (Maestre et al. 2008). 

 

En vista de que también hemos demostrado que  la PFKFB3 es un sustrato de APC/C-

Cdh1 (Herrero-Mendez et al. 2009), razonamos que la estimulación de receptores 

NMDA, mediante la inactivación de APC/C-Cdh1 podría conllevar una estabilización de 

PFKFB3. Con el fin de comprobar esta hipótesis, incubamos neuronas con glutamato 
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(100 μM, 15 min) y analizamos tanto los niveles de PFKFB3 como el estado de 

fosforilación de Cdh1 a distintos tiempos mediante western blot. Para determinar el 

estado de fosforilación de Cdh1, la proteína se inmunoprecipitó a partir de lisados 

obtenidos a las 6 horas post-tratamiento, se sometió a una transferencia de western blot 

y se incubó con un anticuerpo anti fosfo serina. Como se muestra en la figura 7a, el 

tratamiento con glutamato ocasionó un aumento en la fosforialación de Cdh1, efecto que 

se previno por completo con la utilización de MK801. Esto indica que en estas 

condiciones, la estimulación de receptores NMDA inhibe el complejo APC/C-Cdh1, de 

acuerdo con nuestras observaciones previas. El análisis de los niveles de PFKFB3 

mediante western mostró que el tratamiento con glutamato producía una acumulación 

tiempo dependiente de la proteína, efecto que fue máximo a las 6 horas (Figura 7b). 

Este efecto fue mimetizado por neuronas estimuladas con NMDA (Figura 7c), lo que 

demuestra la implicación de estos receptores. Es más, como se muestra en la figura 7d, 

la incubación de las neuronas con MK801 previno la acumulación de PFKFB3. En 

conjunto estos datos indican que la estimulación de los receptores NMDA inhibe la 

actividad del complejo APC/C-Cdh1, lo que conlleva la acumulación de PFKFB3 en 

neuronas primarias. 
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Figura 7. a) Cdh1 se encuentra fosforilado 6 horas después del tratamiento con 

glutamato (100 μM/15 min), un efecto que se previene con MK801 (10 μM). b) La 

incubación de neuronas con glutamato (100 μM/15 min) produce una acumulación de 

PFKFB3 tiempo-dependiente, cuyo máximo efecto se observa a las 6 horas de 

tratamiento. c) NMDA (100 μM/15 min) produce el mismo efecto de acumulación de 

PFKFB3 que le glutamato. d) El antagonista de los receptores NMDA MK801 (10 μM), 

previene el incremento de PFKFB3 mediado por glutamato.  

 

8. La estimulación de receptores NMDA produce la translocación 
del núcleo al citosol de la PFKFB3.  
 

En vista que nuestros resultados indican que la proteína PFKFB3 está siendo 

continuamente degradada por APC/C-Cdh1 y que APC/C-Cdh1 es activa en el núcleo, 

nos propusimos investigar la localización subcelular de PFKFB3. Para ello expresamos 

tanto PFKFB3 silvestre como una construcción constitutivamente estable en la que la 

KEN box, responsable de su degradación, fue mutada a AAA (denominada 

mutPFKFB3), ambas fusionadas con GFP, y analizamos los cambios en su localización 

subcelular. Las neuronas se transfectaron con cantidades pequeñas (0.16 μg/ml) de 

cada uno de estos plásmidos y su localización se analizó por microscopía confocal. 

Como se muestra en la figura 8, PFKFB3 silvestre está localizada en el núcleo, mientras 

que la mutante mostraba también una localización citosólica. El tratamiento de las 

neuronas con glutamato (100 µM / 15 min) produjo un cambio de PFKFB3 hacia el 

citoplasma, efecto que se previno al sobreexpresar Cdh1. En conjunto, estos resultados 

indican que la proteína PFKFB3 está localizada en el núcleo, donde es marcada para su 

degradación por APC/C-Cdh1; sin embargo, el tratamiento con glutamato, al inhibir la 

actividad del complejo, estabiliza PFKFB3, que a su vez sale del núcleo. Nuestro 

siguiente objetivo fue ver si los cambios en la estabilidad de PFKFB3, así como sus 

cambios en localización subcelular, tenían algún efecto sobre el flujo de la glucosa a 

través de la vía glucolítica. 
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Figura 8. Imágenes de microscopía confocal de neuronas transfectadas con GFP-

PFKFB3. El tratamiento con glutamato promueve la acumulación y localización de 

PFKFB3 tanto en el núcleo como el en citosol celular, efecto que se previene con la 

sobreexpresión de Cdh1. GFP-PFKFB3, mutado en su caja KEN (KEN-AAA; mut-

PFKFB3) muestra esa misma localización independientemente del tratamiento con 

glutamato.   
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9. La estabilización de PFKFB3 mediada por receptores NMDA 
aumenta la actividad glucolítica y disminuye la de PPP 
 

Es sabido que la PFKFB3, mediante la síntesis de F2,6P2, promueve la glucolisis en 

neuronas. En vista que la estimulación de receptores NMDA produce una estabilización 

de PFKFB3, nos propusimos investigar sus posibles consecuencias funcionales. Para 

ello, después de 6 horas post estimulación de los receptores NMDA, se midió la 

actividad glucolítica en neuronas determinando la producción de 3H2O a partir de [3-3H] 

glucosa. Como se muestra en la figura 9a, la estimulación de los receptores NMDA 

produjo un incremento en la velocidad glucolítica en neuronas. Con el fin de comprobar 

que ese efecto era debido a una acumulación de PFKFB3, diseñamos un siRNA contra 

la proteína, cuya eficiencia fue comprobada por western blot. Para ello, la construcción 

GFP-PFKFB3 se expresó en neuronas, lo que produjo una acumulación de la PFKFB3 a 

juzgar por la intensidad de la banda obtenida con un anticuerpo anti-GFP (Figura 9b), 

sin embargo, la transfección de las neuronas con siPFKFB3, disminuyó la abundancia 

de la proteína, es más, el tratamiento con glutamato produjo un incremento en la 

intensidad de la banda GFP-PFKFB3, sugiriendo una estabilización de la PFKFB3, 

efecto que también se previno con siPFKFB3. Como se muestra en la figura 9a, el 

incremento en la velocidad glucolítica producido por glutamato se previno en neuronas 

previamente transfectadas con siPFKFB3, lo que indica que la estabilización de esta 

proteína era la responsable del incremento en velocidad glucolítica observado. Es más, 

en vista de que nuestros resultados previos muestran que la glucolisis y PPP son vías 

dinámicamente relacionadas en neuronas, también investigamos si el incremento en 

glucolisis afectaba a la actividad de la PPP. Como se muestra en la figura 9c, las 

neuronas tratadas con glutamato también mostraron, a las 6 horas, una reducción de la 

velocidad de oxidación de la glucosa por la PPP, un efecto que se previno 

completamente en las neuronas previamente transfectadas con siPFKFB3. Por tanto, 

nuestros resultados indican que la estimulación de receptores NMDA en neuronas 

produce una inhibición, mediada por Ca2+ de la actividad de APC/C-Cdh1, que a su vez 

origina una estabilización de PFKFB3 en el citosol, produciendo una desviación del 

metabolismo de la glucosa hacia glucolisis, disminuyendo la PPP. 
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Figura 9. a) La incubación de neuronas con glutamato  (100 μM/15 min) produjo un 

incremento a las 6 horas de la velocidad glucolítica, determinada mediante la producción 

de 3H2O a partir de [3-3H] glucosa; este efecto se previno evitando la acumulación de 

PFKFB3 mediante una transfección previa de las neuronas con siPFKFB3. b) La 

incubación de neuronas expresando GFP-PFKFB3 con glutamato(100 μM/15 min), 

indujo, a las 6 horas post tratamiento, la acumulación de la proteína, efecto que se 
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previno en las neuronas previamente transfectadas con siPFKFB3 (100 nM). c) El 

tratamiento con glutamato disminuyó, a las 6 horas post tratamiento, la velocidad de la 

PPP, determinada mediante el cálculo de la diferencia entre el 14CO2 producido a partir 

de [1-14C] glucosa y el producido a partir de [6-14C] glucosa; este efecto se previno en 

las neuronas previamente transfectadas con siPFKFB3. *P<0.05 (ANOVA)(n=3). 

 

10. La estimulación de receptores NMDA produce un defecto en 
la regeneración de glutatión mediada por la estabilización de 
PFKFB3  
 

La oxidación de glucosa en la PPP genera NADPH(H+), un cofactor de múltiples 

enzimas entre las que se encuentra la glutatión reductasa. La glutatión reductasa 

necesita un aporte continuo de NADPH(H+) para regenerar glutatión (GSH) a partir de su 

forma oxidada, GSSG. En vista de que la estimulación de receptores NMDA conlleva un 

incremento en glucolisis y una disminución en la actividad de la PPP, quisimos saber si 

esa disminución en la actividad de la PPP produce un desbalance en la capacidad de 

las neuronas de regenerar glutatión. Para ello analizamos los niveles de glutatión total 

(GSx) y oxidado (GSSG) en neuronas a las 6 horas de estimulación de los receptores 

NMDA. Como se muestra en la figura 10, el tratamiento con glutamato no modificó la 

concentración total de glutatión, pero incrementó significativamente su forma oxidada. 

Todos estos efectos se previnieron parcialmente con siPFKFB3, indicando que fueron, 

al menos en parte, mediados por la estabilización de PFKFB3 producida por la 

estimulación de los receptores NMDA. 
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Figura 10. El tratamiento con glutamato no modificó la concentración de GSx (panel 

izquierdo), pero incrementó la de GSSG (panel intermedio) y por tanto el estado redox 

general del glutatión (GSSG/GSx; panel derecho); estos efectos se previnieron 

parcialmente con siPFKFB3. Neuronas a 3 días de cultivo fueron transfectadas con 

siControl o siPFKFB3 (100 nM). Al sexto día se trataron con glutamato (100 μM/15 min) 

y los extractos celulares obtenidos a las 6 horas post tratamiento se utilizaron para la 

determinación de glutatión. *P<0.05 (ANOVA)(n=3). 

 

11. La desviación del metabolismo de la glucosa de la PPP a 
glucolisis como consecuencia de la estimulación de receptores 
NMDA produce estrés oxidativo 
 

En vista de que el glutatión reducido es esencial para la detoxificación de las especies 

reactivas de oxígeno mitocondriales, nos planteamos que el incremento en glutatión 

oxidado mediado por NMDAR podría originar estrés oxidativo. Para comprobar esta 

hipótesis, analizamos la abundancia de anión superóxido en la mitocondria, utilizando la 

sonda MitoSox-Red. Como se muestra en la figura 11a, el tratamiento de las neuronas 

con glutamato produjo, a las 16 horas, un incremento significativo en los niveles 

mitocondriales de anión superóxido, sugiriendo estrés oxidativo. Este efecto se previno 

silenciando la PGI, un tratamiento que, según nuestros resultados previos, es capaz de 
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incrementar la actividad de la PPP (figura 4b). Para comprobar si este efecto era 

consecuencia de un incremento en la glucolisis, silenciamos PFKFB3 previamente al 

tratamiento con glutamato. Como se muestra en la figura 11a, siPFKFB3 previno casi 

totalmente el incremento en superóxido.  Para apoyar la hipótesis de que el estrés 

oxidativo mediado por la activación de receptores NMDA es debido, al menos en parte, 

a una inhibición de la actividad de la PPP, nos propusimos investigar si este efecto se 

prevenía al sobreexpresar la G6PD, la enzima limitante de la PPP. Como se muestra en 

la figura 11b, la expresión del cDNA codificante para la proteína conllevó un aumento 

significativo de los niveles de G6PD y este efecto fue suficiente para rescatar 

completamente el incremento en superóxido mitocondrial causado por NMDA (Figura 

11a).  Finalmente, comprobamos que el efecto observado sobre los niveles 

mitocondriales de superóxido era exclusivamente dependiente de la activación de 

NMDA, a juzgar por la completa protección brindada por su antagonista, MK801 (figura 

11b).  
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Figura 11. a) El tratamiento con glutamato (100 μM/15 min) incrementó los niveles de 

anión superóxido en neuronas, medido mediante la detección de fluorescencia de 

MitoSox-Red por citometría de flujo; este efecto se previno silenciando PGI (siPGI) o 

PFKFB3 (siPFKFB3), sobreexpresando G6PD o bloqueando los receptores NMDA con 

MK801 (10 μM). b) la transfección de neuronas con el cDNA completo codificante para 

G6PD (1.6 μg/m) incrementó eficientemente la abundancia de la proteína. *P<0.05. 

(ANOVA)(n=3). 

 

12. La activación de receptores NMDA induce muerte neuronal 
por apoptosis como consecuencia de la desviación del 
metabolismo glucídico de la PPP a glucolisis 
 

Como la estimulación de receptores NMDA produce estrés oxidativo como 

consecuencia de la desviación del metabolismo de la glucosa hacia glucolisis, y dado 

que el estrés oxidativo puede desencadenar la muerte neuronal, a continuación 

quisimos investigar si esta modificación en el metabolismo producía muerte neuronal por 

apoptosis. Para ello, las neuronas se trataron con glutamato  (100 µM / 15 min) y 16 

horas después se incubaron con anti anexina V y 7AAD con el fin de determinar 

mediante citometría de flujo las neuronas que estaban sufriendo apoptosis. Como se 

muestra en la figura 12, la proporción de neuronas anexina V+/7AAD- se incrementó 

significativamente en las neuronas tratadas con glutamato. Este efecto se previno 

parcialmente silenciando la PGI o la PFKFB3, sobre expresando la G6PD o bloqueando 

los receptores NMDA con MK801. Por tanto, la estimulación de receptores NMDA 

induce la muestre neuronal por apoptosis como consecuencia del cambio en el 

metabolismo de la glucosa de PPP a glucolisis. 
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Figura 12. El tratamiento con glutamato incrementó la muerte neuronal por apoptosis, 

como se pudo observar mediante el análisis por citometría de flujo de la relación de 

células anexina V+/7AAD-; este efecto se previno silenciando PGI (siPGI, 100 nM) o  

PFKFB3 (siPFKFB3, 100 nM), sobre expresando G6PD (1.6 μg/ml) o bloqueando los 

receptores NMDA con  MK801 (10 μM). *P<0.05.(ANOVA)(n=3). 

 

13. La expresión de una forma mutada de PFKFB3 no detectable 
por APC/C-Cdh1 produce un efecto similar a la activación de 
receptores NMDA  
 

Para apoyar los resultados que indican que la estabilización de PFKFB3 producida por 

la inhibición de APC/C-Cdh1 es la responsable del estrés oxidativo y apoptosis, nos 

propusimos investigar si este fenotipo podría ser reproducido mediante la expresión de 

una forma mutada de la PFKFB3 que no puede ser reconocida por APC/C-Cdh1. Como 

se muestra en la figura 13a, la incubación de neuronas expresando PFKFB3 silvestre 

con glutamato, incrementó los niveles de superóxido en la mitocondria de forma similar 

a las neuronas que expresaban la forma mutada (mutPFKFB3). La determinación de las 

neuronas que estaban sufriendo un proceso de apoptosis produjo resultados idénticos 

(figura 13b). En conjunto, estos resultados indican que la inhibición de APC/C-Cdh1 

mediada por la estimulación de receptores NMDA produce una estabilización de 

PFKFB3 que hace que aumenten los niveles de glutatión oxidado y finalmente origina la 
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muerte neuronal por apoptosis. Por tanto, PFKFB3 podría ser considerada una diana 

terapéutica interesante en el tratamiento de desórdenes en el sistema nervioso central 

en los que se haya descrito un exceso de neurotransmisión glutamatérgica 

(excitotoxicicidad).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 13. a) El tratamiento con glutamato (100 μM/15 min) incrementó los niveles de 

superóxido en neuronas transfectadas con concentraciones pequeñas de PFKFB3 

silvestre (0.16 μg/ml); la transfección de neuronas con las mismas cantidades de cDNA 

de mutPFKFB3 incrementó los niveles de superóxido de manera similar al tratamiento 

con glutamato; sin embargo, el glutamato no incrementó más los niveles de superóxido 

en neuronas expresando mutPFKFB3. b) El tratamiento con glutamato incrementó la 

muerte por apoptosis en neuronas transfectadas con niveles bajos de cDNA de PFKFB3 

silvestre; la transfección con cantidades idénticas de cDNA de mutPFKFB3 incrementó 

la muerte por apoptosis de forma similar al glutamato; sin embargo, el glutamato no 

incrementó aún más la apoptosis en las neuronas expresando mutPFKFB3. *P<0.05 

(ANOVA)(n=3). 
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14. La proteína TIGAR, con función fructosa-2,6-bisfosfatasa, se 
encuentra expresada en neuronas  
 

TIGAR (Tp53-inducible glycolysis and apoptotic regulator) es una proteína con actividad 

fructosa-2,6-bisfosfatasa que ha sido recientemente descubierta.  En vista de que 

TIGAR podría tener efectos metabólicos opuestos a PFKFB3, nos preguntamos si la 

regulación de la actividad glucolítica en neuronas podría estar regulada tanto por TIGAR 

como por PFKFB3. Para ello, en primer lugar quisimos investigar si esta proteína está 

expresada en neuronas corticales de rata y en astrocitos en cultivo primario, mediante 

western blot. Como se muestra en la figura 14, TIGAR está expresada en ambos tipos 

celulares, siendo su expresión algo mayor en neuronas.  

 

 

 

 

 

 

 

 

 

 

 

 

15.  Determinación de apoptosis y niveles de superóxido en 
neuronas procedentes de ratones KO de TIGAR 
 

Dado que TIGAR presenta una actividad opuesta a la PFKFB3 y que previamente 

hemos observado que la acumulación de PFKFB3 produce estrés oxidativo y muerte 

neuronal por apoptosis, nos propusimos investigar si la deficiencia de TIGAR producía 

efectos similares a la sobreexpresión de PFKFB3. Para ello en primer lugar utilizamos 

ratones KO para TIGAR disponibles en el grupo de la doctora Karen Vousden (Beatson 

Institute for Cancer Research, Glasgow, Reino Unido) y realizamos cultivos primarios de 

neuronas corticales para medir  los niveles de superóxido y la muerte por apoptosis. 

Como se observa en las figuras 15a y 15b, ni los niveles mitocondriales de superóxido ni 

la muerte por apoptosis se vieron incrementados en las neuronas procedentes de estos 

animales.  Sin embargo, razonamos que puesto que estos ratones no son inducibles, el 

 

Figura 14. TIGAR está presente tanto en 

neuronas como astrocitos y las neuronas 

presentan niveles ligeramente mayores 

de la proteína. Neuronas a 6 días de 

cultivo y astrocitos a día 15 se lisaron en 

tampón RIPA y se sometieron a una 

transferencia de western blot con el fin 

de analizar los niveles de TIGAR en 

ambos tipos celulares.  
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metabolismo glucolítico podría estar sufriendo algún proceso de compensación que 

impidiera observar un fenotipo claro. Por ello decidimos realizar nuevos experimentos 

modulando los niveles de TIGAR tanto por sobreexpresión como por silenciamiento. 

 

 

 

 

 

 
Figura 15. Detección de los niveles de anión superóxido mitocondriales y la muerte 

neuronal por apoptosis en neuronas de ratones silvestres y KO para TIGAR  a 6 días de 

cultivo. a) Las neuronas procedentes del ratón KO para TIGAR presentan niveles de 

superóxido similares a los del silvestre, determinados mediante el análisis de 

fluorescencia de MitoSox-Red por citometría de flujo. b) Las neuronas procedentes del 

ratón KO para TIGAR no muestran un incremento significativo en los niveles de 

apoptosis respecto al control, determinados mediante la relación de neuronas anexina 

V+/7AAD-
  por citometría de flujo. (ANOVA). 

 

16. TIGAR previene el incremento en superóxido mitocondrial y 
en apoptosis mediado por PFKFB3. 
 

Seguidamente, decidimos investigar si el eje TIGAR-PFKFB3, mediante su capacidad 

para regular la glucolisis, podría regular los niveles de superóxido y la supervivencia 

neuronal. Para ello se expresó la forma mutPFKFB3 en concentraciones muy bajas 

(0.16 μg/ml) en neuronas corticales de rata en cultivo primario que, como se ha 

mostrado previamente, produce incrementos significativos en los niveles de superóxido 

mitocondriales y en la muerte por apoptosis. La co-expresión de TIGAR a altas 

concentraciones (1.6 μg/ml) previno completamente estos efectos (figuras 16a y 16b).  
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En conclusión, tanto el estrés oxidativo como la muerte neuronal por apoptosis parecen 

estar regulados por el eje TIGAR-PFKFB3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 16 a) La neuronas que expresan mutPFKFB3 (0.16 μg/ml) presentan un 

incremento en los niveles de anión superóxido mitocondrial, determinado mediante el 

análisis, por citometría de flujo, de la fluorescencia de MitoSox-Red, en comparación 

con las neuronas que expresan niveles idénticos de PFKFB3 silvestre. El incremento en 

superóxido se previene sobreexpresando TIGAR (1.6 μg/ml). b) Las neuronas que 

expresan niveles bajos de mutPFKFB3 presentan un incremento en la muerte por 

apoptosis, determinada mediante la medida por citometría de flujo de la proporción de 

células anexina V+/7AAD-, que también se previene sobreexpresando TIGAR. *P<0.05 

(ANOVA)(n=3). 

 

17. El silenciamiento de TIGAR no es suficiente para incrementar 
la velocidad glucolítica en neuronas primarias  
 

Seguidamente, silenciamos TIGAR en neuronas primarias de ratón. Para ello, 

diseñamos un siRNA contra TIGAR de Mus musculus. La transfección de neuronas con 

siTIGAR produjo un considerable (aunque no completo) descenso en los niveles de 

TIGAR después de 3 días (figura 17a). Sin embargo, no detectamos ningún incremento 
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significativo en la actividad glucolítica en neuronas transfectadas con siTIGAR respecto 

a las transfectadas con siControl (figura 17b).  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Figura 17. a) El siRNA de TIGAR silencia eficientemente los niveles de proteína en 

neuronas a los 3 días de transfección. Neuronas a 3 días de cultivo fueron transfectadas 

con siControl o siTIGAR (20 nM) a los 6 días de cultivo, las células se lisaron y se 

analizaron los niveles de proteína mediante western blot. b) La velocidad glucolítica, 

determinada mediante la producción de 3H2O a partir de [3-3H] glucosa no aumenta 

significativamente en las neuronas transfectadas con siTIGAR.(ANOVA). 

 
18. El silenciamiento de TIGAR en neuronas incrementa la 
muerte por apoptosis sin afectar a los niveles de superóxido 
 

En vista que los resultados obtenidos sobre los niveles de superóxido y apoptosis 

mediante la sobreexpressión de TIGAR eran aparentemente inconsistentes con los 

obtenidos con el ratón KO, decidimos investigar esos efectos en neuronas en las que 

previamente silenciamos TIGAR. Para ello las neuronas corticales primarias de ratón se 

transfectaron con siTIGAR y posteriormente se trataron con glutamato, con el fin de 

estimular los receptores NMDA. Como se muestra en la figura 18a, siTIGAR no 

incrementó los niveles de superóxido, sin embargo, sí incrementó la muerte neuronal 

por apoptosis, es más, las neuronas transfectadas con siTIGAR vieron potenciado el 

efecto del glutamato sobre la muerte neuronal (figura 18b). En conjunto, nuestros 

resultados sugieren que, independientemente de un posible control de la concentración 
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de fructosa-2,6-bisfosfato y de la glucolisis, TIGAR podría presentar otras funciones 

sobre la supervivencia neuronal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 18. a) Los niveles de superóxido mitocondrial aumentan en las células tratadas 

con glutamato, pero no en las que han sido transfectadas con siTIGAR. b) La muerte 

neuronal por apoptosis se ve incrementada en neuronas transfectadas con siTIGAR y 

potencia el efecto del glutamato. *P<0.05 (ANOVA)(n=3). 

 

19. TIGAR presenta una localización nuclear en neuronas  
 

Con el objetivo de intentar esclarecer el control sobre supervivencia neuronal 

(independiente de la regulación metabólica) de TIGAR, decidimos investigar su 

localización subcelular. Para ello, llevamos a cabo cultivos primarios de neuronas y 

mixtos de neuronas y astrocitos a partir de embriones de ratón de 16 días de gestación. 

La localización endógena de TIGAR se analizó por inmunofluorescencia en un 

microscopio confocal. Como se muestra en la figura 19, TIGAR presenta una 

localización tanto citosólica como nuclear en neuronas, a juzgar por su co-localización 

con el marcador nuclear TOPRO-3. Sin embargo, TIGAR no está presente en el núcleo 

en astrocitos. Estos resultados sugieren que, al menos en neuronas, TIGAR podría 

presentar una función citoprotectora, aún desconocida, en el núcleo.   
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Figura 19. El análisis por inmunofluorescencia de la localización endógena de TIGAR 

muestra una localización citoplasmática y nuclear en neuronas. En astrocitos, sin 

embargo, la localización es únicamente citoplasmática Barra de escala: 20 μm. 
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CONCLUSIONES 
 

A la vista de los resultados presentados en este trabajo, hemos obtenido las siguientes 

conclusiones:  

 

1- Los ensayos radiométricos basados en la medida de la incorporación de [3-3H] 

glucosa en 3H2O, y en la diferencia de la incorporación de  [1-14C] glucosa y [6-14C] 

glucosa en 14CO2, son específicos para determinar las velocidades glucolítica y de la 

PPP, respectivamente, en neuronas en placa. Sin embargo, la fosfoglucosa isomerasa 

en neuronas funciona cercana al equilibrio, lo que origina la dilución isotópica de [14C] 

glucosa debido al reciclaje de fructosa-6-fosfato no marcada en glucosa-6-fosfato. 

Debido a esto, la velocidad de la PPP medida está ampliamente infraestimada. 

  

2- Las neuronas metabolizan, aproximadamente, el doble de la glucosa-6-fosfato por la 

vía de las pentosas-fosfato y el resto por glucolisis en condiciones de reposo; sin 

embargo, esta relación está sujeta a regulación para adaptarse a diferentes condiciones 

de estrés. 

 

3- La sobre estimulación de los receptores de glutamato, en concreto el subtipo NMDA, 

es suficiente para producir la estabilización de PFKFB3, ocasionando una modificación 

del metabolismo de la glucosa de PPP a glucolisis. En consecuencia, el estado redox 

del glutatión cambia, produciendo estrés oxidativo y muerte neuronal por apoptosis. 

Estos resultados identifican PFKFB3 como una nueva diana terapéutica contra la 

excitotoxicidad.  

 

4- La reciente descubierta fructose-2.6-bisfosfatasa TIGAR está expresada en neuronas, 

donde contribuye a la regulación de la glucolisis neuronal. De este modo, la sobre 

expresión de TIGAR previene de la muerte neuronal por apoptosis producida por 

PFKFB3. En cambio, el silenciamiento de TIGAR produce un incremento en la muerte 

neuronal por apoptosis que es independiente de los niveles de superóxido. Estos 

resultados, junto con la presencia de TIGAR en el núcleo, sugieren una función, aún por 

determinar de esta proteína en neuronas.  
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Excitotoxic stimulus stabilizes PFKFB3 causing
pentose-phosphate pathway to glycolysis switch
and neurodegeneration

P Rodriguez-Rodriguez1, E Fernandez1, A Almeida1,2 and JP Bolaños*,1

6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) is a master regulator of glycolysis by its ability to synthesize
fructose-2,6-bisphosphate, a potent allosteric activator of 6-phosphofructo-1-kinase. Being a substrate of the E3 ubiquitin ligase
anaphase-promoting complex-Cdh1 (APCCdh1), PFKFB3 is targeted to proteasomal degradation in neurons. Here, we show that
activation of N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) stabilized PFKFB3 protein in cortical neurons.
Expressed PFKFB3 was found to be mainly localized in the nucleus, where it is subjected to degradation; however, expression of
PFKFB3 lacking the APCCdh1-targeting KEN motif, or following NMDAR stimulation, promoted accumulation of PFKFB3 and its
release from the nucleus to the cytosol through an excess Cdh1-inhibitable process. NMDAR-mediated increase in PFKFB3
yielded neurons having a higher glycolysis and lower pentose-phosphate pathway (PPP); this led to oxidative stress and
apoptotic neuronal death that was counteracted by overexpressing glucose-6-phosphate dehydrogenase, the rate-limiting
enzyme of the PPP. Furthermore, expression of the mutant form of PFKFB3 lacking the KEN motif was sufficient to trigger
oxidative stress and apoptotic death of neurons. These results reveal that, by inhibition of APCCdh1, glutamate receptors
activation stabilizes PFKFB3 thus switching neuronal metabolism leading to oxidative damage and neurodegeneration.
Cell Death and Differentiation (2012) 19, 1582–1589; doi:10.1038/cdd.2012.33; published online 16 March 2012

In contrast to the neuroprotective actions of mild glutamatergic
synaptic activity,1 persistent activation of the N-methyl-D-
aspartate subtype of glutamate receptors (NMDAR) – including
the extra-synaptic ones2 – is known to underlie the patho-
genesis of a number of neurological disorders, including
Alzheimer’s disease, amyotrophic lateral sclerosis or stroke.3

This phenomenon, known as excitotoxicity, causes neuronal
apoptotic death through a not yet fully understood mechanism,
but it is thought to involve an increase in intracellular Ca2þ

through NMDAR, followed by plasma membrane depolari-
zation and, hence, opening of voltage-gated Ca2þ channels,
release from intracellular stores and reversal of the plasma
membrane Naþ /Ca2þ exchanger.4 This process eventually
triggers the accumulation of mitochondrial Ca2þ , leading
to increased reactive oxygen species (ROS) formation,
mitochondrial energy dysfunction, permeability transition pore
opening and cytochrome c release.5 Besides mitochondria,
it has also been recently shown that cytoplasmic NADPH
oxidase has a key role in ROS production upon NMDAR
stimulation.6 Thus, Ca2þ influx activates protein kinase C,
which in turn phosphorylates and activates p47phox; p47phox

coordinates NAPDH oxidase subunit organization, leading

to enzyme activation.6 Regardless the origin of ROS, it is
thought that neurons are highly vulnerable to mitochondrial
stress, likely because of their inability to sufficiently activate
glycolysis and, hence, to transiently compensate energy
deficiency.7,8 In contrast to neurons, astrocytes and other
proliferative cells readily invoke glycolysis as a cytoprotective
mechanism.8–11

Glycolysis is controlled by the activity of 6-phosphofructo-
1-kinase, the activity of which is highly dependent on its
potent allosteric activator, fructose-2,6-bisphosphate (F2,6P2);
in the brain, F2,6P2 biosynthesis almost exclusively relies
on 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3
(PFKFB3) activity.12,13 Previously, we reported that the
inability of neurons to promote cytoprotective glycolysis is
because of the virtual absence of PFKFB3.14 Furthermore,
we recently found that PFKFB3, through its KEN motif, is a
substrate of the E3 ubiquitin ligase, anaphase-promoting
complex (APC)-Cdh1 (APCCdh1),15 which accounts for the
high instability of PFKFB3 and low glycolytic rate in neurons.15

Inhibition of APCCdh1 in postmitotic neurons triggers an
accumulation of its substrate, cyclin B1, which mediates
apoptotic death.16 Moreover, cyclin B1 accumulation can also
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be recapitulated by NMDAR stimulation, which activates
cyclin-dependent kinase 5 (Cdk5)-mediated Cdh1 phosphor-
ylation, leading to APCCdh1 inhibition.17 In view of the control
that APCCdh1 exerts over PFKFB3 stability,15 here we hypo-
thesized whether NMDAR stimulation, via APCCdh1 inhibition,17

regulates PFKFB3 protein levels in neurons. We show that
NMDAR activation, through inhibition of APCCdh1 caused
PFKFB3 stabilization leading to increased glycolysis and
reduced activity of the pentose-phosphate pathway (PPP). This
metabolic alteration triggered oxidative damage and excitotoxic
neuronal death, thus suggesting that modulators of neuronal
energy metabolism should be considered as targets in
therapeutic strategies against neurodegenerative diseases.

Results

In order to test whether rat primary cortical neurons in culture
responded to glutamate receptor activation, we first monitor-
ized the changes in Fura-2 fluorescence. As shown in
Figure 1a, Fura-2 F335/F363 ratio – an index of intracellular
Ca2þ levels – increased by B1.3-fold immediately after the
addition of glutamate (100 mM) or N-methyl-D-aspartate
(NMDA; 100mM). Furthermore, pre-incubation of neurons

with the NMDAR antagonist, MK801 (10mM), prevented by
B60% glutamate-mediated increase in F335/F363 ratio
(Figure 1a, left panel); MK801 almost abolished (by B90%)
NMDA-mediated increase in F335/F363 ratio (Figure 1a, right
panel). These results suggest that, under our experimental
conditions – cells grown in serum-based medium – cortical
neurons express functional NMDAR and, hence, are useful for
the study of excitotoxic-mediated metabolic changes. To
investigate whether glutamate receptor activation controls
PFKFB3 stability, we then incubated neurons with glutamate
(100 mM/15 min), and the levels of PFKFB3 protein were
analyzed by western blotting. As shown in Figure 1b,
glutamate triggered a time-dependent increase in PFKFB3,
an effect that was maximal (by B2.1-fold) after 6 h. To see
whether this effect was mediated by NMDAR, neurons were
incubated with NMDA (100 mM/15 min), and PFKFB3 protein
levels analyzed 6 h later. As depicted in Figure 1c, NMDA
mimicked glutamate at increasing PFKFB3. Moreover, incu-
bation of neurons with MK801 prevented glutamate-mediated
increase in PFKFB3 (Figure 1d). Glutamate did not alter
PFKFB3 mRNA levels (Figure 1e). These results suggest that
activation of NMDAR stabilizes PFKFB3 protein in neurons.

Next, we investigated the involvement of APCCdh1 activity in
determining PFKFB3 stabilization by NMDAR. In view that
NMDAR activation promotes APCCdh1 inhibition by Cdk5-
mediated phosphorylation of Cdh1,17 we tested whether this
observation could be confirmed in our conditions. As shown in
Figure 2a, glutamate (100 mM/15 min) promoted, after 4 h, H1
phosphorylation in neuronal samples immunoprecipitated
with anti-Cdk5; furthermore, this effect was prevented by
MK801, suggesting NMDAR-mediated activation of Cdk5
activity. In addition, Cdh1 was phosphorylated – suggesting
APCCdh1 inhibition – 6 h after glutamate treatment, an effect
that was also prevented by MK801 (Figure 2b). To further
investigate if APCCdh1 activity regulated PFKFB3 stability
upon glutamate receptor stimulation, neurons were trans-
fected with a green fluorescent protein (GFP)-PFKFB3
construct to visualize PFKFB3 subcellular localization by
confocal microscopy. PFKFB3 was mainly localized in the
nucleus of neurons, but glutamate treatment promoted its
accumulation, as revealed by the spread (nuclear plus
cytosolic) localization (Figures 2c and d). Interestingly, Cdh1
overexpression prevented this effect, suggesting that defi-
ciency in active Cdh1 was responsible for glutamate-mediated
PFKFB3 spreading (Figures 2c and d). Furthermore, expres-
sion of a GFP-PFKFB3 form with its KEN box mutated to
AAA (mut-PFKFB3), hence, insensitive to APCCdh1 activity,15

showed the spread-like localization, regardless of glutamate
treatment (Figures 2c and d). Thus, glutamate-mediated
PFKFB3 stabilization occurs via APCCdh1 inhibition.

To elucidate whether NMDAR-mediated PFKFB3 protein
stabilization had functional consequences for neuronal
metabolism, we assessed the rates of glycolysis and PPP,
as well as the glutathione redox status. The efficacy of a small
interfering RNA against PFKFB3 (siPFKFB3) to prevent
PFKFB3 protein accumulation was first tested. To do so,
primary neurons were transfected with the GFP-PFKFB3
complementary DNA (cDNA) construct, and PFKFB3 protein
was determined using an anti-flag (anti-GFP) antibody. As
shown in Figure 3a, PFKFB3 was accumulated 6 h after

Figure 1 Activation of NMDAR stabilizes PFKFB3 protein in neurons.
(a) Incubation of rat primary cortical neurons with glutamate (left panel) or NMDA
(right panel) increased the ratio of Fura-2-dependent fluorescence (at 510 nm) obtained
after excitation at 335/363 nm (F335/F363), indicating an increase in intracellular
Ca2þ . MK801 (10 mM) partially prevented glutamate-induced changes in F335/
F363 ratio and most of NMDA-dependent F335/F363 ratio changes. (b) Incubation
of neurons with glutamate (100mM/15 min) triggered time-dependent increase in
PFKFB3 protein, which was maximal after 6 h. (c) NMDA (100mM/15 min) mimicked
glutamate at increasing PFKFB3. (d) NMDA receptor antagonist, MK801 (10 mM),
prevented glutamate-mediated increase in PFKFB3. (e) Glutamate (100mM/15 min)
did not change PFKFB3 mRNA levels, as revealed by the unaltered intensity of the
predicted 300 bp band after reverse-transcription of total RNA samples, followed by
polymerase chain reaction (RT-PCR) using specific oligonucleotides for PFKFB3;
GAPDH (279 bp band) was used as loading control; the black/white inverted images
of the agarose gels are shown; w/o RT, RT-PCR for PFKFB3 without reverse
transcriptase
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Figure 2 Glutamate-mediated PFKFB3 stabilization occurs via Cdk5-mediated inhibition of APCCdh1 activity. (a) Glutamate treatment (100mM/15 min) increased, after
1 h, Cdk5-mediated H1 phosphorylation in rat primary cortical neurons; this effect was fully abolished by MK801 (10 mM). (b) Cdh1 is phosphorylated 6 h after glutamate
treatment (100mM/15 min), an effect that was prevented by MK801 (10 mM). (c) Confocal microscopy images of neurons transfected with GFP-PFKFB3 reveals its nuclear
localization. Glutamate promotes PFKFB3 accumulation, as revealed by its spread (nuclear plus cytosolic) localization; Cdh1 overexpression prevented this effect.
GFP-PFKFB3 mutated on its KEN box (KEN-AAA; mut-PFKFB3) showed the spread-like localization, regardless of glutamate treatment. (d) Percentage of neurons showing
nuclear or spread GFP-PFKFB3 localization in the experiments shown in c; these data were obtained by analyzing B30 neurons per condition per neuronal preparation
(n¼ 4). *Po0.05 versus the corresponding (nuclear or cytoplasmic) PFKFB3-none condition (ANOVA)

Figure 3 Glutamate stimulates PFKFB3-dependent increase in glycolysis, a decrease in PPP and promotes glutathione oxidation in neurons. (a) Incubation of
GFP-PFKFB3-expressing neurons with glutamate (100 mM/15 min) induced, 6 h after treatment, PFKFB3 accumulation in control, siRNA-treated neurons (siControl),
as revealed by an anti-GFP (Flag) antibody; transfection of neurons with an siPFKFB3 efficiently reduced PFKFB3 protein and prevented glutamate-induced PFKFB3
accumulation. (b) Incubation of neurons with glutamate (100mM/15 min) increased, after 6 h, the rate of glycolysis, as assessed by the determination of [3-3H]glucose
incorporation into 3H2O; this effect was abolished by preventing PFKFB3 accumulation in neurons previously transfected with siPFKFB3. (c) Glutamate treatment decreased,
after 6 h, the rate of the PPP, as assessed by the determination of the difference between 14CO2 produced by [1-14C]glucose and that of [6-14C]glucose; this effect was
abolished by siPFKFB3. (d) Glutamate treatment did not change GSx (left panel), but it increased GSSG (middle panel) and the oxidized glutathione redox status (GSSG/GSx;
right panel); these effects were partially prevented by siPFKFB3. *Po0.05 versus none; #Po0.05 versus the corresponding siControl (ANOVA)
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glutamate (100 mM/15 min) incubation in control neurons
(siControl); however, transfection of neurons with an
siPFKFB3 decreased PFKFB3 protein abundance in control
neurons and prevented glutamate-mediated PFKFB3 accu-
mulation. We then assessed the rate of glycolysis, and we
found it to be significantly enhanced, after 6 h, by glutamate
treatment (Figure 3b); moreover, this was abolished by
preventing PFKFB3 accumulation using the siPFKFB3
(Figure 3b). In view that glycolysis and PPP are two
interconnected metabolic pathways, we then assessed
whether the increase in glycolysis altered glucose utilization
through the PPP. We found that glutamate treatment
decreased, after 6 h, the rate of PPP, an effect that was
abolished by siPFKFB3 (Figure 3c). Thus, glutamate triggers
a PFKFB3-dependent increase in glycolysis and decrease in
the PPP.

It has been previously shown that glucose metabolism
through the PPP is neuroprotective15,18,19 because of its
NADPH-regenerating function. Thus, NADPH is an essential
cofactor for glutathione regeneration, hence, the PPP
becomes necessary to prevent neuronal death by oxidative
stress.18 Thus, we next aimed to elucidate whether the
metabolic PPP/glycolytic shift triggered by glutamate treat-
ment induced oxidative stress. As shown in Figure 3d, total
glutathione (GSx) was unaltered, but its oxidized form
(GSSG) and the glutathione oxidized status (GSSG/GSx
ratio) significantly increased 6 h after glutamate treatment,
and these effects were prevented by siPFKFB3. To further
support evidence for oxidative stress, we next evaluated
whether a putative increased ROS production by glutamate
could be rescued by either knocking down a key glycolytic
enzyme, phosphoglucose isomerase (PGI), or by overexpres-
sing glucose-6-phosphate dehydrogenase (G6PD), the rate-
limiting enzyme of the PPP that we have previously shown to
be efficient in neurons.15,18 The efficacy of these tools were
first tested by western blotting (Figure 4a); thus, transfection
of neurons with the siRNA against PGI efficiently knocked
down PGI protein, whereas overexpression of the cDNA
encoding G6PD increased neuronal G6PD abundance.
Glutamate treatment (100 mM/15 min) increased, after 6 h,
neuronal ROS, an effect that was prevented by knocking
down PGI or PFKFB3, as it was by overexpressing G6PD, or
by blocking NMDAR with MK801 (Figure 4b). To assess
neuronal vulnerability to oxidative stress in this paradigm, we
then analyzed the proportion of annexin Vþ /7AAD� neurons
(indicating neurons that had been targeted to apoptosis) after
glutamate treatment. We found that glutamate increased,
though modestly, apoptotic neuronal death via a mechanism
that could be prevented by silencing PGI or PFKFB3, as well
as by overexpressing G6PD or blocking NMDAR (Figure 4c).
Together, these results indicate that NMDAR activation
triggers oxidative stress and targets neurons for apoptotic
death by shifting PPP to glycolysis.

Finally, we sought to elucidate whether APCCdh1 activity
was responsible for PFKFB3-mediated oxidative stress and
neurodegeneration in excitotoxicity. As shown in Figure 5a,
glutamate increased ROS in neurons transfected with low
levels of wild-type PFKFB3 cDNA. However, transfection of
neurons with identical cDNA amounts of the KEN box-mutant
form of PFKFB3 (mut-PFKFB3) increased ROS to levels

similar to those triggered by glutamate; moreover, glutamate
did not further enhance ROS in neurons expressing mut-
PFKFB3 (Figure 5a). Interestingly, apoptotic death triggered
by glutamate in neurons transfected with PFKFB3 was
mimicked by mut-PFKFB3 (Figure 5b). Thus, expression of
APCCdh1-insensitive PFKFB3 mimics glutamate at causing
oxidative stress and neuronal death.

Figure 4 NMDAR activation triggers oxidative stress and apoptotic death by
switching PPP to glycolysis. (a) Transfection of neurons with an siRNA against PGI
(siPGI), efficiently knocked down PGI protein abundance (left panel). Transfection of
neurons with the full-length DNA encoding G6PD efficiently increased G6PD protein
abundance (right panel). (b) Glutamate treatment (100mM/15 min) increased ROS
in neurons, as assessed by MitoSox fluorescence by flow cytometry; this effect was
prevented by knocking down PGI (siPGI) or PFKFB3 (siPFKFB3), overexpressing
G6PD, or blocking NMDAR with MK801 (10mM). (c) Glutamate treatment increased
apoptotic neuronal death, as assessed by annexin Vþ /7-AAD� fluorescence by
flow cytometry; this effect was prevented by silencing PGI (siPGI) or PFKFB3
(siPFKFB3), overexpressing G6PD or blocking NMDAR with MK801. *Po0.05
versus none; #Po0.05 versus siControl (glutamate; 5� 104 events were acquired
in triplicate; results mean±S.E.M. from three independent neuronal preparations,
n¼ 3; ANOVA)
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Discussion

Neurons continuously degrade the glycolytic-promoting
enzyme PFKFB3 by APCCdh1 activity, and this allows a
considerable proportion of glucose to be oxidized via the
PPP, which functions as an antioxidant and survival metabolic
pathway.15 Here, we show that a short-term activation of
glutamate receptors in cortical neurons triggers delayed, time-
dependent PFKFB3 protein accumulation; the lack of change
in the PFKFB3 mRNA abundance ruled out a transcriptional
effect. Moreover, NMDA mimicked glutamate, and NMDAR
antagonist MK801 prevented PFKFB3 accumulation, indicat-
ing the direct involvement of NMDAR stimulation in PFKFB3
stabilization. Previously, it was reported that NMDAR stimula-
tion in cortical neurons promotes, in a Ca2þ -dependent
manner, p35 cleavage to p25 by calpain leading to Cdk5
activation.20 Here, we show that, under our experimental
culture conditions, rat primary cortical neurons efficiently
responded to NMDAR stimulation, as judged by the MK801-
inhibitable increased intracellular Ca2þ levels. Moreover, we
show that glutamate induced Cdk5 activation in a process that
was antagonized by MK801, indicating the involvement of
NMDAR. Given that NMDAR-mediated activation of Cdk5
phosphorylates Cdh1 leading to APCCdh1 inhibition,17 we
hypothesized that the stabilization of PFKFB3 could be
consequence of NMDAR-mediated APCCdh1 inhibition. In
good agreement with the presence of a nuclear-targeting
motif in PFKFB3,21 we found that expressed PFKFB3 was
localized in the nucleus, where neurons actively degraded it.
In addition, we show that Cdh1 was phosphorylated by
glutamate treatment, and that this was accompanied by
cellular spread of PFKFB3 from the nucleus to cytosol in a
Cdh1-inhibitable process; interestingly, the PFKFB3 mutant
form lacking the Cdh1-recognizing KEN motif spontaneously

accumulated. Together, these results indicate that PFKFB3
nuclear stabilization followed by cytosolic spread is the
consequence of APCCdh1 inhibition. The mechanism whereby
PFKFB3 is released from the nucleus remains unclear,
although the physiological significance is likely in view of the
cytoplasmic localization of the PFKFB3 target, 6-phospho-
fructo-1-kinase.

NMDAR-mediated PFKFB3 protein stabilization led to
increased PFKFB3 activity and efficiently upregulated the
rate of glycolysis in neurons. In previous studies, neurons
failed to upregulate glycolysis immediately after the bioener-
getic stress caused by mitochondrial inhibitors8,22 or NMDAR
activation.14 However, it should be noted that PFKFB3
stabilization takes place several hours after glutamate
treatment, thus explaining the absence of measurable short-
term glycolytic stimulation in cortical neurons in the previous
studies.8,14,22 Accordingly, the delayed increase in glycolysis
that we observe does not appear to be a neuronal attempt to
rapidly compensate for the mitochondrial energy dysfunction,
which occurs immediately after NMDAR stimulation.7 Instead,
the delayed glycolysis activation reflects a long-term meta-
bolic adaptation of neurons by excitotoxic insult; however,
such an adaptation concurs with concomitant decrease in the
rate of glucose oxidation through the PPP, hence, triggering
oxidative stress and neurotoxicity. Intriguingly, although the
stimulation of glycolysis is cytotoxic in neurons, it is
cytoprotective in astrocytes.8 This different outcome shown
by neurons and astrocytes is consistent with the expression of
a robust antioxidant system in astrocytes that is not present in
neurons.23 Upon inhibition of mitochondrial respiration,
astrocytes switch on glycolysis, via the 50-AMP-activated
protein kinase-PFKFB3 pathway,14 to compensate for the
ATP deficiency without affecting their antioxidant status.24

However, shifting glucose utilization from PPP to glycolysis in
neurons compromises the efficacy of the critical antioxidant
NADPH-glutathione regenerating system, hence causing
delayed neurotoxicity. Importantly, both the increase in
glycolysis and the decrease in PPP could be fully abolished
by siPFKFB3, indicating that both metabolic pathways are
wholly controlled by PFKFB3. In this context, it should be
mentioned that Tp53-inducible glycolysis and apoptosis
regulator (TIGAR), by catalyzing F2,6P2 degradation inhibits
glycolysis and stimulates PPP.25 Thus, the control over
F2,6P2 concentrations by either PFKFB3 – with a main
fructose-6-phosphate-2-kinase activity12,13 – or TIGAR – with
fructose-2,6-bisphosphatase activity25 – appears to deter-
mine the fate of glucose metabolism. However, no evidence
for NMDAR-mediated p53 upregulation is currently available,
hence, remaining elusive whether TIGAR induction has a
determinant role in neuronal metabolic change upon NMDAR
stimulation.

The metabolic PPP to glycolysis shift triggered by NMDAR
stimulation was accompanied by oxidative stress, as revealed
both by an increase in the oxidized glutathione redox status
and by the increased mitochondrial ROS, as well as apoptotic
neuronal death. These data contrast with those reporting that
NMDAR-mediated increase in neuronal ROS could be
blocked with 6-aminonicotinamide, an inhibitor of PPP that
produces NADPH required for NADPH oxidase activity.6

Whether the different neuronal settings (defined versus

Figure 5 Expression of APCCdh1-insensitive PFKFB3 mimics glutamate at
causing oxidative stress and neuronal death. (a) Glutamate treatment (100mM/
15 min) increased ROS in neurons transfected with low levels of wild-type PFKFB3
cDNA; transfection of neurons with identical cDNA amounts of the KEN box-mut-
PFKFB3 increased ROS to similar levels to those triggered by glutamate; glutamate
did not further enhance ROS in neurons expressing mut-PFKFB3. (b) Glutamate
increased apoptotic death of neurons transfected with low levels of PFKFB3 cDNA;
transfection of neurons with identical cDNA amounts of mut-PFKFB3 increased
apoptotic death to similar levels to those triggered by glutamate; glutamate did not
further enhance apoptotic death in neurons expressing mut-PFKFB3. *Po0.05
versus none (PFKFB3; 3� 104 events were acquired in triplicate; results
mean±S.E.M. from three independent neuronal preparations, n¼ 3; ANOVA)
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serum-based media) or the types of tools used (pharmaco-
logical versus genetic approaches to modulate glycolysis and
PPP) are responsible for this apparent controversy remains
elusive. However, in our hands, silencing PFKFB3 or PGI,
which effectively inhibited glycolysis,15 or G6PD overexpres-
sion, a potent activator of the PPP,18 prevented such a
metabolic switch and the concomitant ROS production by
NMDAR stimulation. In fact, PPP activity produces reduced
equivalents in the form of NADPH,26 which is also a necessary
cofactor for antioxidant glutathione regeneration.18 Thus,
PFKFB3 silencing significantly prevented the increase in
oxidized glutathione status caused by NMDAR stimulation
and this was critical at determining neuronal survival.
Interestingly, it has been shown that, when oxidized,
cytochrome c is released from mitochondria, hence promoting
apoptotic neuronal death, and that PPP activity is essential at
maintaining cytochrome c reduced.27 Our results, showing
oxidative stress and neurodegeneration following PFKFB3
stabilization by NMDAR stimulation, confirm the critical role of
PPP at regulating neuronal apoptosis. Furthermore, they
show that the loss of PPP activity by APCCdh1 inhibition is a
novel and important player in excitotoxicity. Together, these
findings highlight the importance of metabolic modulation in
excitotoxicity and neurodegeneration and emphasize that
metabolic targets should be considered when designing
therapeutic strategies.

Materials and Methods
Plasmid constructions and site-directed mutagenesis. The rat
PFKFB3 full-length cDNA (splice variant K6; 1563 bp; accession number
BAA21754) was obtained, by reverse-transcriptase polymerase chain reaction
(RT-PCR), at our laboratory.15 PFKFB3 cDNA was fused, at its 50-terminus, with
the full-length cDNA encoding the GFP and subcloned in pCDNA3.0 vector.
This GFP-PFKFB3 cDNA fusion construct was then subjected to site-directed
mutagenesis of its KEN-box to AAA using the QuikChange XL site-directed
mutagenesis kit (Stratagene, La Jolla, CA, USA) using the following forward and
reverse primers, respectively: 50-ATCCTTCATTTTGCCGCAGCAGCTGACTTCAA
GGC-30 and 50-ATGCCTTGAAGTCAGCTGCTGCGGCAAAATGAAGG-30 (mutated
nucleotides underlined). Human full-length Cdh1 cDNA (accession number
NM_016263) was a generous gift of Dr. J Pines (Gurdon Institute, University of
Cambridge, UK).

RNA interference. To knockdown PGI (accession number NM_207192),
we used the following sequence for siRNA: 50-CCTTACCAGACGTAGTGTT-30

(nt 1248–1266). To knockdown PFKFB3 we used the sequence 50-AAAGCCTC
GCATCAACAGC-30 (nt 1908–1926). Both siRNAs were previously validated at our
laboratory for efficacy.14,15 An siRNA against luciferase (50-CTGACGCGGAATAC
TTCGATT-30) was used as control.

RT-PCR analysis. Total RNA was purified from neurons using a commercially
available kit (Sigma, Saint Louis, MO, USA). PFKFB3 mRNA expression was
analyzed by 4.5% agarose electrophoresis after RT-PCR using the following
forward and reverse oligonucleotides, respectively: 50-CCAGCCTCTTGACCCT
GATAAATG-30 and 50-TCCACACGCGGAGGTCCTTCAGAT-30 for PFKFB3, and
50-CTGGCGTCTTCACCACCAT-30 and 50-AGGGGCCATCCACAGTCTT-30 for
GAPDH. Reverse transcription was performed at 48 1C for 50 min, and PCR
conditions were 10 min at 95 1C, 35 cycles of 1 min at 95 1C, 1 min at 58 1C and
30 s at 68 1C. Final extension was carried out for 10 min at 72 1C. In no case was
a band detected by PCR without reverse transcription.

Antibodies. An anti-PFKFB3 (K3-K6 splice variants) antibody was generated,
by rabbit immunization with the synthetic peptide 508MRSPRSGAESSQKH521-C, at
our laboratory as previously described.15 A commercial anti-PFKFB3 antibody
raised against a C-terminal region of the human PFKFB3 (protein accession

Q16875; catalog number H00005209-M08, Novus Biologicals, Cambridge, UK)
was also used; this antibody cross-reacts with human and rat PFKFB3, thus
recognizing a region that is shared by all translational products of the rat K1 to
K8 PFKFB3 mRNA splice variants. Anti-Cdh1 (AR38) was a generous gift from
J Gannon (Clare Hall Laboratories, Cancer Research, UK). Anti-Cdk5 (C-8) and
anti-PGI (K-16) were from Santa Cruz Biotechnology (Heidelberg, Germany).
Anti-GFP was purchased from Abcam (Cambridge Science Park, Cambridge, UK).
Anti-G6PD and anti-GAPDH were purchased from Sigma, and anti-phosphoserine
from Zymed (Invitrogen, Groningen, The Netherlands).

Cell cultures. Cortical neurons in primary culture were prepared from fetal
(E16) Wistar rats. Cells were seeded (2.5� 105 cells/cm2) in DMEM (Sigma)
supplemented with 10% (v/v) fetal calf serum (Roche Diagnostics, Heidelberg,
Germany) and incubated at 37 1C in a humidified 5% CO2-containing atmosphere.
After 48 h of plating, the medium was replaced with DMEM supplemented with 5%
horse serum (Sigma) and with 20 mM D-glucose. On day 4, cytosine arabinoside
(10mM) was added in order to prevent non-neuronal proliferation. Cells were used
by day 6, when enrichment was B99% (neurofilament; data not shown).

Cell treatments. Transfection of cells with plasmid vectors was carried out
using 0.16–1.6mg/ml of the plasmids, as indicated in the figure legends. All
transfections were performed using lipofectamine 2000 (Invitrogen) following the
manufacturer’s instructions, at day 5 in vitro. After 6 h, the medium was removed
and cells were further incubated overnight in the presence of culture medium. For
RNA interference experiments, siRNAs (purchased from Thermo Fisher Scientific,
Lafayette, CO, USA; sequences described above) were used. In dose-response
preliminary settings, primary neurons were transfected, using Lipofectamine 2000
with 20–100 nM of the siRNAs, which showed a dose-dependent effect; only the
results using 100 nM are shown. siRNA transfections were performed at day 3 in vitro
and experiments were performed at day 6, when an efficient knockdown of the target
proteins was obtained. For NMDAR activation, neurons at 6 days in vitro were
incubated with 100mM glutamate (plus 10mM glycine) or 100mM NMDA (plus 10mM
glycine) in buffered Hanks’ solution (pH 7.4) for 15 min.7 When indicated, incubations
were performed in the presence of MK-801 (10mM; Sigma). Neurons were then
washed and further incubated in culture medium for the indicated time period.

Flow cytometric analysis of apoptotic cell death. APC/C-conjugated
annexin-V and 7-aminoactinomycin D (7-AAD) (Becton Dickinson Biosciences,
San Jose, CA, USA) were used to determine quantitatively the percentage of
apoptotic neurons by flow cytometry. Cells were stained with annexin V-APC
and 7-AAD, following the manufacturer’s instructions, and were analyzed on a
FACScalibur flow cytometer (15 mW argon ion laser tuned at 488 nm) using the
CellQuest software software (BDB). Both GFPþ and GFP� cells were analyzed
separately and the annexin V-APC-stained cells that were 7-AAD-negative were
considered to be apoptotic.15

Detection of ROS. This was carried out using MitoSox-Red (Invitrogen).
Neurons were incubated with 2 mM MitoSox-Red for 30 min, washed with PBS and
the fluorescence assessed by flow cytometry.15

Measurement of the glycolytic and PPP fluxes. Suspensions of
known amounts of cells (4–5� 105 cells) obtained by smooth detaching from the
cultures 6 h after glutamate treatments, were incubated in sealed vials containing a
central well, which was used for 14CO2 or 3H2O trapping. Cells were incubated in the
presence of 1mCi of either D-[1-14C] glucose or D-[6-14C] glucose for PPP
determinations, whereas 5mCi of D-[3-3H] glucose were used for glycolytic flux
determinations, both in a Krebs–Henseleit buffer (11 mM Na2HPO4, 122 mM NaCl,
3.1 mM KCl, 0.4 mM KH2PO4, 1.2 mM MgSO4, 1.3 mM CaCl2; pH 7.4) containing
5 mM D-glucose at 37 1C. In order to ensure an adequate O2 supply for oxidative
metabolism by the cells throughout the 90 min incubation period, the gas phase in
the vials containing the cells was supplied with extra O2 before the vials were
sealed. The glycolytic flux was measured by assaying the rate of 3H2O production
from [3-3H]glucose, as detailed previously.15 The PPP flux was measured by
assessing the difference between 14CO2 production from [1-14C]glucose – which
decarboxylates via the 6-phosphogluconate dehydrogenase-catalyzed reaction –
and that of [6-14C]glucose – which decarboxylates via the tricarboxylic acid cycle.18,28

Glutathione measurements. For glutathione determinations, neurons were
treated with 1% (w/v) sulfosalicylic acid and centrifuged at 13 000� g for 5 min
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at 4 1C. GSx (the amount of reduced glutathione (GSH), plus two times the amount
of oxidized glutathione (GSSG)) and GSSG concentrations were measured in the
supernatants using the enzymatic method of Tietze.29 GSSG was quantified after
derivatization of GSH in the samples with 2-vinylpyridine. Data were extrapolated to
those obtained with GSSG standards (0–5mM for GSSG; 0–50mM for GSx). The
glutathione redox status was expressed as the GSSG/GSx ratio, as previously
described.18,30

Fura-2 fluorescence measurements. To estimate the intracellular Ca2þ -
dependent changes by NMDAR stimulation in cortical neurons we used the
fluorescent probe Fura-2 (acetoxymethyl-derivative; Life Technologies, Eugene,
OR, USA), as previously described.31 Essentially, neurons at 6 days in vitro, seeded
in 96-well plates (Nunc), were incubated with Fura-2 (2 mM; dissolved in dimethyl
sulphoxide (DMSO)) for 40 min in DMEM at 37 1C. Then, cells were washed and
further incubated with standard buffer (140 mM NaCl, 2.5 mM KCl, 15 mM Tris-HCl,
5 mM D-glucose, 1.2 mM Na2HPO4, 1 mM MgSO4 and 1 mM CaCl2, pH 7.4) for
30 min and 37 1C. Finally, the standard buffer was removed and experimental
buffer (140 mM NaCl, 2.5 mM KCl, 15 mM Tris-HCl, D-glucose, 1.2 mM Na2HPO4,
and 2 mM CaCl2, pH 7.4), either in the absence or in the presence of MK801
(10mM), was added. Emissions at 510 nm, after excitations at 335 and 363 nm,
respectively, were recorded at 1 s intervals in a Varioskan Flash (Thermo Fischer,
Vantaa, Finland) spectrofluorometer at 32 1C. After B10 s, glutamate (100mM) or
NMDA (100mM) (plus 10mM glycine) was injected and emissions were further
recorded for 50 s. Ca2þ -dependent fluorescence changes were estimated by
representing the ratio of fluorescence emitted at 510 nm obtained after excitation
at 335 nm divided by that at 363 nm (F335/F363). Background subtraction was
accomplished from emission values obtained in Fura-2-lacking (DMSO-containing)
neurons. In preliminary experiments, the Ca2þ specificity of the measurements
was tested in Ca2þ -free experimental buffer containing 1 mM ethylene glycol
tetraacetic acid (EGTA), which fully prevented the changes in 510 nm emissions
(data not shown). At least, six wells were recorded per condition in each experiment
(n¼ 4 experiments) and the averaged values are shown.

Western blot analysis. After transfections and treatments, neurons were
lysed in RIPA buffer (2% sodium dodecylsulphate, 2 mM ethylene diamine tetraacetic
acid (EDTA), 2 mM EGTA, 50 mM Tris; pH 7.5), supplemented with phosphatase
inhibitors (1 mM Na3VO4, 50 mM NaF) and protease inhibitors (100mM phenyl-
methylsulfonyl fluoride, 50mg/ml anti-papain, 50mg/ml pepstatin, 50mg/ml amastatin,
50mg/ml leupeptin, 50mg/ml bestatin and 50mg/ml soybean trypsin inhibitor) and
boiled for 5 min. Aliquots of cell extracts were subjected to sodium dodecyl sulfate
(SDS) polyacrylamide gel (MiniProtean, Bio-Rad, Hercules, CA, USA) and blotted with
antibodies overnight at 4 1C. Signal detection was performed with an enhanced
chemiluminescence kit (Pierce, Thermo Scientific, Waltham, MA, USA).

Immunoprecipitation and Cdk5 kinase activity. Neurons were lysed
in ice-cold buffer containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 10 mM EDTA,
2 mM EGTA, 1% NP-40, supplemented with the phosphatase and protease
inhibitors cited above. Cell extracts were clarified by centrifugation and supernatants
(50mg of protein for immunoprecipitation experiments, 500mg for Cdk5 kinase
assays) were incubated with anti-Cdh1 or anti-Cdk5, overnight at 4 1C, followed by
the addition of 15–30ml of protein A-sepharose (GE Healthcare Life Sciences,
Uppsala, Sweden) for 1–2 h at 4 1C. Immunoprecipitates were extensively washed
with lysis buffer and either detected by western blot analysis against anti-
phosphoserine or resuspended in kinase buffer (20 mM Tris-HCl pH 7.6,
20 mM MgCl2, 2 mM MnCl2, 1 mM EDTA, 1 mM EGTA, 0.1 mM dithiothreitol)
containing 20mM ATP, 10mCi of [g-32P]ATP and histone-H1 (50mg/ml; Sigma)
for SDS-polyacrylamide gel (12%) electrophoresis; transferred proteins were
visualized by autoradiography and anti-Cdk5 blotting.32

Protein determinations. Protein concentrations were determined in the cell
suspensions, lysates or in parallel cell culture incubations after solubilization with
0.1 M NaOH. Protein concentrations were determined as described33 using bovine
serum albumin as a standard.

Confocal microscopy. Neurons were grown on glass coverslips. After
transfections and treatments they were fixed with 4% (v/v in PBS) paraformaldehyde
for 20 min and incubated with DAPI (30mM; Sigma). Confocal microscopy images
were obtained with a Leica SP5 microscope (DMI-6000B model; Leica Microsystems
GmbH, Wetzlar, Germany).

Statistical analysis. Measurements from individual cultures were always
carried out in triplicate. The results are expressed as mean±S.E.M. values for
three different culture preparations. Statistical analysis of the results was performed
by one-way analysis of variance (ANOVA), followed by the least significant
difference multiple range test. In all cases, Po0.05 was considered significant.
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